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Conventional analysis of movement on non-flat
surfaces like the plasma membrane makes
Brownian motion appear anomalous
Jeremy Adler1, Ida-Maria Sintorn2, Robin Strand2 & Ingela Parmryd1,3

Cells are neither flat nor smooth, which has serious implications for prevailing plasma

membrane models and cellular processes like cell signalling, adhesion and molecular clus-

tering. Using probability distributions from diffusion simulations, we demonstrate that 2D and

3D Euclidean distance measurements substantially underestimate diffusion on non-flat sur-

faces. Intuitively, the shortest within surface distance (SWSD), the geodesic distance, should

reduce this problem. The SWSD is accurate for foldable surfaces but, although it outperforms

2D and 3D Euclidean measurements, it still underestimates movement on deformed surfaces.

We demonstrate that the reason behind the underestimation is that topographical features

themselves can produce both super- and subdiffusion, i.e. the appearance of anomalous

diffusion. Differentiating between topography-induced and genuine anomalous diffusion

requires characterising the surface by simulating Brownian motion on high-resolution cell

surface images and a comparison with the experimental data.
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There is a marked discrepancy between the measured dif-
fusion of both lipids and proteins in artificial and biological
membranes of about 5–20 times1. Explanations include

hop diffusion2, transient anchorage3, molecular crowding4, fixed
obstacles5 and membrane domains6, any of which could produce
anomalous rather than Brownian diffusion. A linear relationship
between the MSD (mean squared deviation) and time char-
acterizes simple diffusion and a departure from this relationship
indicates that additional factors influence the pattern of move-
ment of the observed molecules or particles, i.e. that the diffusion
is anomalous.

The prolonged and precise tracking of single particles on the
surface of living cells by light microscopy is a technological
triumph7,8 and analyses of the resulting single particle tracks
(SPT) underpin contemporary models of the plasma membrane,
e.g., hop diffusion2,9. Hop diffusion could be caused by a coherent
network of barriers that compartmentalize the plasma membrane,
with the diffusion within a compartment being relatively
unconstrained while changing compartments is difficult10. This
would give rise to relatively rapid short-term diffusion and
reduced rates over longer timescales—a pattern observed on the
plasma membrane. Stimulated emission depletion—fluorescence
correlation spectroscopy (STED-FCS) also reports differences in
the long-range and short-range diffusion coefficients but with a
much lower confinement strength11, the discrepancy being
explained by the larger experimental errors in SPT12.

A critical, though generally unstated, assumption in the ana-
lysis of SPT, and other methods for estimating diffusion in
membranes like FCS and fluorescence recovery after photo-
bleaching (FRAP), is that the surface is both locally flat and
aligned with the imaging plane. Employing this assumption is
common practice and it justifies the use of 2D tracking and
distance measurements, but the widespread use of the assumption
is somewhat remarkable since it was already acknowledged that
topography could influence diffusion measurements in early
FRAP studies13,14. However, other early FRAP studies did not
find a role for topography, causing some confusion15,16. It has
also been noted that membrane undulations can cause large
errors in the interpretation of FCS data17. The movement of
particles is, nonetheless, usually analysed using the 2D MSD of
the shortest distances between sequential positions18.

The critical assumption that living biological membranes are
locally flat lacks experimental support. A wide range of cell types
examined live by hopping probe ion conductance microscopy, a
non-contact surface scanning method, were shown to have ridges,
undulations and projections and none were even locally flat19.
This invalidates 2D interpretations of cell surface diffusion data,
which systematically underreport the true rate of diffusion. For
instance, a convoluted surface that halves the 2D measured dis-
tances would, as the calculated diffusion is based on the MSD,
reduce the apparent diffusion by a factor of four. It therefore
seems likely that the discrepancy between diffusion in the plasma
membrane and in model membranes, that are reasonably flat, has
been overestimated. Membrane topography also is of crucial
importance for how we perceive cellular processes like cell sig-
nalling, cell adhesion and molecular clustering20,21.

There is a critical difference between measuring movement in a
homogenous volume and on a homogenous surface; in a volume
movement is unrestricted while a particle or molecule on a sur-
face is confined. The MSD is the basis for SPT analysis. It dis-
regards the path taken and uses the net movement measured by
the straight-line-distance. The main advantage of the MSD is that
it, unlike velocity, makes the measured motion independent of
the frequency of observation; for Brownian motion, the MSD has
linear relationship with time. Within a volume or on a flat surface
the shortest distance is always a possible path, but on non-flat
surfaces, the shortest route frequently departs from the surface,
which is physically impossible for membrane components. The
Euclidean (linear) distance between successive locations of a

particle moving in a surface that is neither flat nor smooth
therefore consistently understates the length of the shortest pos-
sible path.

Different approaches for simulating diffusion on uneven static
and fluctuating biomembrane surfaces have been reported22–25.
One approach uses level sets26 together with embedding the
surface in a small annular region24,25. In another approach,
random walk is used22,23. The simulation method in22 has been
further developed to encompass moving surfaces and the effect of
any particle-induced curvature27.

In this study, we simulate diffusion on surfaces with different
topographies and compare commonly used measures of distance
with a new measure. We show that the diffusion coefficient
measured using the MSD varies substantially for different surface
topographies and as a consequence for different regions of a cell
surface. Moreover, we demonstrate how topography can create
the appearance of anomalous diffusion.

Results
In diffusion studies of the plasma membrane, topography is fre-
quently ignored and analyses that allow the diffusing species
to leave the surface are commonplace (Fig. 1). To examine how
topography affects diffusion patterns and the appearance of
anomalous diffusion we have simulated diffusion on surfaces
with different topographies, including cells, and evaluated com-
monly used measures of diffusion and introduce the shortest
within surface distance (SWSD).

Variations in the number of neighbours in simulations. First a
way to represent a surface with topographical features as a grid
is required. We used an orthogonal grid because this format is
generated by most imaging systems. Like any grid, an orthogonal
grid is only an approximation of a complex surface like the
plasma membrane since the nodes are connected via 90° angles,
whereas most biological surfaces are rounded. On a flat surface
with no obstructions each node, except those at the edges, has the
same number of neighbours, four in our simulations. The same
holds for a surface with orthogonal folds; a folded surface that
when unfolded is seen to arise from an intact sheet. We refer to
these surfaces as folded and differentiate them from a second
class of surfaces that we refer to as deformed; surfaces that can
only be created from a flat sheet by differential stretching.

On a folded surface every node has four neighbours while on
deformed surfaces most nodes still have four neighbours, but
there are also external and internal corners where nodes have
three or five neighbours respectively (Fig. 2). The variation in the
number of neighbouring nodes affects how the probability
distribution subsequently spread, causing apparent anomalous
diffusion as described later.

Simulated movement over a non-flat surface is more
complicated than over a flat surface since there are six potential
orthogonal moves of which between three and five remain within
the surface (Fig. 2). To accommodate this, probability distribu-
tions were generated iteratively. In each cycle 50% of the particles

2D

3D
SWSD

Fig. 1 Different measures of a distance. Arrows mark the 2D, the 3D and
the shortest within the surface distance between two points in a folded
membrane. Note that both the 2D and the 3D distances require that the
molecules leave the membrane
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in each node were redistributed among the neighbouring nodes
that form the surface.

Topography effects how particles spread. Movement can be
displayed in a series of probability distribution maps, which show
the likelihood of a single particle appearing at each position. This
can be computed by iteratively simulating the diffusion of par-
ticles originating at a single position. The process is often
expressed by differential equations. We used an all discrete
approach, where no assumptions or approximations about the
surface topography are required, interpreted the surfaces as
graphs and applied the theory of random walks on graphs28.

Although not always acknowledged, it is well-known that there
is substantial variability in the tracks of single particles even on
flat homogenous surfaces29. This is illustrated by sixteen tracks
(Supplementary Figure 1a). A consequence of the variability is
that for some complete tracks or parts of single tracks the
particles appear to undergo a range of non-Brownian diffusion.

The high variability of SPTs also means that many tracks are
required to establish a representative MSD, illustrated by the
difference between the distribution of endpoints for 16 and
64,000 tracks and the asymptotic behaviour calculated for
spreading from a single starting point (Supplementary
Figure 1b–d). To disentangle the contribution of the surface
topography to the measured diffusion from genuine sources of
anomalous diffusion we illustrate and investigate the surface
topography contribution. We used a method based on probability
propagation from a common starting position thus covering all
possible movement and thus eliminating randomness.

A surface with four different quadrants, one flat and horizontal
and three resembling biological features, lamellipodia (ridges),
filopodia (pillars) and invaginations (caveolae/endocytotic vesi-
cles), was created (Fig. 3a). Diffusion from the central point was
simulated for 1600 iterations and displayed by converting the
volume into a 2D image using a summed Z projection (Fig. 3b).
To illustrate the spread and wide range of probability a log-scale
has been used.

On the horizontal and flat surface (left) the probability
distribution has, as expected, a smooth concentric gradient
(Fig. 3b), while on the surface with longitudinal folds (top), the
gradient is not smooth, partly due to the summed projection
display. That the probabilities fall with distance from the central
starting point is most evident in the centre of the top quadrant;
the pattern along the sides involves exchange with the two

neighbouring quadrants. The pillars (right) have probabilities that
are lower at their flat tops. In addition, there appears to be an
accumulation of particles at the sides of the pillars, an artefact of
the summed projection that in a 2D analysis could be
misinterpreted as reduced or even non-movement, i.e., binding.
On the surfaces with invaginations (bottom), the probability is
lower at the centre of the invaginations, which could be
misinterpreted as exclusion.

The SWSD correctly measures diffusion on folded surfaces. To
assess the impact of surface topography a flat surface was used to
obtain baseline diffusion coefficients and calculating Drel, the rate
relative to a flat surface (Fig. 4a). Note that the substantial dif-
ference between the Euclidean and SWSD MSD/t arises from
differences in how distances are measured; the Euclidean dis-
tances are straight lines (the 5 on a 3,4,5 triangle). The SWSD was
measured using an orthogonal propagation (the city block dis-
tance, 7 for a 3,4,5 triangle), making the distances measured with
the SWSD on a flat surface longer. This difference is factored out
by subsequently using Drel (Fig. 4b). On a folded surface with
ridges, the measurements from the 2D Euclidean distances (2D)
and 3D Euclidean distances (3D) underestimated the diffusion

3

5
4

Fig. 2 Surfaces comprise nodes with differing numbers of neighbours.
Single nodes with three neighbours (blue/grey) are found at external
corners. Nodes with four neighbours make up the bulk of the surface, a
single example is shown in blue. Single nodes with five neighbours are
found at internal corners (orange). The neighbouring nodes are all shown in
yellow b

a

Fig. 3 The topography of the surface affects the spread of particles. a Four
different surfaces (flat, ridges, pillars and invaginations) and b the
probability of finding a particle at any node after 1600 iterations. The
starting position was in the centre where the four different surfaces meet.
The probability distribution is displayed as a summed Z-projection contour
plot, using a log-scale to display the wide range of probabilities
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compared with an unfolded horizontal surface (Fig. 4b). The
location of the start position clearly affects the 2D measured
diffusion. When starting on a horizontal part of the folded sur-
face, the 2D measurement deviated from that on a flat surface
(Drel= 1) underestimating the diffusion after a few iterations
once the diffusion front reaches the first fold, whereas starting at
the centre of a vertical part of the surface resulted in a substantial
and continuous underestimation of the diffusion. The 3D

measurements are initially independent of the starting position
and matched Drel until the particles reach a corner where hor-
izontal and vertical surfaces meet. Note, the 2D and 3D eventually
converge at 0.59 that is independent of the starting point and
reflects the fraction of vertical features. The convergence of 2D
and 3D may at first seem surprising, but is a consequence of
adding small topographical features to a horizontal surface.
As the probability distributions spread the height component
in the 3D distance relative to the total distance progressively
drops leading to convergence, which would not occur if topo-
graphical features were on a deformed surface like a cell. When
distances were measured using the SWSD, i.e., without leaving
the surface, the measured diffusion matched that on the flat
surface (Fig. 4b). The SWSD was accurate regardless of the
relative orientation of the ridges, whereas the 3D reported a
difference when the orientation of consecutive ridges changed
(Supplementary Figure 2). For a surface with re-entrant features,
the 2D and 3D were dependent on the starting position and again
underestimated the diffusion while the SWSD was accurate
(Supplementary Figure 3). In summary, the SWSD effectively
unfolds surfaces, producing the correct distance and therefore
correct diffusion measurements.

The SWSD is not perfect on deformed surfaces. The plasma
membrane of eukaryotic cells and membranes covering organelles
is not well represented by a flat or a folded surface. We therefore
ran simulations on surfaces with greater complexity, i.e.,
deformed surfaces with topographical features that cannot be
obtained by folding a flat surface. First, we used surfaces with
pillars, reminiscent of cellular protrusions like filopodia and cilia,
with different starting positions (Fig. 4c). The pattern of diffusion
was markedly different from that on a flat surface and varied with
the starting position, reflecting both how quickly pillars, and for
the first few iterations how many vertical neighbours and corners,
were encountered. 2D were only close to Drel when the starting
point was in a horizontal part of the surface and then only briefly.
Over the first few iterations, 3D match Drel since the path does
not leave the surface. The SWSD outperformed the 2D and 3D
but importantly did not return the value expected for a flat sur-
face. On a surface with small bumps laid out in a dense regular
grid, i.e. a highly deformed surface, the SWSD still performed
better than the 2D and 3D (Supplementary Figure 4).

A6 epithelial cells were used as a more physiological surface.
Height-coded images were obtained by high-resolution hopping
probe ion conductance microscopy30. The simulation was
launched at the crown of a cell (Fig. 5a). Both 2D and 3D
reported a substantial reduction in the apparent rate of diffusion
(Fig. 5b), the 2D by more than a factor of five. Importantly, the
2D progressively dropped, i.e. did not reach a plateau. The SWSD
outperformed the other methods and provided a better, but not a
perfect match with measurements made on flat surfaces.

Confined diffusion appear when topography is ignored. Hop
diffusion, like other types of confined diffusion, is characterised
by a fall in the rate of diffusion at longer timescales, appearing as
a deviation from a straight line when the MSD is plotted against
time. This is exactly what is seen when diffusion measurements
from both folded, deformed and cell surfaces are made with 2D
and even 3D (Supplementary Figure 5). Note that the char-
acteristic deviation from a straight line vanished on the folded
surface when the SWSD was used and was greatly reduced on the
deformed and cell surfaces.

Topography can cause both super- and subdiffusion. Surpris-
ingly Drel values above one, i.e. superdiffusion, were observed
with the SWSD over the initial iterations in several of our
simulations (Figs. 4c and 6). Intuitively, superdiffusion in the
absence of assistance like a motor protein to provide
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directionality to nominally freely diffusing molecules seemed
unlikely and we investigated its origin. It transpires that super-
diffusion can be a consequence of topography and arises when the
diffusion front reaches more nodes than those encountered on a
flat surface, e.g. when the front on a flat part of a surface
encounters the bottom corner of a pillar. This is illustrated for a
surface where a single slot or a notch has been inserted into a
folded surface (Fig. 6). The increased area of spread originates at
nodes at the corner of the base of the slot with five neighbours
rather than the four neighbours found on flat parts of the surface
(Fig. 2), since more neighbours allows the front to subsequently
reach an increasing number of nodes and have a greater net
movement (Fig. 7). The superdiffusion for the slot exceeds that
for the notch simply because the five-neighbour nodes at the
corners of the slot are closer to the starting point and provides
access to more nodes earlier in the simulation. Analogously, the
occurrence of nodes with three neighbours could cause sub-
diffusion manifested as initial dips in the Drel plots when starting
at the top of pillars (Fig. 4c). When the three neighbour external
corner nodes are reached, the spread of the particles is subse-
quently reduced since the number of nodes to which the particles
can spread is lower than it would be on a flat surface. However, as
explained below, shortcuts can also cause subdiffusion.

A question is why SWSD superdiffusion is transient (Figs. 4c
and 6c). The reason is a competition between the slot providing a
shortcut that reduces the SWSD measurement to many nodes
(Fig. 7a, b) and the slot providing access to more nodes which
expands the probability distribution (Fig. 7c). Superdiffusion
peaks at 104 iterations (Fig. 6c), when nodes beyond the slot are
mostly occupied by molecules that passed through the slot
(Fig. 7b). Compared with a surface with an intact ridge more
particles have travelled further. After 216 iterations the Drel versus
iteration curve crosses 1, the expected value for Brownian
diffusion (Fig. 6c). At the end of the simulation, much of the
spread beyond the slot occurs using routes not utilizing the slot
and the SWSD measurement, which shortcuts through the slot,

therefore understates the distance travelled and the SWSD finally
reports subdiffusion. This is manifested by a higher probability of
finding particles for the surface of the slot at short distances (8–28
nodes) and a lower probability of finding them at longer distances
(Fig. 7d). In summary, the existence of shortcuts creates brief
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superdiffusion and eventually the SWSD falls to a Drel-value
below one, as seen with cells (Fig. 5).

Discussion
Diffusion depends upon the properties of both the diffusing
species and the medium, so a known medium can be used to
characterise an unknown molecule or vice versa. On biological
surfaces, the primary interest is to characterize the interaction of
different molecules with a membrane and to establish whether
movement is or is not Brownian where non-Brownian movement
would require the recognition of a mechanism.

When the medium is a surface like the plasma membrane and
2D imaging is used the surface must be both flat and aligned with
the imaging plane to correctly characterize the diffusing species in
the medium—a requirement that is rarely acknowledged and,
presumably, even less frequently met. Even then 2D images only
permit 2D distance measurements. Misalignment of the surface
with the imaging field or non-flat surfaces compromise the
measurement of distances, since the commonly used 2D, but also
3D, measurements require the physically impossible, that dif-
fusing molecules can leave and reenter the surface, i.e., illegiti-
mate movement.

We set out to investigate whether it is possible to obtain dif-
fusion coefficients that are independent of surface topography,
which would permit the identification of genuine non-Brownian
diffusion. In our quest, we revealed that in simulations emulating
simple diffusion, topographical features alone can produce super-
and subdiffusion. This is a critical finding when interpreting the
movement of membrane molecules.

Vector calculus and partial differential equations are tradi-
tionally formulated in a continuous setting where the solutions
are analytical expressions, often in a closed form. When com-
puters are used to derive approximate solutions to the differential
equations, discretizations of well-known continuous operators are
usually applied. With this approach, it has to be established that
the discretized, computed approximation and the desired analy-
tical solution do not deviate too much, typically by assuring
convergence with finer discretization. However, the approach we
followed, discrete calculus, is inherently discrete and treats a
discrete domain (essentially a graph) as its own entity without
reference to an underlying continuum31. Consequently, since the
concern in traditional discretization about convergence to a
continuous solution is not a consideration in discrete calculus, we
do not present a convergence analysis. Using our discrete
approach also means that details on the cell surface not resolved
by the imaging device are not represented in the subsequent
topography analysis, which means that the genuine topography
effects are likely to be larger than we report.

A critical observation is that 2D measurements always
underestimate the net movement on non-flat surfaces, producing
diffusion coefficients that are lower than those for a flat surface.
On flattish areas movement would be only slightly reduced, which
could be interpreted as a small reduction in the rate of diffusion,
while where the movement has a substantial Z component, the
dramatic fall in the apparent local rate diffusion risks being
interpreted as binding or trapping19. Still 2D tracking of move-
ment over the plasma membrane is common and variations in
topography risk being mistaken for reduced diffusion and as
indications of anomalous diffusion.

It follows that at least some of the apparent reduction in the
rate of movement and the trapping observed in plasma mem-
brane diffusion studies is attributable to 2D imaging, 2D distance
measurements and topography19. In addition, the use of large
gold particles could lead to erroneous results12 and the reduction
in the long-term diffusion, i.e. the estimated difference between
diffusion in model membranes and the plasma membrane, has
been shown to be halved with the small lipid probes used in
STED-FCS compared with gold-particle SPT-studies11.
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Interestingly, the lipids studied were found to undergo confined
diffusion in an Arp 2/3-dependent, i.e. actin polymerisation-
dependent, manner. The confined diffusion was mostly seen at
the lamellipodia- (also Arp 2/3-dependent) rich cell edge, sug-
gesting a contribution of cell topography to the residual anom-
alous diffusion.

Another phenomenon that can reduce diffusion and account
for differences between model and cellular membranes is mole-
cular crowding, i.e. that the protein to lipid ratio in biological
membranes is relatively high, making large membrane areas
inaccessible4. That crowding plays a role was supported by a
recent study comparing diffusion in giant unilamellar vesicles,
giant plasma membrane vesicles (GPMVs) and the plasma
membrane of intact cells, where diffusion in the former (con-
taining mostly lipids) was about five times faster than in the
GPMVs and 10–25 times faster than in cells32. The difference
between the cells and GPMVs is probably caused by the cells
having a more variable topography. Interestingly, the measure-
ments were performed on the basal part of the cells, where non-
flat topographical features are considered to be less prominent
than at the apical cell side. However, they still exists33.

In an isotropic medium, identical diffusion coefficients could
be calculated from SPT measured in one, two or three dimen-
sions. However, membranes are continuous surfaces and not
isotropic. A related question is whether on deformed surfaces
switching from 2D to 3D distance measurements is sufficient to
produce topography-independent diffusion coefficients. We find
that while 3D measurements are clearly a substantial improve-
ment on 2D, especially over short timescales, they ultimately fail
because the 3D does not recognize that movement is confined to
the surface.

Interestingly, the reduced movement recorded with 3D in
deformed surfaces falls with time. This is because the 3D ignores
the topography and therefore is not confined to the surface. At
longer times the difference between the shortest linear distance
and the actual movement increases, as more paths include non-
horizontal parts of the surface. The MS(quared)D gives extra
weight to longer tracks, explaining why confined diffusion
becomes more apparent at longer intervals.

On a flat surface straight-line distances are always possible, in
the sense that a particle could take this route, while on a non-flat
surface most 3D straight lines are impossible, because they leave
the surface. This created our rationale for introducing the SWSD,
i.e. distances must remain within the surface. The SWSD pro-
duces diffusion coefficients that are closer to those on a flat
surface and less dependent on the topography than the 3D
measurements. Importantly, in our simulations a deviation of the
SWSD from one suggests anomalous diffusion, but is really only
reflecting apparent anomalous diffusion, since it is caused by the
topography and unrelated to the interactions between the dif-
fusing species and the surface, i.e. the primary question in most
studies. The deviation reflects the prevalence of folds and
deformed topographical features of which the folds are accurately
measured by the SWSD, but even the SWSD understates move-
ment on the deformed parts of the surface.

Requiring measurements over a surface to remain in the sur-
face is an improvement on 2D and 3D and the SWSD provides
the best measure of movement in every simulation. On folded
surfaces the SWSD is accurate, but on deformed surfaces, it still
underestimates the actual movement. This arises because the
MSD is based on the net movement and ignores the path, which
on a deformed surface does not correctly characterize the actual
movement. The SWSD finds the shortest route, analogously to
taking a pass through a mountain range, which is representative
of the efficient route chosen by hikers, but underreports the
relatively directionless and longer routes taken by mountain
goats. This makes the SWSD an imperfect proxy for the actual
movement. When a shortcut is present, initially the calculated
diffusion increases since the shortcut provides access to larger

areas and increased spreading dominates. Later, the relatively
small actual flux through the shortcut is overwhelmed by the
majority of the diffusing species whose routes did not utilise the
shortcut. Net movement is then underreported by the shortened
SWSD, producing a fall in the measured diffusion. This caveat
means that, even if the precise topography of a biological mem-
brane is known and the SWSD used, molecular movement and
simulations however analysed cannot correctly report the rate of
diffusion or differentiate between topography-induced and other
causes of anomalous diffusion.

Our results suggest that the decrease in diffusion with time that
is generally interpreted as confined diffusion, e.g., hop diffusion,
could be caused by topography as demonstrated with the 2D
measurements on cells. It should be noted that it has been argued
that the MSD versus Δt is not ideal for spotting anomalous dif-
fusion and is also incapable of assessing fractions of multi-
component populations of tracks and therefore the cumulative
probability distribution of the square displacements rather than
individual tracks should be analysed34,35. However, regardless of
the method used to assess anomalous diffusion, the effect of
topography must not be ignored, if the aim is to assess the
interaction of molecules with the surface rather than character-
ising their spread over an unknown topography.

The SWSD provides the most accurate diffusion coefficients
but still underestimates and distorts the pattern of movement.
The ultimate solution lies in simulating simple diffusion over the
surface to show the pattern that Brownian motion alone would
produce and then comparing this with the experimentally
observed pattern from SPTs or FRAP. It should then be possible
to establish whether the experimentally observed non-Brownian
movement exceeds that caused by topography. The major prac-
tical problem is how to obtain sufficiently detailed maps of the
surface of living cells. In their absence, SPT and other techniques
where diffusion is assessed, FCS and FRAP, should be interpreted
with caution and interpretations involving topography considered
before more elaborate models are invoked.

In our simulations, the topography of the surface per se does
not alter the interaction between the particle and surface and
therefore the mechanism underlying movement is identical on
flat and non-flat surfaces. There are, however, scenarios where
topography could directly affect diffusion for instance by blocking
the entry of large and/or inflexible particles from areas of high
curvature, as reported for proteins and thin membrane tubes36,37.
Particles excluded from topographical features could diffuse more
rapidly, which may explain the differential diffusion behaviour of
synthetic lipids observed in cells at super lateral resolution38 and
the remarkable fast diffusion of a cholesterol analogue39. It has
also been reported that diffusion along the longitudinal direction
in membrane nanotubes slows as the radius of the tube is
reduced40,41, but note that this involves curvatures tighter than
those found in cell membranes and the effect of the diffusion may
be caused by crowding or changes in membrane tension and lipid
packing that also restrict diffusion42,43. However, in cases where
topography does effect the diffusion our protocol would identify
the diffusion as anomalous. The exception being when the surface
covers a thin tube, that although it is a foldable surface the SWSD
would, like in the case with the shortcut, underestimate the actual
distance moved around the axis of the tube with a full circle being
measured as no net movement. A remedy could be to consider
only the longitudinal movement which, at least when using the
MSD versus Δt approach, would show Brownian movement37.

To determine the contribution of topography to any deviation
of the diffusion from Brownian, the topography must be estab-
lished, which is non-trivial given the dynamics, folding potential
and thickness (<5 nm) of biological membranes. Our findings
suggest a scheme for disentangling the topographical component
from other sources of anomalous diffusion (Fig. 8). Firstly, create
a 3D model of the surface. Secondly, run simulations with mul-
tiple start points covering the area of the SPT tracks producing
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probability distributions. Finally, assess whether or not the
recorded tracks are consistent with the distribution generated in
the simulations44. Note that, as visualised in Suppl. Figure 1,
the variation between tracks is substantial, meaning that many
tracks over the same surface are required to determine whether
anomalous diffusion is indeed taking place29. That the start
position is important for the simulations further emphasises the
need for a large number of starting points for proper surface
characterisation.

When topography has not been considered as a cause of
anomalous diffusion, the norm, the resulting plasma membrane
models are questionable since the primary objective is to
understand the interaction of molecules with a biological surface,
not to characterise spreading patterns over an unknown and
varying topography. Establishing and factoring out topography
needs to be done before invoking more complex explanations for
reduced and anomalous diffusion – Occam rules.

In conclusion membrane topography has been identified as a
cause of both the consistent underestimation of diffusion and the
overestimation of apparent anomalous diffusion. Measurements
are more accurate when the topography is known and distance
measurements are kept within the surface, i.e., using the SWSD
on a high-resolution 3D surface. Membrane topography itself can
also cause apparent anomalous diffusion by allowing increased or
decreased spread of the diffusion species. To factor out the
topographically induced anomalous diffusion simulations of
simple diffusion over the surface is required.

Methods
Creation of 3D surfaces. Non-flat continuous surfaces were made from an array
of 6-connected cubic nodes within a 3D volume. The nodes that formed a con-
tinuous surface were usually connected to four of the six possible neighbouring
nodes but nodes with three and five neighbours also featured (Fig. 2). Surfaces with
longitudinal folds were created with parallel ridges of constant widths and spacing.
Images with pillars and caveolae were created by repeatedly inserting a 3D struc-
ture pillar/caveola. Height-coded 2D images of cells were converted into surfaces
within a 3D volume by placing the nodes at the X, Y & Z positions held in the 2D
image and creating connections between them by adding vertical lines of nodes,
producing a continuous surface.

Generating single particle tracks. On flat surfaces tracks were made from
sequential random moves to one of the 4-face connected nodes, determined by a
sequence of random integers where each iteration (equivalent to time step) also
included a 50% probability of moving.

Diffusion simulation. Diffusion on surfaces was simulated using a sequence of
random movements between adjacent nodes in a 2D array. The continuous dif-
fusion equation is

∂u
∂t

¼ α∇2u ð1Þ

where u is concentration, t is time and α is the diffusion constant. In discrete
calculus, the diffusion equation can be written as

∂u
∂t

¼ �αLu ð2Þ

where L is the discrete Laplacian matrix operator here defined as

L i; jð Þ ¼
#nodes adjacent to i if i ¼ j

�1 if i and j are adjacent

0 else

8
><

>:
ð3Þ

where the value at L (i, j) is the number of nodes adjacent to i if i= j and −1 if i
and j are adjacent28. Note that this is not a differential equation discretized in
space, but a discrete differential equation, and that diffusion in discrete calculus
when applied to graphs equals diffusion on graphs45. The value of α in the discrete
diffusion equation determines what the diffusion should be along each edge in the
graph, i.e. to each connected node corresponding to each neighbouring node.

To simulate the diffusion process, a lazy random walk46, with a 50% probability
of moving was implemented iteratively. Hence, the probability of a move from a
given node to any of its adjacent nodes depends on the number of adjacent nodes
(neighbours), given by Eq. (5). For the most common case (four neighbours), the
probability of a move to a particular neighbour is hence 0.125. The lazy random
walk process is simply

u½tþ1� ¼ Du½t� ð4Þ

where the matrix D is

D i; jð Þ ¼
0:5 if i ¼ j

0:5
#nodes adjacent to i if i and j are adjacent

0 else:

8
><

>:
ð5Þ

With this formulation, the probability of no move is 0.5 and the probability of
moving to an adjacent node is 0.5. Thus, the probability of a move to a particular
adjacent node depends on the number of neighbours.

In an empty (zero intensity) 3D floating-point array the start node on the
surface was given a sufficiently high-intensity value representing the location of
100% of the particles. A 3D array that defined the surface was used to determine to
which nodes movement was allowed. The resulting sequence of images shows the
probability distribution from a single node. Distances from the origin were
calculated as described below, using a geodesic distance transform. At regular
intervals during the simulations the sum of the intensity at each distance from the
start point was recorded.

Analysis of diffusion. Each node in the image is represented by a node in a graph
and the adjacency of each node is represented by a column in D. The analysis is
initialized by setting one or more elements in a vector v0 to one, and the other
elements to zero. In each iteration, the diffusion values are propagated by vt=Dvt
−1 generating a time course. The state at time t= T, vT, v0 is thus vT=DTv0. To
find the state after m iterations on an image of size n2, the matrix D with size in the
order of n4 should be multiplied with a vector m times. For large images like the
ones used in this study, this is computationally very demanding. Therefore the size
of the matrix D was limited by only considering a region around the single start
point. The size of the region was increased as the diffusion-propagation approa-
ched the border of the region.

Measures of the distance between two-time points, x1, y1, z1 to x2, y2, z2 were
performed using either:

a. The Euclidean distance within a plane, which measures a straight line

2D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � x1ð Þ2þ y2 � y1ð Þ2
q

ð6Þ

b. The Euclidean distance within a volume, which measures a straight line

3D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � x1ð Þ2þ y2 � y1ð Þ2þ z2 � z1ð Þ2
q

ð7Þ
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Fig. 8 Scheme for disentangling the contribution of topography from other
sources of anomalous diffusion
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c. The shortest within surface distance (SWSD), is the shortest 3D distance that
stays within the surface, i.e. the geodesic distance. The Euclidean distances
were propagated to local neighbours within the surface. The complete
geodesic distance transform was computed by a wave-front propagation
approach47.

Diffusion coefficients were obtained from the relationship between the MSD and
time by fitting a least square tangent to the MSD and expressed relative to
movement on a flat surface (Drel). After each iteration the population MSD was
calculated from the summed probability multiplied by the relevant distance squared.

Software. Simulations and computations were performed in Matlab (The Math-
Works Inc,. Natick, MA) and ImageJ48. Graphs were generated using Excel and
figures were created using Adobe Photoshop. 3D rendered images were generated
using 3D Viewer in ImageJ49 and 3D Slicer50.

Code availability. The code is available in the folder of Supplementary Software 1.

Data availability
All data generated or analysed during this study can be recreated from the code
supplied in the folder Supplementary Software 1. The code includes an example on
how to generate a surface. The source files for the graphs in Figs. 4–7 are available
as a Supplementry Data 1–4.
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