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Avrtificial intelligence (Al) has revolutionized upper gastrointestinal (Gl) endoscopy by enhancing
the detection, characterization, and management of Gl diseases. In this review, we explore the
transformative role of Al technologies, including machine learning and deep learning, in improv-
ing diagnostic accuracy and streamlining clinical workflows. Al systems such as convolutional
neural networks have shown remarkable potential for identifying subtle lesions, assessing tumor
margins, and reducing interobserver variability. By providing real-time decision-making support,
Al minimizes unnecessary biopsies and improves patient outcomes. We also explore the applica-
tions of Al in detecting precancerous conditions such as Barrett’s esophagus, atrophic gastritis,
and gastric intestinal metaplasia, as well as its role in guiding therapy for early gastric cancer.
Non-image-based Al tools such as Raman spectroscopy complement traditional imaging by of-
fering molecular-level insights for real-time tissue characterization. Despite its promise, the adop-
tion of Al in endoscopy faces challenges, including the need for robust validation, user-centric
design, and targeted training for endoscopists. Concerns regarding overreliance and deskilling
underscore the importance of balancing Al integration with the preservation of clinical expertise.
Lastly, we examine the future of Alin upper Gl diagnosis and how image-based and non-image-
based Al technologies can be integrated to enable comprehensive diagnosis and personalized
therapeutic planning. By addressing current limitations and fostering collaboration between clini-
cians and technologists, Al has the potential to redefine the standards of care for upper Gl diag-
nosis and treatment.

Keywords Artificial intelligence; Gastroscopy; Endoscopy.

INTRODUCTION

Endoscopy plays an essential role in the diagnosis and man-
agement of gastrointestinal (GI) diseases. While the first suc-
cessful endoscope was developed in 1805, it was not until the
invention of the fiberoptic endoscope in 1957' that endoscopy
evolved beyond rudimentary rigid instruments, paving the
way for broader advancements and widespread applications.
The integration of artificial intelligence (AI) has marked the
latest transformative shift in endoscopy, enhancing patholo-
gy, diagnosis, and clinical decision-making. These advance-
ments are particularly crucial in the upper GI tract, where
early detection of esophageal” and gastric** cancers, as well as

their premalignant lesions, can significantly improve patient
outcomes.

The applications of AI in upper GI endoscopy (esophagogas-
troduodenoscopy [EGD]) can be broadly classified into image-
based and non-image-based Al each addressing unique clin-
ical challenges. Image-based AI encompasses tools such as
computer-aided detection (CADe), computer-aided diagnosis
(CADx), and computer-aided quality improvement (CADq),
which improve real-time lesion identification, characteriza-
tion, and procedural standardization. In contrast, non-image-
based Al leverages clinical, molecular, and spectroscopic data
to provide insights beyond the visual field of endoscopy, with
Raman spectroscopy emerging as a promising technology for
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molecular-level diagnostics.

In this review, we explore the current state and future direc-
tions of Al in upper GI endoscopy, with a focus on the detec-
tion and diagnosis of malignant and pre- malignant lesions.
However, alongside these advancements, we address critical
challenges, including the potential pitfalls of overreliance on
Al ethical and legal considerations, and technical limitations.
Furthermore, we discuss the concerns raised by endoscopists,
such as the impact of Al on clinical judgment, trust in auto-
mated systems, and barriers to widespread adoption, includ-
ing costs, training requirements, and the need for robust val-
idation in diverse clinical settings.

TERMINOLOGY

Before discussing the use of AI in upper GI diagnosis, one
must first understand the common terminology used in this
field. Alis a broad term that refers to machines or computers
that can perform tasks requiring human intelligence. Ma-
chine learning is one of its key subfields>® that involves train-
ing algorithms to analyze data and make predictions. Tradi-
tional machine learning requires feature extraction, which
means that humans must first identify and define important
characteristics in the data before an algorithm can process
them.

Deep learning, a more advanced subset of machine learn-
ing, eliminates the need for manual feature extraction using
artificial neural network-multilayered structures designed to
automatically learn patterns from raw data. In this architec-
ture, earlier layers recognize simple features (e.g., edges in an
image), whereas deeper layers identify more complex patterns
(e.g., lesion morphology or vascular patterns in endoscopic im-
ages). This capability makes deep learning particularly pow-
erful for tasks such as image analysis, which is central to Al
applications in upper GI endoscopy. In upper GI endoscopy,
the most commonly used deep learning model is a convolu-
tional neural network (CNN). CNNG are specifically designed
for image analysis; they use convolutional layers to extract spa-
tial features from images, followed by pooling layers to reduce
dimensionality, and fully connected layers to classify the data.
This design enables CNNGs to detect, classify, and assess ab-
normalities in real time with high accuracy.

IMAGE-BASED AI IN UPPER
GI ENDOSCOPY

Although white-light endoscopy (WLE) with biopsy is the
gold standard modality for the diagnosis of upper GI pathol-
ogies,”® there are many pitfalls in relying on this modality

252 https://doi.org/10.7704/kjhugr.2025.0024

alone. Even with extensive training, endoscopists encounter
challenges such as interobserver variability and the risk of
missed lesions, especially in pre-neoplastic and early malig-
nant cases, where subtle changes can be easily overlooked, yet
have a profound impact on a patient’s prognosis. Image-based
Al systems address these limitations by providing consistent,
fatigue-free,” and highly accurate analyses. Kamran et al."® con-
ducted a root cause analysis to establish possible explanations
for post-endoscopic upper GI cancer and identified inade-
quate endoscopy quality, inadequate assessment of premalig-
nant or focal lesions, and poor decision-making around sur-
veillance or follow-up plans as common explanations. Al could
potentially help address all of these, as discussed below and
summarized in Table 1.

CADq

A key role of Al in upper GI endoscopy is to reduce in-
terobserver variability and ensure that all procedures achieve
high-quality complete mucosal inspection, a concept known
as CADq." Wu et al."” demonstrated the effectiveness of the
ENDOANGEL system (previously known as WISENSE) in re-
ducing blind-spot rates during endoscopy. Their study showed
that the use of ENDOANGEL significantly decreased blind
spot rates from 22.46% to 5.86% (p<0.001) through real-time
prompting, thereby improving mucosal visualization. This
finding was further supported by Chen et al."” who conduct-
ed a single-blind, three-parallel-group, randomized, single-
center trial involving 437 patients. This study compared the
performances of unsedated ultrathin transoral endoscopy,
unsedated conventional EGD, and sedated conventional EGD
with or without Al assistance. The results revealed that the
Al-assisted subgroups consistently had lower blind spot rates
than the control subgroups across all three groups (p<0.001).

An Al-based system for real-time photo documentation
during EGD, termed the Automated Photodocumentation
Task (APT), was developed using a training and testing data-
set of 102798 endoscopic images from 3309 EGD examina-
tions conducted at Seoul National University Hospital. The
APT utilizes a Swin Transformer (Shifted Window Transform-
er), which is a hierarchical vision transformer architecture de-
signed for computer vision tasks. Unlike traditional CNNss,
the Swin Transformer uses a self-attention mechanism to un-
derstand the relationships between different parts of an image,
even when they are far apart, making it well suited for complex
tasks such as the classification, detection, and segmentation of
endoscopic images, where subtle details and spatial relation-
ships are critical. In this study,' virtual endoscopy was per-
formed by seven endoscopists and an APT with the goal of
capturing 11 anatomical landmarks from endoscopic videos.
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Table 1. Summary of Al applications in upper Gl diagnosis, with a focus on malignant and premalignant lesions

Subcategory/tool Primary uses/explanation Study examples
Image-based CADq Quality assessment of endoscopy: enhances procedural Endoangel: (12, 13)
Al quality by evaluating blind spots, gastric area coverage, Automated

and photo documentation using deep learning.

CADe/x-esophagus
and reduce miss rates.

CADe/x-stomach

Non-image-based ~ Raman

Al spectroscopy+Al

Identify dysplastic areas, assist in lesion classification,

Real-time molecular characterization of gastrointestinal
tissue during endoscopy by analyzing biochemical

Photodocumentation Task: (14)
Esophageal SCC: (24-26)
Esophageal adenocarcinoma and

Barrett’s esophagus: (27-35)
GC: (37-42)

AG: (44)

GIM: (45)

Ex vivo: (52-55)
In vivo: (56-59)

signatures to distinguish between normal, dysplastic,

and cancerous tissue. Its integration with AT enhances

diagnostic accuracy and supports the feasibility of in vivo

use for real-time decision-making.

AL artificial intelligence; GI, gastrointestinal; CADq, computer-aided quality improvement; CADe, computer-aided detection; CADx, comput-
er-aided diagnosis; SCC, squamous cell carcinoma; GC, gastric cancer; AG, atrophic gastritis; GIM, gastric intestinal metaplasia.

The primary endpoints were the completeness of landmark
capture and image quality. APT achieved an average accuracy
of 98.16% for capturing landmarks, demonstrating complete-
ness similar to that of endoscopists (87.72% vs. 85.75%, p=0.258).
However, the combined use of endoscopists and APT result-
ed in significantly higher completeness (91.89% vs. 85.75%,
<0.001). Additionally, APT-captured images had higher mean
opinion scores than those captured by endoscopists (3.88 vs.
3.41, p<0.001), indicating a superior image quality. However,
further prospective, real-time studies are required to validate
these findings.

With its ability to alert users of blind spots, identify anatom-
ical landmarks, and obtain standardized protocol views'>' i
accordance with endoscopic guidelines, AI can help trainees
develop the skills necessary for thorough and accurate gas-
troscopy.” Furthermore, built-in documentation tools such as
automated photo capturing reduce the need for repeated freez-
ing and capturing, thereby reducing the procedural burden."
This not only improves overall efficiency and consistency, but
also streamlines clinical workflows in daily practice.

n

CADe/x

Even with optimal mucosal exposure, premalignant and
early malignant lesions in the esophagus and stomach can be
challenging to detect owing to their subtle and often incon-
spicuous appearances. Thus, CADe systems play a crucial role
in augmenting an endoscopist’s ability to identify these subtle
changes. Once a lesion is detected, CADx systems can further
assist in characterizing the degree of neoplasia, providing valu-
able insights into the nature of the lesion and guiding appro-

priate clinical management. Together, CADe and CADx en-
hance diagnostic accuracy and improve patient outcomes by
ensuring the early detection and precise characterization of
lesions.

Early detection is a key factor in the prognosis of both esoph-
ageal cancer and gastric cancer (GC), in which missing an ear-
ly lesion that may be surgically or even endoscopically resectable
with curative intent would result in a much poorer prognosis,
with 5-year survival rates of <5%-28%'>*" in the case of ad-
vanced (stage III-IV) esophageal cancer and 7%-35% in the
case of advanced GC.

Esophagus

The rate of missed esophageal cancer ranges from 6.4% to
8.0% in previous reports,** in which missed esophageal can-
cer is defined as esophageal cancer diagnosed at 6-36 months
after non-diagnostic upper endoscopy. In a multicenter, dou-
ble-blind, randomized control trial, Yuan et al.** evaluated an
AT system designed to assist in detecting superficial esopha-
geal squamous cell carcinoma (ESCC) and precancerous le-
sions using WLE and non-magnified narrow-band imaging
(NBI). Their results indicated lower miss rates with Al assis-
tance (1.7% per lesion, 1.9% per patient) than with routine en-
doscopy (6.7% per lesion, 5.1% per patient), suggesting poten-
tial benefits. Nevertheless, further assessment of effectiveness
and cost-benefit in real-world settings is needed. Meng et al.*®
developed a deep learning-based CAD system using the YOLO
v5 algorithm to detect superficial ESCC with high diagnostic
performance (area under the curve [AUC], 0.982; accuracy,
92.9%). The system significantly improved the accuracy of non-
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expert endoscopists (from 78.3% to 88.2%), demonstrating its
potential to enhance detection, particularly for less experienced
practitioners. However, challenges remain in identifying certain
lesion types, such as the Paris classification 0-IIb.

Interestingly, a prospective study by Nakao et al.* did not
demonstrate a significant benefit in ESCC detection using an
Al diagnostic support system. Possible reasons for this nega-
tive result included the user interface, as the Al alert was on a
separate monitor, and the endoscopist had to shift focus be-
tween the two monitors with the potential for missing lesions.
Another reason for this was lesion characteristics. The Al sys-
tem may have been less effective in detecting certain lesion
types, such as flat or small lesions, which are inherently more
challenging to identify.

Barrett s esophagus® is a well-established precursor of esoph-
ageal adenocarcinoma. Patients with Barrett’s esophagus of-
ten undergo EGD surveillance because of their increased risk
of esophageal adenocarcinoma. Early detection®® of dysplasia
and intramucosal carcinoma in Barrett’s esophagus compared
to neoplasia with submucosal involvement would indicate a
difference between minimally invasive endoscopic curative
options and esophagectomy, which is associated with signifi-
cant morbidity and mortality risks.

A systematic review of 14 studies by Patel et al.”” examined
the use of Al for the diagnosis of Barrett’s esophagus and re-

lated neoplasias. Five out of these studies™**

with sample sizes
ranging from 20 to 1229 patients evaluated CADe systems for
Barrett’s esophagus, demonstrating high sensitivity (84%-100%)
and variable specificity (64%-90.7%), outperforming non-ex-
pert endoscopists in diagnosing Barrett’s esophagus and re-
lated neoplasias. The BONS-AI consortium® involving 15 in-
ternational centers developed and validated a CADx system
for Barrett’s esophagus and related neoplasias. The system,
trained on 3596 NBI images from 525 patients, achieved a
standalone sensitivity and specificity of 100%/98% for images
and 93%/96% for videos. With CADx assistance, the diagnos-
tic performance of general endoscopists improved significant-
ly, matching that of experts in Barrett’s esophagus while in-
creasing their confidence in lesion characterization.

Beyond the detection and characterization of premalignant
and early malignant lesions, Rommele et al.”® demonstrated
that an AT algorithm for eosinophilic esophagitis could effec-
tively detect this condition with excellent performance. The
algorithm achieved a sensitivity, specificity, and accuracy of
0.93, which further improved to 0.96, 0.94, and 0.95, respec-
tively, when the Eosinophilic Esophagitis Endoscopic Refer-
ence Score (EREFS) criteria were incorporated. The model
outperformed less-experienced endoscopists and showed re-
sults comparable to those of experts, highlighting its potential
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for enhancing diagnostic precision and reducing variability in
clinical practice.

Stomach

With respect to GC, several studies”” have demonstrated
the benefits of Al in detecting and diagnosing early GC (EGC)
using both WLE and image-enhanced endoscopy.” In addi-
tion to identifying and classifying lesions as neoplastic, Al has
been shown to assess the depth of GC invasion and delineate
the margins of neoplastic lesions. These capabilities are criti-
cal for guiding therapeutic decisions and ensuring adequate
resection margins.

The development of Al-based diagnostic support tools for
EGC detection is driven by the challenge of identifying subtle
mucosal changes that are often missed because of their incon-
spicuous nature. One such tool, Tango,* has shown promis-
ing results. In comparative studies, Tango achieved superior
sensitivity over specialists (84.7% vs. 65.8%; difference, 18.9%;
95% confidence interval [CI], 12.3%-25.3%) and demonstrat-
ed non-inferior accuracy (70.8% vs. 67.4%). Additionally, Tan-
go outperformed non-specialists in both sensitivity (84.7% vs.
51.0%) and accuracy (70.8% vs. 58.4%), highlighting its poten-
tial to enhance diagnostic performance across varying levels
of expertise.

In a single-center randomized controlled trial using the EN-
DOANGEL-lesion detection system, same-day tandem upper
GI endoscopy was performed in which participants first un-
derwent either Al-assisted or routine WLE. Wu et al.”” dem-
onstrated a significantly reduced rate of missed gastric neo-
plasm in the group that underwent Al-assisted endoscopy
first (6.1%, 95% CI: 1.6-17.9 [3/49] vs. 27.3%, 95% CI: 15.5-43.0
[12/44]; relative risk, 0.224, 95% CI: 0.068-0.744; p=0.015). The
same group®’ also evaluated ENDOANGEL with magnified
NBI on endoscopists in a multicenter prospective trial. A to-
tal of 46 endoscopists were compared with ENDOANGEL.
The sensitivity rates of the system for detecting neoplasms and
diagnosing EGC were 87.81% and 100%, respectively, which
were significantly higher than those of endoscopists (83.51%,
95% CI: 81.23-85.79 vs. 87.13%, 95% CI: 83.75-90.51). The ac-
curacy rates of the system for predicting EGC invasion depth
and differentiation status were 78.57% and 71.43%, respec-
tively, which were slightly higher than those of endoscopists
(63.75%, 95% CI: 61.12-66.39 vs. 64.41%, 95% CI: 60.65-68.16).

Nam et al."" developed a CNN-based AI using three mod-
els: lesion detection, differential diagnosis, and invasion depth
(pT1avs. pI'lb in EGC). Their Al-lesion detection model per-
formed similarly to that of expert endoscopists with >5 years
of experience. The diagnostic performance of their Al-differ-
ential diagnosis model (area under the receiver operating



characteristic curve [AUROC]: 0.86, 95% CI: 0.84-0.89) was
significantly better than that of novice endoscopists with <1
year of experience (AUROC: 0.78, 95% CI: 0.76-0.80, p<0.001)
and intermediately experienced endoscopists with 2-3 years
of experience (AUROC: 0.84, 95% CI: 0.83-0.86, p=0.035), but
was comparable to that of expert endoscopists (AUROC: 0.86,
95% CI: 0.84-0.88, p=0.942) in the internal validation set, with
similar trends in the external validation set. Among patients
with EGC, the AI-ID model showed fair performances in both
the internal (AUROC: 0.78) and external validation sets (AU-
ROC: 0.73), which were significantly better than the results of
endoscopic ultrasound performed by experts (AUROC: 0.62
in the internal validation set, AUROC: 0.56 in the external
validation set; both p<0.001).

Complete endoscopic resection with adequate margins is
critical for the treatment of EGC, as it prevents unnecessary
repeat endoscopies, which are often more challenging because
of scarring or even require surgical intervention. Although
methods such as magnified NBI and indigo carmine endos-
copy have been used to delineate tumor margins, more precise
tools are required to ensure accurate lesion sizing and enhance
the planning and success of endoscopic submucosal dissec-
tion. In a review by Lei et al,** six studies evaluating Al for bound-
ary identification demonstrated accuracy rates ranging from
82.7% to 96.3%. However, further prospective studies are re-
quired to validate these promising results and to establish the
role of Al in optimizing the outcomes of endoscopic submu-
cosal dissection.

Beyond the early detection of GC, identifying patients at
risk of developing GC is crucial for determining appropriate
surveillance strategies. While risk factors such as family his-
tory play a significant role, precancerous changes such as atro-
phic gastritis (AG) and gastric intestinal metaplasia (GIM) also
influence the timing and frequency of surveillance endosco-
pies. The progression of GC through Correa’s cascade™® is well
established, and Al tools have been developed to detect these
precancerous conditions, enabling earlier intervention and
personalized patient management. A systematic review and
meta-analysis* of 8 studies evaluating AT for AG detection dem-
onstrated a sensitivity of 94% (95% CI: 0.88-0.97) and a spec-
ificity of 96% (95% CI: 0.88-0.98), with an area under the sum-
mary receiver operating characteristic (SROC) curve of 0.98
(95% CI: 0.96-0.99). These results indicate that Al signifi-
cantly outperformed endoscopists in the diagnosis of AG.
Similarly, another meta-analysis* of 12 studies focusing on
Al for GIM detection reported a pooled sensitivity of 94% (95%
CI: 0.92-0.96) and a specificity of 93% (95% CI: 0.89-0.95),
with an SROC curve of 0.97. Al demonstrated superior diag-
nostic performance compared with endoscopists, with a sen-
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sitivity of 95% versus 79% for human experts. These findings
underscore the potential of Al in enhancing the early detec-
tion of precancerous gastric lesions.

However, both meta-analyses exhibited substantial hetero-
geneity, particularly in the definition of diagnostic criteria and
grading of AG and GIM severity. Additionally, variations in
the endoscopic equipment, imaging techniques, datasets, and
Al algorithms further limit the generalizability of their find-
ings. Notably, the majority of the studies included were retro-
spective in design—5 out of 8 for AG and 9 out of 12 for GIM—
and all but one study was conducted in non-Asian populations,
which may affect the applicability across different geographic
regions. In real-world clinical settings, AI performance has
not consistently replicated the high sensitivity and specificity
reported in controlled environments. This highlights the need
for well-designed prospective multicenter studies that apply
standardized diagnostic criteria and clinically relevant end-
points to accurately assess the utility of Al in routine practice.
To facilitate broader applicability and external validation, algo-
rithm code sharing should also be encouraged to ensure more
robust and generalizable data across diverse populations.

The role of Helicobacter pylori in GC has been well studied;
since 1994, it has been labeled as a human carcinogen by the
World Health Organization’s International Agency for Re-
search on Cancer.**”” While the gold standard* for the diag-
nosis of H. pylori infection is histopathological examination,
this requires biopsies with inherent risks of complications,
such as bleeding. Al-based methods for detecting H. pylori
infections using endoscopic images have shown excellent di-
agnostic performance. A meta-analysis® reported pooled sen-
sitivity and specificity of 0.90 (95% CI: 0.80-0.95) and 0.92 (95%
CI: 0.88-0.95), with an AUC of 0.97 (95% CI: 0.96-0.99). Indi-
vidual studies, such as Lin et al.,” achieved a sensitivity of 1.00
and specificity of 0.82, whereas others, such as Yacob et al.,”!
reported both metrics at 0.98. These findings suggest that Al
can reduce the need for invasive biopsies and improve diag-
nostic confidence. However, further validation in diverse pop-
ulations is required.

NON-IMAGE-BASED AI IN UPPER
GI ENDOSCOPY AND DIAGNOSIS

Non-image-based Al technologies for upper endoscopy are
emerging as powerful tools for enhancing diagnostic accura-
cy and providing real-time tissue characterization. One such
technique is Raman spectroscopy, which uses laser light to an-
alyze the molecular composition of tissues (Fig. 1). When in-
tegrated with A, Raman spectroscopy can differentiate nor-
mal, precancerous, and cancerous tissues by detecting subtle
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1. Light excitation: A
monochromatic laser is directed at
the target tissue via a fiber-optic
probe inserted through the
endoscope.

2. Light-Tissue Interaction: Most
hotons are scattered elastically
?Raxlelgh scatteru\wlgzlyvnh no change
in photon energy. While a small
fraction of photons undergo inelastic
scattering (Raman effect), where
energy is transferred between
photons and molecular bonds.

l

3. Signal collection: Scattered light
(including Raman-shifted photons) is
collected through the same fiber-
optic system and directed to a
spectrometer.

4. Spectrum Generation: Raman
spectrum is generated, displaying
intensity vs. Raman shift
wavenumber, cm~"). Each tissue

pe shows a unique pattern of
spectral peaks (a molecular
fingerprint).

5. Al-Based Analysis: Unique
spectral pattern is analyzed in real
time with Al to classify tissue, with
visual output displayed

Sle

Advantages: Molecular-level

precision, real time analysis

without the need of biopsies,
improved early diagnosis

Challenges: Signal noise,
database size, in vivo variability

Fig. 1. Flowchart explaining Raman spectroscopy and Al for real-time tissue characterization in upper Gl endoscopy. Al, artificial intelligence;

Gl, gastrointestinal.

biochemical changes that are not visible to the naked eye. Al-
though numerous studies have demonstrated the ability of Ra-
man spectroscopy to differentiate normal tissue, dysplasia,
and cancer with high sensitivity and specificity, the majority
of these studies have been conducted ex vivo.”*

Several studies have evaluated the feasibility of Raman spec-
troscopy for clinical application in vivo. Significant advance-
ments have been made since Shim et al.* first demonstrated
the use of Raman spectroscopy during endoscopy in 2000.
For example, Bergholt et al.”’ showed that real-time image-
guided Raman endoscopy combined with AI diagnostic algo-
rithms could achieve a diagnostic sensitivity and specificity of
94.6% for the in vivo diagnosis of gastric neoplasia. In a feasi-
bility proof-of-concept study comparing Raman spectroscopy-
based AI (SPECTRA IMDx™)*® with high-definition WLE
for classifying gastric lesions as low or high risk for neoplasia,
the Raman spectroscopy system achieved a sensitivity, speci-
ficity, and accuracy of 100%, 80%, and 89% by patient, and
100%, 80%, and 92% by lesion, respectively—performance com-
parable to that of expert endoscopists. Similarly, Noh et al.*
identified the biomolecular differences between benign gas-
tric tissues and gastric adenocarcinoma and evaluated the di-
agnostic potential of Raman spectroscopy combined with ma-
chine learning. Their model achieved diagnostic accuracy,
sensitivity, specificity, and AUC values of 0.905, 0.942, 0.787,
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and 0.957, respectively.

Despite the promising clinical trial results, practical limita-
tions remain. Real-time Raman implementation is challenged
by the need for miniaturized fiber-optic probes, rapid spectral
acquisition, and robust Al algorithms that can handle the vari-
ability in in vivo tissue spectra. Moreover, current studies of-
ten involve small patient cohorts and are predominantly con-
ducted in single-center settings, limiting their generalizability.

To enable real-world adoption, further modifications to
both software and hardware are required to improve spectral
data collection. Additionally, future studies should prioritize
multicenter trials with diverse patient populations, seamless
integration into existing endoscopic platforms with training
provided for end users, and standardized reporting of diag-
nostic thresholds. Despite these challenges, Raman spectros-
copy is a promising approach that complements traditional
endoscopic imaging by providing molecular-level insights.
This enables real-time detection of malignancies and has the
potential to reduce the need for unnecessary biopsies.

POTENTIAL PITFALLS

One of the major concerns regarding the use of Al in en-
doscopy is the risk of overreliance and subsequent deskilling
by endoscopists. This concern appears to be supported by ret-



rospective data from Budzyn et al.,*” which examined the im-
pact of AT on adenoma detection rates (ADR) during colonos-
copy. In this nested study of the ACCEPT trial, participants
undergoing screening colonoscopy were randomized into Al-
assisted or standard colonoscopy groups. The ADR for stan-
dard, non-Al-assisted colonoscopy significantly decreased
from 28.4% (226/795) before Al exposure to 22.4% (145/648)
after, representing a 6% absolute reduction (95% Cl: -10.5% to
-1.6%). This decline raises concerns that endoscopists may be-
come complacent when Al is not using AI. However, further
robust prospective studies are required to confirm these find-
ings. Additionally, as evidence supporting the benefits of Al
continues to grow, and its use becomes more widespread, the
following question arises: “Should deskilling remain a primary
concern?” For instance, with the advent of advanced GPS tech-
nology, the ability to read paper maps is likely to diminish among
younger generations. Similarly, rather than focusing on the
potential for deskilling, it may be more productive to invest
resources in training young endoscopists to effectively utilize
Al, while emphasizing the importance of maintaining vigi-
lance and ensuring that they maintain the capability to pro-
cess and interpret visual information.

Another significant concern is the issue of liability**"** when
Al-assisted decisions lead to adverse outcomes. Clear guid-
ance from government agencies and regulatory bodies is es-
sential to define the appropriate applications of Al in clinical
practice. It is crucial to emphasize that the role of AI should
not be to replace clinicians but to augment their diagnostic
capabilities, ensuring that the final decision-making authori-
ty remains with trained healthcare professionals.

Third, is a potential impact on health equity, both between
wealthy and developing nations and within countries where
disparities exist between urban and rural areas.®*** Adopting
Al requires significant resources to acquire the necessary
equipment and train endoscopists, which could further widen
the gap in endoscopic practice between the affluent and un-
derserved regions. As Al is becoming more widely adopted,
efforts must be made to ensure its affordability and formally
evaluate its cost-effectiveness in day-to-day practice.

Finally, beyond ensuring the security of sensitive patient
data, safeguarding the integrity of machine learning algo-
rithms is important. Malicious tampering by ill-intentioned
individuals can compromise the reliability of AI systems, po-
tentially leading to severe clinical consequences. Robust mea-
sures must be implemented to protect both the data and algo-
rithms from unauthorized access or manipulation.
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FUTURE ADVANCEMENTS

While most studies have largely shown benefits in the use
of Alin clinical practice, Nakao et al.,” which found no signif-
icant improvement in detection rates when endoscopists used
the AI system compared with standard endoscopic proce-
dures, provided valuable insights into areas for improvement.

First, developing Al systems with more extensive and di-
verse datasets could improve diagnostic accuracy across vari-
ous clinical scenarios, particularly in detecting premalignant
or early malignant lesions, where mucosal changes can be very
subtle. To ensure robustness and generalizability, AI systems
must undergo rigorous testing across diverse populations and
ethnicities to validate their external validity before being ap-
proved for commercial use.

Secondly, Al systems must adopt a user-centric design. They
should be integrated seamlessly into clinical workflows, pro-
viding intuitive and non-disruptive alerts to enhance the en-
doscopists’ ability to effectively utilize AI. An important con-
sideration is the risk of excessive false positive detections,
which can contribute to alarm fatigue and potentially dimin-
ish the clinical utility of CADe systems. Evidence from colorec-
tal polyp detection studies®* has shown that frequent false
alarms may desensitize endoscopists, slow procedures, and re-
duce overall diagnostic confidence. Translating these concerns
to upper GI endoscopy, careful tuning of sensitivity-specific-
ity thresholds, and smarter alert prioritization will be critical
for maintaining trust and optimizing performance in real-
world applications.

Third, targeted training of both non-expert and expert en-
doscopists on how to interpret and act upon Al-generated alerts
could further improve detection rates. With the growing evi-
dence supporting the benefits of Al its use is likely to become
increasingly prevalent in daily practice. Therefore, establish-
ing proper guidelines for incorporating Al into endoscopic
training and teaching novice endoscopists how to use Al ef-
fectively is essential.

Lastly, looking further into the future, we may expect the
development of a comprehensive “all-in-one” system. Such a
system could seamlessly combine CADq, CADe, and CADx
for both benign and malignant conditions, assess the depth
of malignant invasion, and assist with therapeutic planning.
Furthermore, the integration of image-based and non-image-
based Al promises to revolutionize endoscopy by combining
macroscopic visualization with microscopic precision. Imag-
ine a scenario during screening or surveillance endoscopy in
which an endoscopist identifies a subtle lesion with the assis-
tance of Al and characterizes it as potentially malignant. The
endoscopist then confirmed this diagnosis in real time using
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Al-enhanced Raman spectroscopy while simultaneously em-
ploying Al to assess the depth of invasion and determine wheth-
er the lesion can be resected endoscopically. Thus, the system
could assist in planning en bloc curative resections, eliminat-
ing the need for unnecessary biopsies. Such advancements would
not only reduce risks to patients, but also save time, streamline
workflows, and empower clinicians to make more informed
treatment decisions, ultimately improving patient manage-
ment and outcomes.

CONCLUSION

Endoscopic procedures, traditionally reliant solely on oper-
ator experience, are now being transformed using Al technol-
ogies that enhance diagnostic accuracy, efficiency, and deci-
sion-making. The growing role of Al in endoscopy is inevitable,
and those resistant to change risks have fallen behind in this
rapidly evolving field of research. As endoscopists, we must
embrace an open mindset, and leverage Al to improve patient
outcomes while remaining vigilant to ensure that our diag-
nostic skills do not deteriorate through overreliance. Future re-
search should focus on the synergistic potential of combining
image-based and non-image-based Al unlocking new possi-
bilities for comprehensive and precise upper GI diagnosis.
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