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INTRODUCTION

Endoscopy plays an essential role in the diagnosis and man-
agement of gastrointestinal (GI) diseases. While the first suc-
cessful endoscope was developed in 1805, it was not until the 
invention of the fiberoptic endoscope in 19571 that endoscopy 
evolved beyond rudimentary rigid instruments, paving the 
way for broader advancements and widespread applications. 
The integration of artificial intelligence (AI) has marked the 
latest transformative shift in endoscopy, enhancing patholo-
gy, diagnosis, and clinical decision-making. These advance-
ments are particularly crucial in the upper GI tract, where 
early detection of esophageal2 and gastric3,4 cancers, as well as 

their premalignant lesions, can significantly improve patient 
outcomes.

The applications of AI in upper GI endoscopy (esophagogas-
troduodenoscopy [EGD]) can be broadly classified into image-
based and non-image-based AI, each addressing unique clin-
ical challenges. Image-based AI encompasses tools such as 
computer-aided detection (CADe), computer-aided diagnosis 
(CADx), and computer-aided quality improvement (CADq), 
which improve real-time lesion identification, characteriza-
tion, and procedural standardization. In contrast, non-image-
based AI leverages clinical, molecular, and spectroscopic data 
to provide insights beyond the visual field of endoscopy, with 
Raman spectroscopy emerging as a promising technology for 
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Artificial intelligence (AI) has revolutionized upper gastrointestinal (GI) endoscopy by enhancing 
the detection, characterization, and management of GI diseases. In this review, we explore the 
transformative role of AI technologies, including machine learning and deep learning, in improv-
ing diagnostic accuracy and streamlining clinical workflows. AI systems such as convolutional 
neural networks have shown remarkable potential for identifying subtle lesions, assessing tumor 
margins, and reducing interobserver variability. By providing real-time decision-making support, 
AI minimizes unnecessary biopsies and improves patient outcomes. We also explore the applica-
tions of AI in detecting precancerous conditions such as Barrett’s esophagus, atrophic gastritis, 
and gastric intestinal metaplasia, as well as its role in guiding therapy for early gastric cancer. 
Non-image-based AI tools such as Raman spectroscopy complement traditional imaging by of-
fering molecular-level insights for real-time tissue characterization. Despite its promise, the adop-
tion of AI in endoscopy faces challenges, including the need for robust validation, user-centric 
design, and targeted training for endoscopists. Concerns regarding overreliance and deskilling 
underscore the importance of balancing AI integration with the preservation of clinical expertise. 
Lastly, we examine the future of AI in upper GI diagnosis and how image-based and non-image-
based AI technologies can be integrated to enable comprehensive diagnosis and personalized 
therapeutic planning. By addressing current limitations and fostering collaboration between clini-
cians and technologists, AI has the potential to redefine the standards of care for upper GI diag-
nosis and treatment. 
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molecular-level diagnostics. 
In this review, we explore the current state and future direc-

tions of AI in upper GI endoscopy, with a focus on the detec-
tion and diagnosis of malignant and pre- malignant lesions. 
However, alongside these advancements, we address critical 
challenges, including the potential pitfalls of overreliance on 
AI, ethical and legal considerations, and technical limitations. 
Furthermore, we discuss the concerns raised by endoscopists, 
such as the impact of AI on clinical judgment, trust in auto-
mated systems, and barriers to widespread adoption, includ-
ing costs, training requirements, and the need for robust val-
idation in diverse clinical settings.

TERMINOLOGY

Before discussing the use of AI in upper GI diagnosis, one 
must first understand the common terminology used in this 
field. AI is a broad term that refers to machines or computers 
that can perform tasks requiring human intelligence. Ma-
chine learning is one of its key subfields5,6 that involves train-
ing algorithms to analyze data and make predictions. Tradi-
tional machine learning requires feature extraction, which 
means that humans must first identify and define important 
characteristics in the data before an algorithm can process 
them.

Deep learning, a more advanced subset of machine learn-
ing, eliminates the need for manual feature extraction using 
artificial neural network-multilayered structures designed to 
automatically learn patterns from raw data. In this architec-
ture, earlier layers recognize simple features (e.g., edges in an 
image), whereas deeper layers identify more complex patterns 
(e.g., lesion morphology or vascular patterns in endoscopic im-
ages). This capability makes deep learning particularly pow-
erful for tasks such as image analysis, which is central to AI 
applications in upper GI endoscopy. In upper GI endoscopy, 
the most commonly used deep learning model is a convolu-
tional neural network (CNN). CNNs are specifically designed 
for image analysis; they use convolutional layers to extract spa-
tial features from images, followed by pooling layers to reduce 
dimensionality, and fully connected layers to classify the data. 
This design enables CNNs to detect, classify, and assess ab-
normalities in real time with high accuracy.

IMAGE-BASED AI IN UPPER 
GI ENDOSCOPY

Although white-light endoscopy (WLE) with biopsy is the 
gold standard modality for the diagnosis of upper GI pathol-
ogies,7,8 there are many pitfalls in relying on this modality 

alone. Even with extensive training, endoscopists encounter 
challenges such as interobserver variability and the risk of 
missed lesions, especially in pre-neoplastic and early malig-
nant cases, where subtle changes can be easily overlooked, yet 
have a profound impact on a patient’s prognosis. Image-based 
AI systems address these limitations by providing consistent, 
fatigue-free,9 and highly accurate analyses. Kamran et al.10 con-
ducted a root cause analysis to establish possible explanations 
for post-endoscopic upper GI cancer and identified inade-
quate endoscopy quality, inadequate assessment of premalig-
nant or focal lesions, and poor decision-making around sur-
veillance or follow-up plans as common explanations. AI could 
potentially help address all of these, as discussed below and 
summarized in Table 1. 

CADq
A key role of AI in upper GI endoscopy is to reduce in-

terobserver variability and ensure that all procedures achieve 
high-quality complete mucosal inspection, a concept known 
as CADq.11 Wu et al.12 demonstrated the effectiveness of the 
ENDOANGEL system (previously known as WISENSE) in re-
ducing blind-spot rates during endoscopy. Their study showed 
that the use of ENDOANGEL significantly decreased blind 
spot rates from 22.46% to 5.86% (p<0.001) through real-time 
prompting, thereby improving mucosal visualization. This 
finding was further supported by Chen et al.13 who conduct-
ed a single-blind, three-parallel-group, randomized, single-
center trial involving 437 patients. This study compared the 
performances of unsedated ultrathin transoral endoscopy, 
unsedated conventional EGD, and sedated conventional EGD 
with or without AI assistance. The results revealed that the 
AI-assisted subgroups consistently had lower blind spot rates 
than the control subgroups across all three groups (p<0.001). 

An AI-based system for real-time photo documentation 
during EGD, termed the Automated Photodocumentation 
Task (APT), was developed using a training and testing data-
set of 102798 endoscopic images from 3309 EGD examina-
tions conducted at Seoul National University Hospital. The 
APT utilizes a Swin Transformer (Shifted Window Transform-
er), which is a hierarchical vision transformer architecture de-
signed for computer vision tasks. Unlike traditional CNNs, 
the Swin Transformer uses a self-attention mechanism to un-
derstand the relationships between different parts of an image, 
even when they are far apart, making it well suited for complex 
tasks such as the classification, detection, and segmentation of 
endoscopic images, where subtle details and spatial relation-
ships are critical. In this study,14 virtual endoscopy was per-
formed by seven endoscopists and an APT with the goal of 
capturing 11 anatomical landmarks from endoscopic videos. 
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The primary endpoints were the completeness of landmark 
capture and image quality. APT achieved an average accuracy 
of 98.16% for capturing landmarks, demonstrating complete-
ness similar to that of endoscopists (87.72% vs. 85.75%, p=0.258). 
However, the combined use of endoscopists and APT result-
ed in significantly higher completeness (91.89% vs. 85.75%, 
p<0.001). Additionally, APT-captured images had higher mean 
opinion scores than those captured by endoscopists (3.88 vs. 
3.41, p<0.001), indicating a superior image quality. However, 
further prospective, real-time studies are required to validate 
these findings. 

With its ability to alert users of blind spots, identify anatom-
ical landmarks, and obtain standardized protocol views15,16 in 
accordance with endoscopic guidelines, AI can help trainees 
develop the skills necessary for thorough and accurate gas-
troscopy.17 Furthermore, built-in documentation tools such as 
automated photo capturing reduce the need for repeated freez-
ing and capturing, thereby reducing the procedural burden.18 
This not only improves overall efficiency and consistency, but 
also streamlines clinical workflows in daily practice. 

CADe/x
Even with optimal mucosal exposure, premalignant and 

early malignant lesions in the esophagus and stomach can be 
challenging to detect owing to their subtle and often incon-
spicuous appearances. Thus, CADe systems play a crucial role 
in augmenting an endoscopist’s ability to identify these subtle 
changes. Once a lesion is detected, CADx systems can further 
assist in characterizing the degree of neoplasia, providing valu-
able insights into the nature of the lesion and guiding appro-

priate clinical management. Together, CADe and CADx en-
hance diagnostic accuracy and improve patient outcomes by 
ensuring the early detection and precise characterization of 
lesions.

Early detection is a key factor in the prognosis of both esoph-
ageal cancer and gastric cancer (GC), in which missing an ear-
ly lesion that may be surgically or even endoscopically resectable 
with curative intent would result in a much poorer prognosis, 
with 5-year survival rates of <5%–28%19,20 in the case of ad-
vanced (stage III-IV) esophageal cancer and 7%–35% in the 
case of advanced GC. 

Esophagus
The rate of missed esophageal cancer ranges from 6.4% to 

8.0% in previous reports,21-23 in which missed esophageal can-
cer is defined as esophageal cancer diagnosed at 6–36 months 
after non-diagnostic upper endoscopy. In a multicenter, dou-
ble-blind, randomized control trial, Yuan et al.24 evaluated an 
AI system designed to assist in detecting superficial esopha-
geal squamous cell carcinoma (ESCC) and precancerous le-
sions using WLE and non-magnified narrow-band imaging 
(NBI). Their results indicated lower miss rates with AI assis-
tance (1.7% per lesion, 1.9% per patient) than with routine en-
doscopy (6.7% per lesion, 5.1% per patient), suggesting poten-
tial benefits. Nevertheless, further assessment of effectiveness 
and cost-benefit in real-world settings is needed. Meng et al.25 
developed a deep learning-based CAD system using the YOLO 
v5 algorithm to detect superficial ESCC with high diagnostic 
performance (area under the curve [AUC], 0.982; accuracy, 
92.9%). The system significantly improved the accuracy of non-

Table 1. Summary of AI applications in upper GI diagnosis, with a focus on malignant and premalignant lesions

AI type Subcategory/tool Primary uses/explanation Study examples
Image-based 
  AI

CADq Quality assessment of endoscopy: enhances procedural 
  quality by evaluating blind spots, gastric area coverage, 
  and photo documentation using deep learning.

Endoangel: (12, 13) 
Automated 
  Photodocumentation Task: (14)

CADe/x–esophagus Identify dysplastic areas, assist in lesion classification, 
  and reduce miss rates.

Esophageal SCC: (24-26)
Esophageal adenocarcinoma and 
  Barrett’s esophagus: (27-35)

CADe/x–stomach GC: (37-42)
AG: (44)
GIM: (45)

Non-image-based 
  AI

Raman 
  spectroscopy+AI

Real-time molecular characterization of gastrointestinal 
  tissue during endoscopy by analyzing biochemical 
  signatures to distinguish between normal, dysplastic, 
  and cancerous tissue. Its integration with AI enhances 
  diagnostic accuracy and supports the feasibility of in vivo 
  use for real-time decision-making.

Ex vivo: (52-55)
In vivo: (56-59)

AI, artificial intelligence; GI, gastrointestinal; CADq, computer-aided quality improvement; CADe, computer-aided detection; CADx, comput-
er-aided diagnosis; SCC, squamous cell carcinoma; GC, gastric cancer; AG, atrophic gastritis; GIM, gastric intestinal metaplasia.
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expert endoscopists (from 78.3% to 88.2%), demonstrating its 
potential to enhance detection, particularly for less experienced 
practitioners. However, challenges remain in identifying certain 
lesion types, such as the Paris classification 0-IIb.

Interestingly, a prospective study by Nakao et al.26 did not 
demonstrate a significant benefit in ESCC detection using an 
AI diagnostic support system. Possible reasons for this nega-
tive result included the user interface, as the AI alert was on a 
separate monitor, and the endoscopist had to shift focus be-
tween the two monitors with the potential for missing lesions. 
Another reason for this was lesion characteristics. The AI sys-
tem may have been less effective in detecting certain lesion 
types, such as flat or small lesions, which are inherently more 
challenging to identify. 

Barrett ’s esophagus27 is a well-established precursor of esoph-
ageal adenocarcinoma. Patients with Barrett’s esophagus of-
ten undergo EGD surveillance because of their increased risk 
of esophageal adenocarcinoma. Early detection28 of dysplasia 
and intramucosal carcinoma in Barrett’s esophagus compared 
to neoplasia with submucosal involvement would indicate a 
difference between minimally invasive endoscopic curative 
options and esophagectomy, which is associated with signifi-
cant morbidity and mortality risks. 

A systematic review of 14 studies by Patel et al.29 examined 
the use of AI for the diagnosis of Barrett’s esophagus and re-
lated neoplasias. Five out of these studies30-34 with sample sizes 
ranging from 20 to 1229 patients evaluated CADe systems for 
Barrett’s esophagus, demonstrating high sensitivity (84%–100%) 
and variable specificity (64%–90.7%), outperforming non-ex-
pert endoscopists in diagnosing Barrett’s esophagus and re-
lated neoplasias. The BONS-AI consortium35 involving 15 in-
ternational centers developed and validated a CADx system 
for Barrett’s esophagus and related neoplasias. The system, 
trained on 3596 NBI images from 525 patients, achieved a 
standalone sensitivity and specificity of 100%/98% for images 
and 93%/96% for videos. With CADx assistance, the diagnos-
tic performance of general endoscopists improved significant-
ly, matching that of experts in Barrett’s esophagus while in-
creasing their confidence in lesion characterization.

Beyond the detection and characterization of premalignant 
and early malignant lesions, Römmele et al.36 demonstrated 
that an AI algorithm for eosinophilic esophagitis could effec-
tively detect this condition with excellent performance. The 
algorithm achieved a sensitivity, specificity, and accuracy of 
0.93, which further improved to 0.96, 0.94, and 0.95, respec-
tively, when the Eosinophilic Esophagitis Endoscopic Refer-
ence Score (EREFS) criteria were incorporated. The model 
outperformed less-experienced endoscopists and showed re-
sults comparable to those of experts, highlighting its potential 

for enhancing diagnostic precision and reducing variability in 
clinical practice.

Stomach
With respect to GC, several studies37 have demonstrated 

the benefits of AI in detecting and diagnosing early GC (EGC) 
using both WLE and image-enhanced endoscopy.37 In addi-
tion to identifying and classifying lesions as neoplastic, AI has 
been shown to assess the depth of GC invasion and delineate 
the margins of neoplastic lesions. These capabilities are criti-
cal for guiding therapeutic decisions and ensuring adequate 
resection margins.

The development of AI-based diagnostic support tools for 
EGC detection is driven by the challenge of identifying subtle 
mucosal changes that are often missed because of their incon-
spicuous nature. One such tool, Tango,38 has shown promis-
ing results. In comparative studies, Tango achieved superior 
sensitivity over specialists (84.7% vs. 65.8%; difference, 18.9%; 
95% confidence interval [CI], 12.3%–25.3%) and demonstrat-
ed non-inferior accuracy (70.8% vs. 67.4%). Additionally, Tan-
go outperformed non-specialists in both sensitivity (84.7% vs. 
51.0%) and accuracy (70.8% vs. 58.4%), highlighting its poten-
tial to enhance diagnostic performance across varying levels 
of expertise.

In a single-center randomized controlled trial using the EN-
DOANGEL-lesion detection system, same-day tandem upper 
GI endoscopy was performed in which participants first un-
derwent either AI-assisted or routine WLE. Wu et al.39 dem-
onstrated a significantly reduced rate of missed gastric neo-
plasm in the group that underwent AI-assisted endoscopy 
first (6.1%, 95% CI: 1.6–17.9 [3/49] vs. 27.3%, 95% CI: 15.5–43.0 
[12/44]; relative risk, 0.224, 95% CI: 0.068–0.744; p=0.015). The 
same group40 also evaluated ENDOANGEL with magnified 
NBI on endoscopists in a multicenter prospective trial. A to-
tal of 46 endoscopists were compared with ENDOANGEL. 
The sensitivity rates of the system for detecting neoplasms and 
diagnosing EGC were 87.81% and 100%, respectively, which 
were significantly higher than those of endoscopists (83.51%, 
95% CI: 81.23–85.79 vs. 87.13%, 95% CI: 83.75–90.51). The ac-
curacy rates of the system for predicting EGC invasion depth 
and differentiation status were 78.57% and 71.43%, respec-
tively, which were slightly higher than those of endoscopists 
(63.75%, 95% CI: 61.12–66.39 vs. 64.41%, 95% CI: 60.65–68.16).

Nam et al.41 developed a CNN-based AI using three mod-
els: lesion detection, differential diagnosis, and invasion depth 
(pT1a vs. pT1b in EGC). Their AI-lesion detection model per-
formed similarly to that of expert endoscopists with >5 years 
of experience. The diagnostic performance of their AI-differ-
ential diagnosis model (area under the receiver operating 
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characteristic curve [AUROC]: 0.86, 95% CI: 0.84–0.89) was 
significantly better than that of novice endoscopists with <1 
year of experience (AUROC: 0.78, 95% CI: 0.76–0.80, p<0.001) 
and intermediately experienced endoscopists with 2–3 years 
of experience (AUROC: 0.84, 95% CI: 0.83–0.86, p=0.035), but 
was comparable to that of expert endoscopists (AUROC: 0.86, 
95% CI: 0.84–0.88, p=0.942) in the internal validation set, with 
similar trends in the external validation set. Among patients 
with EGC, the AI-ID model showed fair performances in both 
the internal (AUROC: 0.78) and external validation sets (AU-
ROC: 0.73), which were significantly better than the results of 
endoscopic ultrasound performed by experts (AUROC: 0.62 
in the internal validation set, AUROC: 0.56 in the external 
validation set; both p<0.001).

Complete endoscopic resection with adequate margins is 
critical for the treatment of EGC, as it prevents unnecessary 
repeat endoscopies, which are often more challenging because 
of scarring or even require surgical intervention. Although 
methods such as magnified NBI and indigo carmine endos-
copy have been used to delineate tumor margins, more precise 
tools are required to ensure accurate lesion sizing and enhance 
the planning and success of endoscopic submucosal dissec-
tion. In a review by Lei et al.,42 six studies evaluating AI for bound-
ary identification demonstrated accuracy rates ranging from 
82.7% to 96.3%. However, further prospective studies are re-
quired to validate these promising results and to establish the 
role of AI in optimizing the outcomes of endoscopic submu-
cosal dissection.

Beyond the early detection of GC, identifying patients at 
risk of developing GC is crucial for determining appropriate 
surveillance strategies. While risk factors such as family his-
tory play a significant role, precancerous changes such as atro-
phic gastritis (AG) and gastric intestinal metaplasia (GIM) also 
influence the timing and frequency of surveillance endosco-
pies. The progression of GC through Correa’s cascade43 is well 
established, and AI tools have been developed to detect these 
precancerous conditions, enabling earlier intervention and 
personalized patient management. A systematic review and 
meta-analysis44 of 8 studies evaluating AI for AG detection dem-
onstrated a sensitivity of 94% (95% CI: 0.88–0.97) and a spec-
ificity of 96% (95% CI: 0.88–0.98), with an area under the sum-
mary receiver operating characteristic (SROC) curve of 0.98 
(95% CI: 0.96–0.99). These results indicate that AI signifi-
cantly outperformed endoscopists in the diagnosis of AG. 
Similarly, another meta-analysis45 of 12 studies focusing on 
AI for GIM detection reported a pooled sensitivity of 94% (95% 
CI: 0.92–0.96) and a specificity of 93% (95% CI: 0.89–0.95), 
with an SROC curve of 0.97. AI demonstrated superior diag-
nostic performance compared with endoscopists, with a sen-

sitivity of 95% versus 79% for human experts. These findings 
underscore the potential of AI in enhancing the early detec-
tion of precancerous gastric lesions. 

However, both meta-analyses exhibited substantial hetero-
geneity, particularly in the definition of diagnostic criteria and 
grading of AG and GIM severity. Additionally, variations in 
the endoscopic equipment, imaging techniques, datasets, and 
AI algorithms further limit the generalizability of their find-
ings. Notably, the majority of the studies included were retro-
spective in design—5 out of 8 for AG and 9 out of 12 for GIM—
and all but one study was conducted in non-Asian populations, 
which may affect the applicability across different geographic 
regions. In real-world clinical settings, AI performance has 
not consistently replicated the high sensitivity and specificity 
reported in controlled environments. This highlights the need 
for well-designed prospective multicenter studies that apply 
standardized diagnostic criteria and clinically relevant end-
points to accurately assess the utility of AI in routine practice. 
To facilitate broader applicability and external validation, algo-
rithm code sharing should also be encouraged to ensure more 
robust and generalizable data across diverse populations. 

The role of Helicobacter pylori in GC has been well studied; 
since 1994, it has been labeled as a human carcinogen by the 
World Health Organization’s International Agency for Re-
search on Cancer.46,47 While the gold standard48 for the diag-
nosis of H. pylori infection is histopathological examination, 
this requires biopsies with inherent risks of complications, 
such as bleeding. AI-based methods for detecting H. pylori 
infections using endoscopic images have shown excellent di-
agnostic performance. A meta-analysis49 reported pooled sen-
sitivity and specificity of 0.90 (95% CI: 0.80–0.95) and 0.92 (95% 
CI: 0.88–0.95), with an AUC of 0.97 (95% CI: 0.96–0.99). Indi-
vidual studies, such as Lin et al.,50 achieved a sensitivity of 1.00 
and specificity of 0.82, whereas others, such as Yacob et al.,51 
reported both metrics at 0.98. These findings suggest that AI 
can reduce the need for invasive biopsies and improve diag-
nostic confidence. However, further validation in diverse pop-
ulations is required.

NON-IMAGE-BASED AI IN UPPER 
GI ENDOSCOPY AND DIAGNOSIS

Non-image-based AI technologies for upper endoscopy are 
emerging as powerful tools for enhancing diagnostic accura-
cy and providing real-time tissue characterization. One such 
technique is Raman spectroscopy, which uses laser light to an-
alyze the molecular composition of tissues (Fig. 1). When in-
tegrated with AI, Raman spectroscopy can differentiate nor-
mal, precancerous, and cancerous tissues by detecting subtle 
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biochemical changes that are not visible to the naked eye. Al-
though numerous studies have demonstrated the ability of Ra-
man spectroscopy to differentiate normal tissue, dysplasia, 
and cancer with high sensitivity and specificity, the majority 
of these studies have been conducted ex vivo.52-55

Several studies have evaluated the feasibility of Raman spec-
troscopy for clinical application in vivo. Significant advance-
ments have been made since Shim et al.56 first demonstrated 
the use of Raman spectroscopy during endoscopy in 2000. 
For example, Bergholt et al.57 showed that real-time image-
guided Raman endoscopy combined with AI diagnostic algo-
rithms could achieve a diagnostic sensitivity and specificity of 
94.6% for the in vivo diagnosis of gastric neoplasia. In a feasi-
bility proof-of-concept study comparing Raman spectroscopy-
based AI (SPECTRA IMDxTM)58 with high-definition WLE 
for classifying gastric lesions as low or high risk for neoplasia, 
the Raman spectroscopy system achieved a sensitivity, speci-
ficity, and accuracy of 100%, 80%, and 89% by patient, and 
100%, 80%, and 92% by lesion, respectively—performance com-
parable to that of expert endoscopists. Similarly, Noh et al.59 
identified the biomolecular differences between benign gas-
tric tissues and gastric adenocarcinoma and evaluated the di-
agnostic potential of Raman spectroscopy combined with ma-
chine learning. Their model achieved diagnostic accuracy, 
sensitivity, specificity, and AUC values of 0.905, 0.942, 0.787, 

and 0.957, respectively.
Despite the promising clinical trial results, practical limita-

tions remain. Real-time Raman implementation is challenged 
by the need for miniaturized fiber-optic probes, rapid spectral 
acquisition, and robust AI algorithms that can handle the vari-
ability in in vivo tissue spectra. Moreover, current studies of-
ten involve small patient cohorts and are predominantly con-
ducted in single-center settings, limiting their generalizability.

To enable real-world adoption, further modifications to 
both software and hardware are required to improve spectral 
data collection. Additionally, future studies should prioritize 
multicenter trials with diverse patient populations, seamless 
integration into existing endoscopic platforms with training 
provided for end users, and standardized reporting of diag-
nostic thresholds. Despite these challenges, Raman spectros-
copy is a promising approach that complements traditional 
endoscopic imaging by providing molecular-level insights. 
This enables real-time detection of malignancies and has the 
potential to reduce the need for unnecessary biopsies.

POTENTIAL PITFALLS

One of the major concerns regarding the use of AI in en-
doscopy is the risk of overreliance and subsequent deskilling 
by endoscopists. This concern appears to be supported by ret-

Fig. 1. Flowchart explaining Raman spectroscopy and AI for real-time tissue characterization in upper GI endoscopy. AI, artificial intelligence; 
GI, gastrointestinal.
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rospective data from Budzyń et al.,60 which examined the im-
pact of AI on adenoma detection rates (ADR) during colonos-
copy. In this nested study of the ACCEPT trial, participants 
undergoing screening colonoscopy were randomized into AI-
assisted or standard colonoscopy groups. The ADR for stan-
dard, non-AI-assisted colonoscopy significantly decreased 
from 28.4% (226/795) before AI exposure to 22.4% (145/648) 
after, representing a 6% absolute reduction (95% Cl: -10.5% to 
-1.6%). This decline raises concerns that endoscopists may be-
come complacent when AI is not using AI. However, further 
robust prospective studies are required to confirm these find-
ings. Additionally, as evidence supporting the benefits of AI 
continues to grow, and its use becomes more widespread, the 
following question arises: “Should deskilling remain a primary 
concern?” For instance, with the advent of advanced GPS tech-
nology, the ability to read paper maps is likely to diminish among 
younger generations. Similarly, rather than focusing on the 
potential for deskilling, it may be more productive to invest 
resources in training young endoscopists to effectively utilize 
AI, while emphasizing the importance of maintaining vigi-
lance and ensuring that they maintain the capability to pro-
cess and interpret visual information.

Another significant concern is the issue of liability8,61,62 when 
AI-assisted decisions lead to adverse outcomes. Clear guid-
ance from government agencies and regulatory bodies is es-
sential to define the appropriate applications of AI in clinical 
practice. It is crucial to emphasize that the role of AI should 
not be to replace clinicians but to augment their diagnostic 
capabilities, ensuring that the final decision-making authori-
ty remains with trained healthcare professionals.

Third, is a potential impact on health equity, both between 
wealthy and developing nations and within countries where 
disparities exist between urban and rural areas.63,64 Adopting 
AI requires significant resources to acquire the necessary 
equipment and train endoscopists, which could further widen 
the gap in endoscopic practice between the affluent and un-
derserved regions. As AI is becoming more widely adopted, 
efforts must be made to ensure its affordability and formally 
evaluate its cost-effectiveness in day-to-day practice.

Finally, beyond ensuring the security of sensitive patient 
data, safeguarding the integrity of machine learning algo-
rithms is important. Malicious tampering by ill-intentioned 
individuals can compromise the reliability of AI systems, po-
tentially leading to severe clinical consequences. Robust mea-
sures must be implemented to protect both the data and algo-
rithms from unauthorized access or manipulation.

FUTURE ADVANCEMENTS

While most studies have largely shown benefits in the use 
of AI in clinical practice, Nakao et al.,26 which found no signif-
icant improvement in detection rates when endoscopists used 
the AI system compared with standard endoscopic proce-
dures, provided valuable insights into areas for improvement.

First, developing AI systems with more extensive and di-
verse datasets could improve diagnostic accuracy across vari-
ous clinical scenarios, particularly in detecting premalignant 
or early malignant lesions, where mucosal changes can be very 
subtle. To ensure robustness and generalizability, AI systems 
must undergo rigorous testing across diverse populations and 
ethnicities to validate their external validity before being ap-
proved for commercial use.

Secondly, AI systems must adopt a user-centric design. They 
should be integrated seamlessly into clinical workflows, pro-
viding intuitive and non-disruptive alerts to enhance the en-
doscopists’ ability to effectively utilize AI. An important con-
sideration is the risk of excessive false positive detections, 
which can contribute to alarm fatigue and potentially dimin-
ish the clinical utility of CADe systems. Evidence from colorec-
tal polyp detection studies65,66 has shown that frequent false 
alarms may desensitize endoscopists, slow procedures, and re-
duce overall diagnostic confidence. Translating these concerns 
to upper GI endoscopy, careful tuning of sensitivity-specific-
ity thresholds, and smarter alert prioritization will be critical 
for maintaining trust and optimizing performance in real-
world applications.

Third, targeted training of both non-expert and expert en-
doscopists on how to interpret and act upon AI-generated alerts 
could further improve detection rates. With the growing evi-
dence supporting the benefits of AI, its use is likely to become 
increasingly prevalent in daily practice. Therefore, establish-
ing proper guidelines for incorporating AI into endoscopic 
training and teaching novice endoscopists how to use AI ef-
fectively is essential.

Lastly, looking further into the future, we may expect the 
development of a comprehensive “all-in-one” system. Such a 
system could seamlessly combine CADq, CADe, and CADx 
for both benign and malignant conditions, assess the depth 
of malignant invasion, and assist with therapeutic planning. 
Furthermore, the integration of image-based and non-image-
based AI promises to revolutionize endoscopy by combining 
macroscopic visualization with microscopic precision. Imag-
ine a scenario during screening or surveillance endoscopy in 
which an endoscopist identifies a subtle lesion with the assis-
tance of AI and characterizes it as potentially malignant. The 
endoscopist then confirmed this diagnosis in real time using 
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AI-enhanced Raman spectroscopy while simultaneously em-
ploying AI to assess the depth of invasion and determine wheth-
er the lesion can be resected endoscopically. Thus, the system 
could assist in planning en bloc curative resections, eliminat-
ing the need for unnecessary biopsies. Such advancements would 
not only reduce risks to patients, but also save time, streamline 
workflows, and empower clinicians to make more informed 
treatment decisions, ultimately improving patient manage-
ment and outcomes.

CONCLUSION

Endoscopic procedures, traditionally reliant solely on oper-
ator experience, are now being transformed using AI technol-
ogies that enhance diagnostic accuracy, efficiency, and deci-
sion-making. The growing role of AI in endoscopy is inevitable, 
and those resistant to change risks have fallen behind in this 
rapidly evolving field of research. As endoscopists, we must 
embrace an open mindset, and leverage AI to improve patient 
outcomes while remaining vigilant to ensure that our diag-
nostic skills do not deteriorate through overreliance. Future re-
search should focus on the synergistic potential of combining 
image-based and non-image-based AI, unlocking new possi-
bilities for comprehensive and precise upper GI diagnosis.
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