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Abstract

Disease-causing mutations usually change the interacting partners of mutant proteins. In this article, we propose that the
biological consequences of mutation are directly related to the alteration of corresponding protein protein interaction
networks (PPIN). Mutation of Huntingtin (HTT) which causes Huntington’s disease (HD) and mutations to TP53 which is
associated with different cancers are studied as two example cases. We construct the PPIN of wild type and mutant proteins
separately and identify the structural modules of each of the networks. The functional role of these modules are then
assessed by Gene Ontology (GO) enrichment analysis for biological processes (BPs). We find that a large number of
significantly enriched (pv0:0001) GO terms in mutant PPIN were absent in the wild type PPIN indicating the gain of BPs due
to mutation. Similarly some of the GO terms enriched in wild type PPIN cease to exist in the modules of mutant PPIN,
representing the loss. GO terms common in modules of mutant and wild type networks indicate both loss and gain of BPs.
We further assign relevant biological function(s) to each module by classifying the enriched GO terms associated with it. It
turns out that most of these biological functions in HTT networks are already known to be altered in HD and those of TP53
networks are altered in cancers. We argue that gain of BPs, and the corresponding biological functions, are due to new
interacting partners acquired by mutant proteins. The methodology we adopt here could be applied to genetic diseases
where mutations alter the ability of the protein to interact with other proteins.
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Introduction

Cellular functions are carried out by proteins interacting with

other proteins and macromolecules like DNA, RNA, etc. It is

believed [1] that the modular organization of cellular functions

are related to the underlying modular structure of the protein

protein interaction network (PPIN). Understanding PPIN would

elucidate how such interactions execute basic functions in cells

and may explain the abnormalities arising from mutations in

genes. In particular, mutation at the binding site of a protein

may lead to loss of it’s ability to function together with existing

interacting partner(s). On the other hand, mutation may also

create regions where new protein partners can bind. Therefore,

loss or gain of interaction due to mutation may contribute to

causation, progression or modulation of disease. It has been

reported recently [2] that out of 119 mutations in 65 distinct

diseases, 95 mutations result in loss of function (LOF), 17
mutations result in gain of function (GOF) and 4 mutations

changes the preferences for interaction. Based on this experi-

mentally validated data, it has been predicted that 1428
mutations might be related to interaction defect. Using the

structural information at atomic levels either through crystal-

lography or homology modeling, it has been shown that 21,716

mutations in 624 genes either alter amino acid sequences or

produce truncated proteins. Among 12,059 mutations that alter

amino acid sequences, 7833 mutations are located in the

interface of interaction with other proteins. Such mutations at

interfaces of interactions may disrupt or enhance the interac-

tions with the partners. This study also emphasizes the role of

loss or gain of interactions of mutant proteins in human

diseases. However, for such analysis, it is necessary to have

structural information at atomic levels, which may be achieved

if 3-dimensional structures of the proteins or their homologs are

known. But, for the most of the protein protein interactions

such information is not available [3]. Moreover, very little is

known about the role of such altered interactions in corre-

sponding pathological conditions. It remains a challenge to

relate genetic mutation data to PPIN and to understand

molecular cause of disease. In the present communication, we

probe whether gain or loss of interactions of mutant Huntingtin

protein (HTT) that causes Huntington’s disease (HD) can

explain functional abnormalities observed in HD. We have also

used the same approach to find how loss or gain of interactions

of mutant TP53 in cancers may result in alterations of

functions.
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Analysis and Results

Mutation in HTT Protein
Huntington’s disease (OMIM ID: 143100) is a rare autosomal

dominant progressive degenerative neurological disease caused by

expansion of normally polymorphic CAG repeats beyond 36 at the

exon1 of the gene Huntingtin (HTT) [4]. Over the years, various

cellular processes/conditions like excitotoxicity, oxidative stress,

mitochondrial dysfunction, endoplasmic reticulum stress, axonal

transport, ubiquitin proteasome system, autophagy, transcriptional

deregulation and apoptosis have been implicated in HD pathology

[5,6]. Even though GOF was inferred initially from the autosomal

dominant nature of transmittance of the disease, the underlying

molecular details still remain largely unknown. Inverse correla-

tions between age at onset and number of CAG repeat beyond 36
in HTT gene, increased aggregates of mutant HTT (mHTT) and

apoptosis, correlation of CAG repeat numbers in HTT gene with

levels of ATP/ADP and altered expression of few genes [4,7–10]

suggest toxic GOF of mutant protein that disrupts normal cellular

functions and causes neuronal death. Mutant HTT preferentially

interacts with DNA sequences, alters conformation of DNA

facilitating binding of other transcription factors to the specific

sequences and modulates transcription of genes. This result also

indicates a dominant GOF of mHTT [11]. Wild type HTT

(wHTT) is known to be involved in protection of apoptosis [12–

15], regulation of gene expression [16,17], mitosis and neurogen-

esis [18], neuronal development [19] and maintenance of body

weight [20]; all these processes are altered in HD [5,6]. These

results indicate that loss of one of the alleles in HD could

contribute to increased apoptosis and altered gene expressions

observed in HD. LOF of wild type protein may thus contribute, at

least partially, to HD pathology [21]. There are also several

experimental evidences available against simple LOF(s) of wild

type HTT [22–25].

Construction of HTT-interacting protein network. We

have collected the HTT interacting proteins from published data

and find that 17 proteins preferentially interact with wHTT, while

37 proteins are either identified in aggregates of mHTT only or

interact preferentially with mHTT (the references for each of the

observations are provided in Dataset S1 (sheet 1) and in Text S1

(Text 1)). These 17 and 37 proteins are referred to as the primary

interactors of wHTT and mHTT respectively. Next, we assimilate

interacting partners of these primary interactors from BioGrid

(Version 3.1.88, May 2012), a public database that contains

genetic and protein protein interaction data for humans and other

organisms [26]. In the present study, we have considered both

physical and genetic interactions (refer to the section ’Robustness

analysis’ for details). It turns out that there are 288 secondary

interactors of wHTT (proteins which interact with the 17 primary

interactors), whereas there are 1504 secondary proteins which

interact with 37 primary interactors of mHTT. The PPIN of

wHTT interacting proteins is then constructed by considering all

these 306 proteins (wHTT+17 primary+288 secondary interactors

of wHTT) as nodes of the network; two nodes are connected if

corresponding pair of proteins are found to be interacting partners

of each other in BioGrid. Altogether there are 1397 interactions in

wHTT network which are listed in Dataset S1 (sheet 2). Similarly

the PPIN of mHTT is constructed with 1542 nodes (mHTT+37
primary+1504 secondary interactors of mHTT) which has 13142
interactions from BioGrid (Dataset S1 (sheet 3)). We have used

Cytoscape [27] for visual presentation of the wHTT and mHTT

networks, which are shown in Fig. S1 in Text S1. Both the

networks are densely interconnected and the nodes are too tangled

there to find any apparent or obvious modular structures.

Characteristics of networks. A quantifiable description of

these networks can be obtained by using graph theory, which

provides several measures for comparison and characterization

of complex networks. The most elementary characteristic of a

node is its degree, k, which represents the number of other

nodes (proteins) it is connected with. The degree distribution,

P(k), gives the probability that a randomly selected node has

exactly k links. We find that both the wild and mutant PPINs

follow a power law degree distribution, P(k)*k{c (Fig. S3 in

Text S1) with exponents c~1:99,1:95 and average degrees

SkT~9:13,17:05 respectively. Another important quantity is the

clustering coefficient which characterizes how connected are the

neighbors of a given node. It is observed that the average

clustering coefficient C~0:361 for mHTT network is lower

compared to C~0:436 for wHTT PPIN. This indicates that,

the former network is less compact and the interacting partners

of the proteins are poorly connected among themselves. We

have also calculated the average shortest path length L, and the

network diameter D (listed in Table S2 in Text S1), which

describe the structural properties of the network. The detailed

definitions of C,D and L along with their evaluation procedure

is illustrated in Text S1 (Text 2).

Gain and loss of interactions due to mutation. A closer

look at PPINs of wHTT and mHTT reveals that among the 17
primary interactors of wHTT, 8 proteins still appear in PPIN of

mHTT as secondary interactors, i:e. they interact with some of

the primary interactors of mHTT. Again, among 288 secondary

interactors of wHTT, 107 proteins are secondary interactors of

mHTT, 10 proteins interact directly with mHTT and the rest

171 proteins do not take part in PPIN of mHTT (see Fig. 1(a)).

Evidently, the mutant HTT network has gained several new

interactions, 27 proteins as primary interactors and 1389
proteins as secondary interactors. This result is shown schemat-

ically in Fig. 1(a) and the detailed list of these proteins is given

in Text 1 and Table S1 in Text S1. Since mutation of HTT

has changed the PPIN substantially one expects a significant

change in its functions.

Modules of wHTT and mHTT networks. There are

several methods for obtaining natural modules of a network

(or partitions of a graph) [28]. We adopt Newman-Girvan’s

modularization (NGM) algorithm [29], a commonly used

method, to detect the modules of wHTT and mHTT networks.

This algorithm partitions the network in a way that the intra-

module connections between nodes are maximized in compar-

ison to the inter-module connections. To find the modules,

Newman and Girvan [30] proposed a score called modularity Q
for every possible partition of a network; the maximum value of

Q corresponds to the best partition. The details of the NGM

algorithm for maximization of Q is described in Text S1 (Text

2). The NGM algorithm modularizes the PPIN of wHTT into 7
modules of sizes (18,66,79,18,82,8 and 35) (see Table S2 in

Text S1), with modularity Q~0:415, whereas PPIN of mHTT

is partitioned into 8 modules of sizes (643,3,377,2,485,7,22 and

3) with Q~0:302. Modules of wHTT and mHTT networks are

denoted by W and M respectively. Figures 1(b) and (c)

represent the modularized networks; all proteins belonging to a

given module are shown in same color. Clearly, the mHTT

network is visibly more complex than that of wHTT, which is

consistent with the fact that it has a lower Q value [31].

Similarity between the modules. Once the wild type and

mutant networks are modularized, it is important to ask how

similar is a module of wild type network with that of mutant

network, in terms of their protein constituents. Mutant and wild

type HTT networks have 125 proteins common between them.

Mutations Alter PPIN Leading to LOF and GOF
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After both the networks are modularized, these common proteins

are distributed among the pair of wHTT- mHTT modules. For

example, the module M5 (485 proteins) has 49 proteins in

common with W5 (485 proteins), whereas it has only one common

protein in W2 (out of 66 proteins) and two common proteins in

W1 (18 proteins). The detailed distribution of common proteins

among wild and mutant modules of HTT are shown in Fig. 2.

To calculate the similarity among modules, first we construct a

unique set of proteins from combining the proteins involved in the

wild and mutant networks. This set consists of 1723 proteins in

case of HTT. Now every module of wHTT and mHTT are

considered as a unique 1723 dimensional vector as follows. Each

protein is identified with a specific position in the vector; presence

(or absence) of a specific protein in a module, say w, is mapped on

to a corresponding vector ~RRw by inserting 1 (or 0) at respective

position. A similarity measure between a pair of modules w and m

is well represented by the angle h(w,m) between the corresponding

vectors ~RRw and ~RRm,

Figure 1. Construction and modularization of wild type and mutant HTT networks. (a) Proteins involved in the wHTT and mHTT networks:
wHTT (mHTT) protein (red square) has 17 (37) primary and 288 (1504) secondary interactors, shown schematically as the inner and outer circles. Of the
17 primary interactors of wHTT, 8 proteins (deep green) become secondary interactors of mHTT. Among the 288 secondary interactors of wHTT, 107
(shaded) proteins remain as the secondary interactor of mHTT whereas 10 proteins (deep blue) becomes the primary interactors of mHTT. (b) and (c)
Modules of the wHTT and mHTT networks from NGM algorithm, which yields 7 (W1,W2, . . . ,W7) and 8 modules (M1,M2, . . . ,M8) respectively are
shown along with the relevant biological functions (obtained GO term enrichment analysis from GeneCodis3). Significant functions associated with
the modules are also shown. Details of the GO terms are shown in Table S2 and Table S3 of the Supporting Text, respectively for wHTT and mHTT.
doi:10.1371/journal.pone.0064838.g001

Figure 2. Similarity between modules of wHTT and mHTT networks. The figure describes pictorially the closeness between the modules of
wHTT and mHTT PPIN; the modules having common protein or common GO terms are joined with edges (numerical value written on the edge as:
common proteins).
doi:10.1371/journal.pone.0064838.g002
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h(w,m)~ cos{1
~RRw:~RRm

D~RRwDD~RRmD

It is rather simpler to use cos (h(w,m)) as the similarity measure

as cosine function is monotonic in the range (0,p): It is easy to see

that if the modules have Nw and Nm proteins individually and Nwm

protein in common, the similarity measure is

s(w,m): cos (h(w,m))~Nwm=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
NwNm

p
: ð1Þ

Clearly s(w,m) varies in the range (0,1) with maximum value 1
corresponding to the fact that the modules are identical, i:e: they

have same set of proteins.

In Fig. 2, we represent the similarity among modules of mHTT

and wHTT as a bipartite network with links having thickness

proportional to swm. The thickest link between M5 and W5
indicates that these modules are significantly similar. For

examples, the module W5 has 82 proteins and M5 has 485
proteins; 49 proteins are common among the proteins in these 2
modules; thus the protein similarity index for W5-M5 pair is

s(W5,M5)~0:246. Similarly among 66 proteins in W2 and 643
proteins in M1, 26 proteins are common (corresponding

s(W2,M1)~0:126).

Enrichment of GO terms for biological process. It has

been observed that the proteins identified in a particular complex

are involved in similar functions [32]. From network perspective,

these complexes are represented by modules and they appear as

distinct group of nodes which are highly interconnected with each

other but have only a few connections with the nodes outside of

the module. It is important to ask, if such a structural partition

relates to any functional enrichment. Among many bioinformatics

tools available for such analysis [34] we utilize GeneCodis3 [33]

(explained in Text S1 (Text 3)) to obtain the possible Biological

processes enriched by the proteins in a given module. Given a

query set of proteins GeneCodis3 provides the enriched biological

process, molecular functions, and cellular components as defined

by the Gene ontology. Biological process in Gene ontology is

described as a series of events carried out by one or more ordered

assemblies of molecular functions [35]. The proteins in each

module are used as input to GeneCodis3 [33] and significantly

enriched GO terms for BPs obtained using p-values calculated

through Hypergeometric analysis corrected for false discovery rate

(FDR). Results of enrichment analyses for 7 modules of wHTT

and 8 modules of mHTT network are shown in Datasets S2 and

S3 respectively.

Since many proteins are known to be involved in a particular

BP, and a given protein may also contribute to multiple BPs, it is

likely that proteins in different modules in wHTT and mHTT

network participate in a specific BP due to either overlap in

proteins or BPs. To identify the overlaps of BPs between modules

in wHTT and mHTT networks, we separately identify the

common GO terms between the wHTT and the mHTT modules.

It is evident from Dataset S4 (sheet 2) that 390 unique GO terms

are being enriched (pv0:0001) due to proteins in modules of

mHTT network, while 129 GO terms are enriched with proteins

in the modules of wHTT network (Dataset S2 (sheet 1)). Among

the GO terms present in wHTT and mHTT network, 65 are

common. As a result due to mutation, 325 GO terms are gained

by mHTT and 64 GO terms are lost by wHTT. The common 65
GO terms represents both gain and loss.

For convenience, we clubbed the the GO terms in a given

module to broadly assign one or more appropriate biological

function(s). For example, GO:0010506 (regulation of autophagy),

GO:0016559 (peroxisome fission), GO:0031929 (TOR signaling

cascade), GO:0000045 (autophagic vacuole assembly),

GO:0006897 (endocytosis) in module M1 are bought under a

single biological function ’’Autophagy’’. Similarly in module W4
GO:0043507 (positive regulation of JUN kinase activity),

GO:0072383 (plus-end-directed vesicle transport along microtu-

bule), GO:0046330 (positive regulation of JNK cascade),

GO:0046328 (regulation of JNK cascade) are clubbed under

’’Signaling’’. The assigned biological functions for modules of

wHTT and mHTT are shown in Fig. 1(b) and (c) (details are given

in Dataset S4).

Gain and loss of biological process in HTT

networks. Comparison of enriched BPs in the modules of

wHTT and mHTT reveal that the mHTT network has acquired

several new BPs which were absent in wHTT, indicating gain of

biological processes. Similarly enriched BPs of wHTT which are

not present in mHTT are lost. Hence biological functions carried

out by the BPs which are gained or lost in mHTT networks may

result in functional gain or loss due to mutation in HTT.

Gain of biological process: The unique GO terms enriched in the

modules of mHTT networks are listed in Dataset S4 (sheet 2) and

in Text S1 (Table S3). The GO terms in module M1 are related to

cell cycle (4 GO terms), signaling (30), transcription processes and

regulation (5), apoptosis (11), DNA damage and repair (6),

Immunological (7), protein folding (7), autophagy (5), translation

(3), metabolism (1), development and differentiation (4), cell

migration and shape (4), proteasomal degradation (14), Protein

complex/membrane assembly/stabilization (9) and others (4). It is

known that many of these processes are involved in HD

pathogenesis [36]. In M3, the enriched GO terms are assigned

to DNA repair (17), Transcription processes and regulation (5),

DNA replication (12), cell cycle (12) and others (5). Note that, it

has been shown recently that DNA repair, replication and cell

cycle are involved in HD. In fact, activation of DNA synthesis and

cell cycle increase apoptosis in terminally differentiated neuronal

cells, instead of increasing cell division [37,38]. Besides, recent

studies have explored the role of DNA repair in neurodegenerative

disease [39] and show that interaction of mHTT with Ku70/

XRCC6 impairs repair activity [40]. A large number of GO terms

related to development and differentiation (57 GO term),

transcription process and regulation (31), cell cycle (5), DNA

damage and repair (4), Carbohydrate/Glucose transport/metab-

olism (4), Cell growth (7), signaling (31) and others (6) are enriched

in module M5. The role of development and differentiation in HD

is not clear. However recent studies in HD [19,41] indicate that

neurogenesis is possibly altered and differentiation/development

could be defective. Deregulation of transcription is considered to

be one of the most important abnormalities in HD [42]. GO terms

related to differentiation are also enriched with proteins in module

M6, although the terms are distinct from that in module M5. All 4
GO terms enriched in M7 are related to transcription by RNA

polymerase III. It is known that both tRNA and some miRNAs

[43] are synthesized by RNA polymerase III, however their role in

HD is unknown. Thus it is evident that the the protein interactions

gained in mHTT network result in enrichment of the biological

processes in its modules.

Loss of biological process: The unique GO terms enriched in the

modules of wHTT which are absent in the modules of mHTT

network represent the loss of functions due to mutation in HTT

protein. The 5 GO terms in W1 include gene silencing, micro

RNA processing and translational regulation. The GO terms

Mutations Alter PPIN Leading to LOF and GOF
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relating to proteasomal degradation (1 GO term), cell cycle (1),

apoptosis (1) and circadian rhythm (1) are present in W2.

Similarly, signaling (17 GO terms), synaptic transmission, neuro-

nal activities (12) transport (ion/sugar) (5) and others (4) are

associated with module W3; glucose/carbohydrate transport and

metabolism (5), cell cycle (3) and protein/transmembrane trans-

port (4) with W6: In W7 only one GO term describing

transcription processes and regulation is enriched. The GO terms

and the associated BPs that are lost due to mutation are provided

in Dataset S4 (sheet 1) and in Text S1 (Table S3) respectively.

We have clubbed the relevant GO terms to represent signaling,

transcription process and regulation, apoptosis, cell cycle etc. (refer

to Table S3 of Text S1). For example, GO terms (GO:0000088)

and (GO:0000236, GO:0000087, GO:0007091) which are

enriched in W2 and W6 respectively relates to cell cycle. Similarly

the 21 GO terms which are enriched in M1(4), M3(12), and

M5(5) (Dataset S4 (sheet 2)) are also associated to cell cycle.

Although cell cycle is enriched in both wHTT and mHTT

modules, no GO terms are common among them. Thus, the loss

of interaction with wHTT may result in loss of above 4 GO terms

in wild type network resulting in LOF, whereas the gain of

interaction with mHTT may be associated with gain of these 21
GO terms relating to GOF of cell cycle.

It is interesting to note (from Table S3 of Text S1) that the GO

terms related to DNA replication, protein folding, autophagy, cell

growth are only observed in the modules of mHTT networks. So

these processes are gained due to new interaction with mHTT.

Similarly, GO terms related to gene silencing/microRNA

processing/translation, transport (ion/protein/sugar etc) are

observed in wHTT network only. Therefore, loss of interaction

with wHTT may result in the loss of these BPs in HD.

Both loss and gain of biological process: Modules in wHTT and

mHTT networks have several proteins or GO terms common

among them, which indicate loss as well as gain of functions and

support the notion that both loss and gain may occur due to

mutation in HTT [21]. For example, modules (W1,W5,W7) and

(M3,M5,M6) have 17 enriched GO terms related to transcription

processes and regulation. Similarly, modules (W2,W5) and

(M1,M3,M5) share 12 enriched common GO terms related to

apoptosis and 4 common GO terms relating to cell cycle. Thus,

the general function of transcription and apoptosis could arise

from loss as well as gain of interactions of mHTT protein. The

details of the functions associated with the 65 GO terms (common

between wHTT and mHTT) are presented in Dataset S4 (sheet 3)

and Table S3 of Text S1, they correspond to the gain and loss of

functions in the HD.

From the above analysis we observe that most of the functions

that are enriched in the modules of wHTT and mHTT networks

are altered in the pathogenesis of HD. The post transcriptional

regulation of genes, associated with module W1 of wHTT

network, can be related to negative regulation of gene expression

by the non-coding RNAs like micro RNAs, which are well

documented [44]. Role of apoptosis [5,36], synaptic transmission

[45], JNK pathway [46], transcription deregulation [42], glucose

transport [47,48], estrogen [49] and various types of epigenetic

changes including histone modifications in different neurological

diseases [50] in HD pathogenesis have also been reported.

In summary, many new BPs (GO terms) appear in the mHTT

network and some of the BPs present in wHTT network are lost; a

few are found to be common between modules of wHTT and

mHTT. As a result some biological functions involving the

enriched GO terms are gained by mHTT and a few are lost from

the modules of wHTT. This provides molecular mechanism of the

gain and/or loss of functions observed in HD pathogenesis.

Mutation in TP53 Protein
TP53 protein, initially identified as an oncogene, is now

established as a tumor suppressor gene which participates in

diverse cellular functions like transcription regulation, DNA

repair, apoptosis, and genome stability, and many others.

Mutation to TP53 is identified in more than 50% of the tumors.

It is evident from COSMIC database [51] that R175H, R273H

and R248W mutations of TP53 are the most prevalent ones. Since

TP53 is a tumor suppressor gene, it is expected that its mutations

might result in the LOF of the wild type protein. Some mutations

of TP53 are also known to attain new function(s) [52,53]. For

example, exogenous expression of mutant TP53 (R273H and

others) in mouse cells devoid of endogenous TP53 results in several

cellular phenotypes of cancers [54–56]. To understand the

underlying molecular mechanism of GOF of mutant TP53, it

was recently shown [57] that nardilysin (NRD1) protein, which

does not interact with wild type TP53 but interacts only with

mutant TP53 (R273H), may contribute to the metastatic

properties of this mutant protein.

PPIN of wTP53 and R273H mutant TP53 (mTP53). In a

recent study [57], it has been shown that 17 proteins preferentially

interact with the wild type TP53 (wTP53) and 30 other proteins

interact exclusively with mutant TP53 (mTP53). To construct the

protein interaction networks we take these primary interacting

proteins of wTP53 and mTP53 and consider their interacting

partners existing in BioGrid database [26]. The detailed protein

interaction data are given in the Dataset S5. The PPIN is

constructed separately for wTP53 and mTP53, as described for

HTT. It turns out that wTP53 has 601 secondary interactors

whereas mTP53 has only 547: Thus the PPIN of wTP53 and

mTP53 are constructed taking 619 proteins

(wTP53z17 primaryz601 secondary) and 578 proteins

(mTP53z30 primaryz547 secondary) respectively. Both the

networks (shown in Fig. S2 in Text S1) are found to be densely

packed with similar structural properties. Their degree distribu-

tions are scale free (P(k)*k{c) with the exponents c~2:04
(wTP53) and 1:89 (mTP53) (Fig. S3 in Text S1) and average

degree SkT~12:07,12:29: The other network properties, like the

average clustering coefficient C~0:452,0:406, the diameter of the

networks D~4,4 are also comparable (listed in Table S2 in Text

S1).

The change in interactions and the interacting partners due to

mutation of TP53 is shown schematically in Fig. 3(a). Of 17
primary interactors of wTP53, only 5 proteins remain involved in

mutant network as secondary interactors of mTP53 and the

remaining 12 do not interact with mTP53. Among the 601
secondary interactors of wTP53, 111 proteins remain as a

secondary interactor of mTP53 and 7 of them interact directly,

i:e: 7 secondary interactors of wTP53 become primary interactors

of mTP53. Lists of these proteins are given in Text 1 and Table S1

in Text S1.

Modules of wTP53 and mTP53 networks. In order to

identify the modules of the wTP53 and mTP53 networks, we use

NGM algorithm [29]. It turns out that PPIN of wTP53 is

modularized into 4 modules of size 204,151,183 and 81, whereas

mTP53 network gives 5 modules of size 193,127,25,111 and 122:
The corresponding modularity values are Q~0:331 and 0:338:
Figures 3(b) and (c) show the modules of wTP53 and mTP53 with

different colours. Each module of wTP53 or mTP53 has unique

set of protein. However, there is a large overlap of secondary

interactors (proteins which do not interact directly with TP53) in

the wTP53 and mTP53 networks, which is distributed among

different modules (in total 123). We observe that among 123
common proteins, 34 belong to module W3{M5, whereas
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module pairs M1{W1 (and W4{M2) have 23 (and 10)

common proteins. One can define a similarity measure smn using

Eq. (1) for every pair of wTP53-mTP53 modules. Taking the

similarity indices swm as weights (or thickness) of the link we have

constructed a bipartite network which is shown in Fig. 4; the

number of proteins is written beside each of the modules and the

number of common proteins is specified along the links.

Enrichment of biological processes for the proteins present in

every module of wTP53 and mTP53 PPIN using GeneCodis3 are

presented in Dataset S6 and S7 respectively, where only the GO

terms with pv0:0001 are considered. The number of enriched

GO terms in modules of wTP53 PPIN are

W1(30), W2(17), W3(63), W4(36) and those for mTP53 are

M1(52), M2(71), M4(1), M5(67): Note that module M3 has no

GO terms enriched with pv0:0001:
Loss and gain of biological processes in TP53

networks. Enrichment analysis of proteins in modules of

wTP53 and mTP53 using GeneCodis3 reveals that respectively

127 and 172 GO terms (or biological processes) are enriched

significantly (pv0:0001): Among 127 GO terms of wTP53 57
GO terms do not appear in the mTP53 representing loss of the

corresponding biological processes. Again the mTP53 network has

102 new GO terms (which were absent in wTP53). Besides, 70
enriched GO terms are found to be common in modules of

mTP53 and wTP53 networks. We further associate each of the

enriched GO terms with a relevent function. Loss and gain of

these broadly classified functions are discussed below.

Gain of biological processes: The biological processes related to 102
new GO terms of mTP53 are gained due to mutation. The

functions enriched in module M1 of mTP53 network are cell-cell

communication (no of GO terms 5), signaling (13), protein

complex/membrane assembly/stabilization (4), proteasomal deg-

radation (2), cell cycle (3), DNA damage and repair (1) and others

(2). GO terms related to DNA replication (11), DNA damage and

repair (14), cell cycle (4), immunological functions (3), proteasomal

degradation (3) and signaling (1) are enriched in M2. Similarly

GO terms related to differentiation and development (11),

signaling (7), transcription (6), cell proliferation (4), apoptosis (1),

cell cycle (1) and DNA damage (2) and others (4) are enriched with

proteins in module M5. The extensive list of the GOF is given in

Dataset S8 (sheet 2) and in Table S4 in Text S1. Thus new

functions carried out by these biological processes are due to gain

of interaction.

Loss of biological processes: On the other hand some of the enriched

GO terms of wTP53 are absent in the mutant network.

Corresponding biological processes are lost due to mutation in

TP53. Altogether 57 unique GO terms are enriched with proteins

in modules of wTP53 networks which are classified into broad

class of functions (see Dataset S8 (sheet 1) and Table S4 in Text

S1. The resulting loss of biological functions in various modules

are, W1 : signaling (8), proteasomal degradation (1), translation

(1), cell migration and movement (2) and others (1); W2 : signaling

(4), apoptosis (2) and immunological (3); W3 : cell cycle (3),

signaling (1), transcription process and regulation (13), DNA

replication (3), DNA damage and repair (1); W4 : transcription

process and regulation (2), proteasomal degradation (2), translation

(5) and others (4); W7 : transcription process and regulation (1).

Both loss and gain of biological processes: The 70 GO terms common

between wTP53 and mTP53 networks are related to the functions,

cell cycle (14 GO terms), transcription (15), DNA damage and

repair (10), cell growth (2) and apoptosis (4), signaling (9), DNA

replication (3), proteasomal degradation (3), immunological (2),

development and differentiation (1), metabolism (2) and others (5).

Thus these functions are possibly enriched due to both gain and

loss of interactions (details are shown in Dataset S8 (sheet 3) and in

Table S4 in Text S1.

Analysis of proteins in different modules using tool

GeneDecks. Recently metastasis has been shown as the GOF

as R273H cells attain metastatic property in cell model [57]. Since

metastasis is not described as a ‘‘biological process’’ in Gene

Ontology term, we have used another tool, GeneDecks [68],

which provides a similarity metric by highlighting shared

descriptors between genes, based on annotation within the

GeneCards compendium of human genes (see Text 4 in Text S1

for details). Taking the proteins of the modules of wTP53 and

mTP53 separately as a query field, we look for ‘‘metastasis’’ in the

attribute ‘‘disorder’’ among many other descriptors which are

enriched for different types of cancers (Dataset S9). It is observed

Figure 3. Construction and modularization of wild type and mutant TP53 networks. (a) Proteins in wTP53 and mTP53 networks: wTP53
(mTP53) protein (red square) has 17 (30) primary and 601 (547) secondary interactors, represented by the inner and outer circles. Only 5 (7) primary
(secondary) proteins of wTP53 interact with mTP53 as secondary (primary) interactors. Again 111 secondary proteins of wTP53 remain as secondary
interactors of mTP53. (b) and (c) shows the modules of wTP53 and mTP53 network along with few plausible candidate BPs. Details of the GO terms
are shown for wTP53 and mTP53 respectively in Table S6 and Table S7 of Text S1.
doi:10.1371/journal.pone.0064838.g003
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that the descriptor ‘‘metastasis’’ is enriched with the protein

modules W1,W2,W3 of wTP53 network and all the modules

(M1,M2,M3,M4,M5) of mTP53 network. Thus, the loss of

interactions of proteins in the modules W1,W2,W3 of wTP53

due to mutation may result in the LOFs related to metastasis.

Similarly, the gain of interactions of proteins in all the modules of

mTP53 may result in the GOFs related to metastasis.

That LOF of wTP53 and GOF of mTP53 may contribute to

invasion and metastasis, is reviewed recently [69]. TP53 mutations

at the DNA binding domain are common and such mutations

suppress expression of target genes. It is supported by several

experiments [69] that suppression of transcriptional program for

genes involved in epithelial-mesenchymal transition (EMT) may

contribute to induction of EMT resulting in metastasis. Further, it

is ascertained that loss of functions in wTP53 lead to increased cell

motility in various cell types, and increased expression of

fibronectin, collagens and extracellular matrix (ECM) proteins.

Enhanced expression of these proteins potentially increase the

interaction between cells and ECM. LOF in wTP53 also activate

Rho GTPases and modulates cell migration [69].

Role of mTP53 in metastasis has been established in many other

studies. Mutant TP53 (R175H) is involved in TGF mediated

invasion and metastasis in breast cancer cells through TP63 and

SMAD3 [55]. Note that, in our analysis, SMAD is present in

module M5 of mTP53 network. It is known that mutant TP53

(R175H and R273H) increases endocytic recycling of adhesion

molecule integrin and EGFR promoting and metastasis [56,70].

Mutation in TP53 also activate EGFR/PI3K/AKT pathways and

thereby increases invasion [71]. Various other mechanisms of

increased metastasis by the mutant TP53 have also been studied

[69]. Thus the gain of biological processes obtained from the

analysis of mTP53 protein networks provides an explanation of

GOFs observed in cancers.

Robustness Analysis
In general, the modularization methods partition the network

into communities of proteins which are densely connected. Thus

in a large network it is quite expected that deletion of small

fraction of links, whether selected methodically or randomly, does

not alter the overall structure significantly. In fact, the degree

distributions of all four networks studied here (namely PPIN of

wHTT, mHTT, wTP53 and mTP53) are scale free (see Fig. S3 of

Text S1), and it is known that such scale free networks are robust

against random removal of nodes or links, but they could be fragile

against targeted attack [72].

Again, since several databases of protein interactions largely

overlap [73] in their contents, it is natural to expect that the

broadly classified biological functions obtained here for HTT and

TP53 networks would not differ substantially. In this study we used

Biogrid [26] for creating the differential PPIN of the wild type and

mutant HTT and TP53 proteins by connecting every pair of

proteins which are listed in BioGrid as interacting partner of each

other. This includes experimentally validated genetic and physical

interactions. To check the robustness of our analysis, first let us

remove all genetic interactions listed in BioGrid. This reduces the

total number of protein interactions of BioGrid to 99:84%,

whereas the interactions of wHTT, mHTT, wTP53 and mTP53

are reduced to 99:64%, 99:64%, 99:95% and 99:83% respectively

Figure 4. Similarity between modules of wTP53 and mTP53 networks. The bipartite network constructed with the modules of wTP53 and
mTP53; the common proteins present between a pair of wild and mutant module is written on respective link. The number of proteins that constitute
the modules are written beside it.
doi:10.1371/journal.pone.0064838.g004
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(see Table 1). Among the other experiments considered in

BioGrid, Yeast 2 Hybrid (Y2H) assay results in larger false

positives [74]. Thus we further remove all the interactions which

are identified only once by Y2H. This stringent criterion

consequently reduces both the number of interactions and the

number of proteins by *10%: The total number of interactions of

BioGrid is, however, reduced by 20%. Since the wild type and

mutant networks are altered only a little compared to the expected

value 20%, one expects that deletion of a small fraction of

interactions will not change the network properties significantly.

To demonstrate this explicitly, we reconstruct the PPIN of

mHTT keeping only the reduced set of interactions and then

identify the protein modules using Newman Girvan algorithm.

The enriched GO terms (pv0:0001) from GeneCodis3 shows that

every module of mHTT (M1,M3,M5,M6 and M7) has

significant protein overlap with only ’one distinct module’ of the

reduced network, which is referred to as the ’most similar module’

(MSM) henceforth. The number of overlapping proteins and GO

terms between the modules of mHTT and their corresponding

MSM in the reduced network are listed in Table 2. Evidently, in

all cases, about 90% of the GO terms are retained. Thus, the loss,

gain and loss/gain of biological processes obtained from BioGrid

are quite robust.

For completeness, we also removed randomly 10% links of

mHTT network and repeat the above analysis which is

summarized in Table 2. Again, we find that about 90% of the

GO terms enriched in this network are identical to those obtained

for mHTT. Thus, in general, the enriched biological processes

obtained through this analysis are quite robust.

Discussion and Conclusion

Mutation in protein may change its preference for binding with

other proteins and alter the corresponding PPIN substantially. We

use a graph theory based modularization approach to identify the

modules of PPINs, and provide a comparative study of these

differential networks using two examples; one for HD and another

for cancers. The general philosophy of this analysis is depicted

schematically in Fig. 5. In this figure, the wild type protein

interacts with many other proteins forming a complex interaction

network. Broadly, the schematic wild type network has three

subgraphs or modules (A, B and C); proteins in each module are

marked there with identical colours. The mutant protein loses

some proteins as interacting partners (marked as pink) and gains

some new ones (marked as orange, blue and violet). The network

of the mutated protein has a revised modular structure A’, B’ and

D. Module A’ and B’ are re-structured and they have some

proteins from other modules and some new proteins. Module D is

gained by the mutation as most of proteins in this module were not

present in the wild type network, and module C is lost.

Correspondingly, the biological processes (GO terms) which are

enriched in module D are gained and those enriched in module C

are lost. We argue that this loss or gain of BPs lead to loss or gain

of functions in the pathogenesis of the mutation induced disease.

Table 1. Change in the total number of proteins and the interactions after excluding (a) genetic interactions and then (b)
excluding interactions which are validated by only one Y2H experiment.

Total no. of
interactions (a)Excluding genetic(%)

(b)Excluding genetic &
Y2H(%)

Total no. of
proteins Excluding genetic & Y2H(%)

PPIN(human) 59027 58927(99:84%) 47244(80:04%) 12515 11630(9:29%)

wHTT 1380 1375(99:64%) 1231(89:20%) 306 292(9:54%)

mHTT 13105 13058(99:64%) 11478(87:58%) 1542 1486(9:64%)

wTP53 3718 3716(99:95%) 3205(86:20%) 619 590(9:53%)

mTP53 3521 3515(99:83%) 3136(89:07%) 578 551(9:53%)

doi:10.1371/journal.pone.0064838.t001

Table 2. Comparison of number of proteins and GO terms in the modules of mHTT with respective of ’most similar module’ of the
network (a) after excluding genetic and Y2H experiments and (b) after deletion of 10% links.

mHTT Module (a) Excluding genetic & Y2H (b) Random deletion of 10% links

MSM Common (%) MSM Common (%)

M1 No. of Proteins: 643 656 542(84:29%) 612 521(81:03%)

No. of GO terms: 161 161 147(91:30%) 163 147(91:30%)

M3 No. of Proteins: 377 287 211(55:97%) 309 209(55:44%)

No. of GO terms: 78 95 64(82:05%) 80 59(75:64%)

M5 No. of Proteins: 485 442 423(87:22%) 424 397(81:86%)

No. of GO terms: 198 186 173(87:37%) 174 162(81:82%)

M6 No. of Proteins: 7 5 5(71:43%) 5 5(71:43%)

No. of GO terms: 12 16 11(91:67%) 16 11(91:67%)

M7 No. of Proteins: 22 7 7(31:82%) 612 7(31:82%)

No. of GO terms: 5 8 5(100:0%) 7 4(80:00%)

doi:10.1371/journal.pone.0064838.t002
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In this article we explained the general idea of ’obtaining the loss

and gain of functions from the loss and gain of BPs enriched in

protein modules’ using two examples; one for HD and another for

cancers. Our analysis predict a set of broadly classified biological

processes (from the the GO terms enriched in the modules of HTT

and TP53 networks) which could be involved in the pathogenesis of

HD and cancers respectively. In HD, the broadly classified BPs, like

post transcriptional regulation of genes, apoptosis, synaptic transmis-

sion, JNK pathway, transcription deregulation, glucose transport,

histone modifications etc are enriched with the proteins in modules of

wHTT and mHTT networks. These BPs are already known to be

altered in HD pathogenesis. Similarly, the gain and loss of BPs

mTP53 results in the metastatic properties, which have been

observed recently.

Although, we demonstrated the plausible loss and gain of

biological processes in two examples where mutation alters protein

interaction networks of wild type protein, the methodology

discussed here can be adopted and applied to study differential

PPIN in general. In particular, knowing the changes in the protein

interaction network, either due to mutations that modify the

structure of the protein at the binding surface or due to the change

in interaction environments, one can predict what alteration might

occur in the biological processes and functions. Such analysis may

help understanding the loss or gain of biological processes/

functions in genetic diseases caused by mutations. This may in

future lead to better design of disease intervention through

targeting the biological processes/functions of specific modules.

Supporting Information

Dataset S1 Differential interaction of the wHTT and
mHTT protein.

(XLS)

Dataset S2 The proteins belonging to different modules
of wHTT network and their GO term enrichment
analysis.

(XLS)

Dataset S3 The proteins belonging to different modules
of mHTT network and their GO term enrichment
analysis.

(XLS)

Dataset S4 The list of LOF,GOF and GOF/LOF for
wHTT and mHTT networks.

(XLS)

Figure 5. Loss and gain of functions from differential network studies. The general philosophy of the current work is described here for a
schematic protein interaction network, where the wild type and the mutant protein have 52 and 54 interactors respectively. There are three modules
in wild type network (A, B, and C); all proteins in a given module are marked with same colour. After mutation the protein looses some interactors
(marked as pink) and gain some new ones (marked as orange, blue and violet). The PPIN of mutant protein has three modules A’, B’ and D. Module
A’, which primarily contains proteins of module A, has some proteins from module B (green) and some new proteins (violet). Most of the proteins in
module D are new interactors and thus this module is gained by the mutation. Similarly proteins of module C have lost their interactions.
Correspondingly, the BPs which are enriched in module D are gained and those enriched in module C are lost. This loss or gain of BPs lead to loss or
gain of functions in the pathogenesis of the mutation causing disease.
doi:10.1371/journal.pone.0064838.g005
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Dataset S5 Differential interaction of the wTP53 and
mTP53 protein.
(XLS)

Dataset S6 The proteins belonging to different modules
of wTP53 network and their GO term enrichment
analysis.
(XLS)

Dataset S7 The proteins belonging to different modules
of mTP53 network and their GO term enrichment
analysis.
(XLS)

Dataset S8 The list of LOF,GOF and GOF/LOF for
wTP53 and mTP53 networks.
(XLS)

Dataset S9 The GeneDeck analysis of the proteins in the
modules of wTP53 and mTP53 networks and enrichment
of metastatsis.
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from GeneDeck.
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