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Abstract: Sphingolipids (SLs) play a significant role in the nervous system, as major components of
the myelin sheath, contributors to lipid raft formation that organize intracellular processes, as well as
active mediators of transport, signaling and the survival of neurons and glial cells. Alterations in
SL metabolism and content are observed in the course of central nervous system diseases, including
multiple sclerosis (MS). In this review, we summarize the current evidence from studies on SLs
(particularly gangliosides), which may shed new light upon processes underlying the MS background.
The relevant aspects of these studies include alterations of the SL profile in MS, the role of antibodies
against SLs and complexes of SL-ligand-invariant NKT cells in the autoimmune response as the
core pathomechanism in MS. The contribution of lipid-raft-associated SLs and SL-laden extracellular
vesicles to the disease etiology is also discussed. These findings may have diagnostic implications,
with SLs and anti-SL antibodies as potential markers of MS activity and progression. Intriguing
prospects of novel therapeutic options in MS are associated with SL potential for myelin repair and
neuroprotective effects, which have not been yet addressed by the available treatment strategies.
Overall, all these concepts are promising and encourage the further development of SL-based studies
in the field of MS.

Keywords: antibody; central nervous system; ganglioside; lipid rafts; inflammation; MS therapy; MS
mechanism; multiple sclerosis; neurodegeneration; neurological disease

1. Introduction

Sphingolipids (SLs) are important components of lipid bilayers that play a substantial
role in the determination of cellular membrane properties and their dynamic changes. They
also contribute to segregation within the membrane and the formation of its cholesterol and
SL-enriched microdomains, defined as lipid rafts [1,2]. These microdomains are crucial for
the compartmentalization of cellular processes, including intracellular cytoskeleton organi-
zation, transport and signaling, as well as interactions with the extracellular environment
(e.g., exo- and endocytosis, ion channel function) [3]. Furthermore, SLs are associated with
the dynamic balance between processes of cellular viability (growth and proliferation) and
apoptosis [4]. All these unique properties of SLs are particularly relevant for the role that
they play in the functions of the central nervous system (CNS). SLs are abundant within
neuronal membranes and constitute a major component of the myelin sheath, indispens-
able for appropriate axonal conduction and their trophic supply. Changes in specific SL
composition during the development of the CNS and differences in SL profiles throughout
the CNS areas reflect the relevance of their regulatory and modulatory function [5–7]. Thus,
it is not surprising that alterations in SL metabolism and content are often observed in the
course of CNS diseases [8–10].
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Multiple sclerosis (MS) is a disease associated with long-lasting injury disseminated
throughout brain and spinal cord. Clinical manifestations of MS comprise a variety of
symptoms and signs of neurological deficit, initially with fluctuating intensity (relapsing–
remitting course, RRMS), but further also accumulating and resulting in multi-dimensional
disability (primary/secondary progressive course, PPMS/SPMS). The background of MS
is complex and involves interrelated processes of immune-mediated inflammation and
neurodegeneration [11,12]. Originally, MS was recognized as a demyelinating disorder,
with multifocal destruction of the myelin sheath as the main hallmark [13]. These lesions—
especially in the paranodal (PN) areas—substantially affect the properties of the CNS
myelinated axons, which is reflected in the specificity of clinical symptoms. Due to the
loss of structural protection and trophic support, the axons become more vulnerable to
various kinds of external stimuli; fast saltatory conduction of action potentials is impaired
and additionally disturbed by the increased excitability of neurons [14]. Further research
on the MS background revealed that the core pathomechanism of demyelination is asso-
ciated with a dysregulated immune response, with a contribution of interacting genetic
predisposition and several environmental factors, including exposure to sunlight, levels
of vitamin D3, gut microbiota activity and recently highlighted Epstein–Barr virus infec-
tion [15–18]. Autoreactive immunocompetent cells (mainly CD4+ T helper, Th) reach the
CNS due to disruption of the blood–brain barrier (BBB) and take part in the inflammatory
cascade, targeting myelin antigens, which is mediated by cyto- and chemokines, as well
as the humoral response driven by B cells [19–21]. At the same time, a slowly expanding
neurodegenerative process develops, which involves ion channel dysfunction, oxidative
stress and peroxysomal/mitochondrial dysfunction, resulting in an energetic deficit, and
ultimately leads to axonal loss.

Despite significant progress in the understanding of the nature of MS in the last decade,
as well as the increasing availability of diagnostic and therapeutic options, there is still
ongoing extensive research in this field, especially with regard to aspects that have not
been fully elucidated or sufficiently addressed. The studies on de- and remyelination have
focused mainly on proteins as targets of autoimmune attack or mediators of inflammatory
activity and the role of lipids in the background of MS, and the diverse course of the disease
has only recently gained more attention [15,22,23]. Considering the properties of SLs and
gangliosides and their role in the CNS, they seem a promising subject of investigation. In
this review, we present the current evidence from studies on SLs (particularly gangliosides),
which may shed new light upon the processes underlying MS’ pathophysiology, with
possible diagnostic and therapeutic implications.

2. Role of SLs in the CNS
2.1. SLs as Components of the CNS Myelin Sheath
2.1.1. Myelin Architecture

The CNS myelin sheath comprises multiple spiral layers formed by oligodendrocytes,
ensuring the isolation and structural strengthening of axons [24]. The predominant myelin
constituents are depicted in Figure 1. A characteristic feature of this multilayer membrane is
the high content of lipids, which constitute approximately 80%. The remaining percentage
belongs to proteins. The lipids within the CNS myelin include phospholipids and glycosph-
ingolipids (GSLs), with the only representative of sterols being cholesterol (Figure 1A).
The PLs are represented by phosphatidylethanolamine, phosphatidylserine, phosphatidyl-
choline, phosphatidylinositol and sphingomyelin (SM). Among GSLs, galactosylceramide
(GalCer) is the most abundant component and accounts for 32% of the CNS myelin lipid
content. Other GalCer derivatives include sulfated and acetylated derivatives represented
by sulfatides (sGalCer) [25] and fast migrating cerebrosides (FMCs) [26], respectively
(Figure 2). The more complex derivatives are characterized by sialylated ones, namely
N-acetylneuraminic acid-containing GSLs (Figure 3)—especially mono-sialogangliosides
such as GM1 and GM4 [27] (Figure 1A).
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Figure 1. Composition of the myelin sheath in the central nervous system. (A) The diagram presents
the distribution of the major myelin components, specifically complex lipids that comprise cholesterol,
phospholipids and glycosphingolipids (GSLs), as well as proteins in the CNS. GSLs include the
following compounds: fast migrating cerebrosides (FMCs), galactosylceramide (GalCer), mono-
sialoganglioside (GM1), sialosyl-galactosylceramide (GM4) and sulfatide (sGalCer). Lipids such as
cholesterol, PLs and GalCer remain in a relatively constant molar ratio, which is 2:2:1. The myelin
components are indicated as follows: cholesterol in orange, PLs in pink, GSLs in blue and proteins in
yellow. (B) Myelinated regions of axon are interspersed with non-myelinated ones, designated as
nodes of Ranvier (N). Three domains can be distinguished within myelinated regions: paranode (PN),
juxtaparanode (JXP) and internode (INT). Distribution of the proteins characteristic for these domains,
along with Na and K channels, is also displayed. Abbreviations: Caspr—Contactin-associated
protein, CNP—2′3′-cyclic-nucleotide 3′-phospodiesterase, NgR1—Nogo-receptor 1, Nogo A—neurite
outgrowth inhibitor A, MAG—myelin-associated glycoprotein, MBP—myelin basic protein, MOG—
myelin oligodendrocyte glycoprotein, Nf-155—Neurofascin 155, Nf-186—Neurofascin 186, PLP—
proteolipid protein. Adapted from reference [28] and modified.
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Apart from protective and supportive functions, the myelin sheath facilitates fast
saltatory conduction within axons, due to Ranvier nodes (Figure 1B) (see Section 2.1.2).

2.1.2. Myelin Sheath Organization in the CNS

Nodes of Ranvier, small unmyelinated axonal domains, are characteristic elements
in the myelin sheath in the CNS [29]. The ability of these nodes to propagate fast and
effectively action potentials along the axons depends on their specialized molecular orga-
nization (Figure 1B). The nodal domain is flanked by the PNs, formed by the interaction
between the axolemma and distal, uncompacted loops of myelin. The PN loops generate a
specialized junction with the axon, often referred to as the axoglial junction. The axoglial
junction, which comprises interacting axonal (Contactin and Contactin-associated protein,
Caspr) and glial (Neurofascin 155, Nf-155) components, is required to establish an effective
PN diffusion barrier [30]. The absence or dysfunction of any of these components results
in impairment of the axoglial junction. This diffusion barrier, which separates the nodal
Na channels from the K channels localized in the adjacent juxtaparanode (JPX) region,
is then no longer effective. The majority of the axon comprises the internodes (INTs),
which are located beneath the compact myelin sheath. The nodal complex, which consists
of Na channels and cell adhesion molecules, is anchored to the cytoskeleton and linked
with extracellular matrix proteins, which provides its stability. Na channels associate with
Caspr-2 and the glycosylphosphatidylinositol-anchored TAG-1 (Contacin-2), which can be
found within axonal and glial components.

Figure 2. Structure of β-GalCer and its derivatives. Diagram shows a basic glycosphingolipid
structure where the R groups are positioned and a relevant substitution results in β-GalCer, sGalCer
as well as fast migrating cerebrosides (FMC-1, FMC-2, FMC-3, FMC-4, FMC-5, FMC-6 and FMC-7),
respectively. Ac—acetyl group. Adapted from reference [31] and modified.
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Figure 3. Ganglioside metabolic pathways. The nomenclature is based on Svennerholm [32]
and IUPAC-IUBMB Joint Commission on Biochemical Nomenclature [33]. Glycosyltransferases
that catalyze the synthesis of GSLs have been underlined. The following gangliosides—GD1aα,
GT1aα, GQ1bα and GP1cα—belong to the α-series gangliosides [34]. Abbreviations: Cer—ceramide,
Gal—galactose, GalNAc—N-acetylgalactosamine, GalNAc-T—N-acetylgalactosaminyltransferase I
(GA2/GM2/GD2/GT2-synthase, GalT-I—galactosyltransferase I (lactosylceramide synthase), GalT-
II—galactosyltransferase II (GA1/GM1/GD1b/GT1c-synthase), GalT-III—galactosyltransferase III
(galactosylceramide synthase), Glc—glucose, GlcT—glucosyltransferase (glucosylceramide syn-
thase), LacCer—lactosylceramide, NeuAc—N-acetylneuraminic acid, ST-1—sialyltransferase I (GM3-
synthase), ST-II—sialyltransferase II (GD3-synthase), ST-III—sialyltransferase III (GT3-synthase),
ST-IV—sialyltransferase IV (GM1b/GD1a/GT1b/GQ1c-synthase), ST-V—sialyltransferase V
(GD1c/GT1a/GQ1b/GP1c-synthase), ST-VII—sialyltransferase VII (GD1α/GT1aα/GQ1bα/GP1cα-
synthase). Adapted from reference [35].

Gangliosides play a substantial role in the organization of nodes and the PNs in
myelinated fibers. They provide proper compartmentalization of adhesion molecules (Nf-
155 and Contactin/Caspr), essential elements of the PN cytoarchitecture [36]. Furthermore,
associated gangliosides contribute to the appropriate compartmentalization of Kv1 channels
and anchoring proteins (Caspr-2, Contacin-2) in JXP regions [37].

2.2. Physiological and Immunological Features of SLs in the CNS

SLs play very important roles in the vital functions of the CNS cells [3]. They par-
ticipate in the formation and adequate functioning of the CNS myelin sheath. Therefore,
their altered metabolism leads to the decompaction and destabilization of the myelin struc-
ture [38]. However, SLs not only contribute to myelin formation and the maintenance of its
stability, but also act as bioactive modulators of many processes [39], i.e., the proliferation,
growth and survival of cells [40–42]. Myelin and oligodendrocytes enriched in SM, SL
and cholesterol lipid microdomains [43] have been considered to play significant roles
associated with signal transduction and the trafficking of proteins [44,45].
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2.2.1. Sialic-Acid-Containing SLs Properties and Functions in the CNS

Gangliosides, sialic0acid-containing GSLs (Figure 3) primarily located on the plasma
membranes, are particularly abundant in the nervous system. The distribution of specific
gangliosides in different types of the CNS cells and particular brain areas has not yet
been comprehensively investigated. Early studies reported the abundance of gangliosides
mainly in myelin and in neuronal cells [46]. Myelin contains high amounts of GM1 and
GM4 (Figure 1A), while GM1, GM4 and GD3 can be detected in adult oligodendrocytes [47].
Conversely to neurons, astrocytes produce mainly GM3 and GD3, with lower amounts
of GM4. There is less evidence of gangliosides’ presence in microglia, but these cells
are suggested to display GM1 and significant amounts of GD3, when stimulated by pro-
inflammatory mediators [48]. Remarkably, gangliosides account for 80% of all glycans and
more than 75% of the sialic acid present in the brain. Gangliosides are relevant contributors
to the maturation and stability of the nervous tissue. They are important players both in
the development of neurons and the compartmentalization of their membrane domains,
which is reflected in their concentration at the growing tips of neurites [49].

Gangliosides are known to participate in cell–cell recognition, interaction and adhesion,
as well as in several aspects of malignant transformation and cancer metastasis [50,51].
Being important constituents of lipid rafts, gangliosides are implicated in the modulation
of signal transduction and provoke an immune response [34,50,52]. These SLs containing
N-acetylneuraminic acid possess many immunomodulatory functions that include the
suppression of lymphoproliferation and regulation of production of cytokines [53].

Gangliosides, similarly to other SLs, are also known to be immunogens. Recent reports in
the literature describing high levels of antibodies against gangliosides in the sera of individuals
with Guillain Barré syndrome and other immune-mediated polyneuropathies indicate their role
in the background of these disorders [54]. They were also suggested as pathogenic factors for
several other neuroinflammatory and neurodegenerative diseases [55–57], including MS (see
Section 3.4).

In addition to the above-described functions, both physiological and pathological
levels of gangliosides can play a significant role in maintaining neuronal Ca2+ homeostasis
and in the regulation of Ca2+ signaling, acting as modulators of ion channels and trans-
porters’ activity [58]. Ceramide (Cer) and carbohydrate structures are supposed to be
crucial for gangliosides’ biological activity, including their impact on synapse transmission
and regeneration [59,60], and potentially neuroprotective effects [61].

Gangliosides can also work as co-receptors [62]. A study on the α2,3-sialyllactose
moiety of GM3 and GM1, located within lipid rafts, revealed its properties as a low-affinity
receptor for soluble α-Klotho [63], a protein required for the integrity and protection of
neurons, hypothesized to prevent accelerated aging and cognitive decline [64].

2.2.2. Role of Extracellular-Vesicle-Associated SLs in the CNS

Extracellular vesicles (EVs), released within the CNS or migrating through the BBB,
have recently gained a great deal of attention in respect to the CNS physiological function
and regulation of the immune response [65–67]. These nanosized particles, including exo-
somes and microvesicles (MVs), could play a substantial role in intercellular communication
by transporting a large variety of biologically active molecules, i.e., SL species [68].

EVs impact recipient cell function and are supposed to contribute to the pathophysiol-
ogy of CNS diseases. SL constituents of EVs may play a relevant role as effective carriers of
a variety of active molecules, as well as engaging directly in the initiation or modulation of
neuroinflammatory and neurodegenerative processes [69].

EV-associated SLs’ signatures are considered as promising biomarkers for the detection
and monitoring of CNS disorders as well as potential therapeutic targets (see Section 3.7).
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3. Role of SLs in MS Pathology
3.1. Ganglioside Alterations in MS

Current studies indicate that alterations in ganglioside metabolic pathways or the pro-
portion of their particular components could appear in many neurodegenerative disorders,
e.g., Alzheimer’s disease (AD) [70], amyotrophic lateral sclerosis [71], Huntington’s dis-
ease [72] and Parkinson’s disease [73]. Such observations have been made also in MS [74],
whose pathology combines immune-mediated inflammation and degenerative processes.
Table 1 displays the ganglioside alterations in MS. Yu et al. first characterized gangliosides
isolated from the unaffected white matter (WM) and demyelinating plaques in brain tissue
specimens from patients with MS [75]. Compared to WM, the plaques showed a decrease in
GM1 and GM2, and complete loss of GM4. Most of the plaques had a significant elevation
of GD2 and GD3 as well as the slower migrating polysialogangliosides. The increase in
GD3 was of particular interest as it was attributed to reactive astrocytosis occurring in the
plaque tissues.

Table 1. Ganglioside alterations in MS.

Ganglioside Subspecies Altered In/Compared To Specimen References

GM1↓, GM2↓,
Complete loss of GM4,

GD2↑, GD3↑, polysialogangliosides↑
Chronic MS/WM of MS Plaque [75]

GM1 and GD1a expressed preferentially
on oligodendroctyte precurors Chronic MS/NAWM Plaque [76]

GT1b expressed selectively
on astrocytes and

oligodendroctyte precurors
Chronic MS/OND Plaque [76]

GM4↓, GM1↓, GD1b↓, GQ1b↓
GM3↑, GD3↑, GM2↑, GT1b↓ MS/nCNS Spinal cord [77]

GM1↑, GD1a↑, GT1b↓
chronic relapsing EAE/Lewis rats

inoculated without myelin and/or not
inoculated at all

Brain and
spinal cord [78]

GM3↑, GM1↑ MS/non-MS CSF [79]

GM1↑, GD3↑,
sulfated glucuronyl paragloboside↑ MS/OND CSF [80]

Total gangliosides↓ MS/HS Plasma [81]

Total gangliosides↑
GM3↑, GD3↑ RRMS in remission/HS Serum [82]

GM1↑, GD1a↑, GM3↓ First attack of RRMS/HS Serum [83]

GM1↓, GD1a↑ Long duration of RRMS in relapse
phase/HS Serum [83]

Total gangliosides↑ RRMS in remission/HS PBMCs [82]

The alterations are shown as colored arrows: increase in red and decrease in green. Abbreviations: CSF—
cerebrospinal fluid, HS—healthy subjects, MS—multiple sclerosis, NAWM—normal appearing white matter,
nCNS—normal central nervous system, OND—other neurological disease, PBMC—peripheral blood mononuclear
cell, RRMS—relapsing–remitting MS.

Marconi et al. reported an immunohistochemical analysis of ganglioside expression
in MS brains [76]. In the WM of the normal CNS (nCNS), GM1 and GD1b were found
on astrocytes, whereas GD1a and GD2 were found on oligodendrocyte precursors and
mature oligodendrocytes, respectively. In the grey matter (GM) of the nCNS, only GM1
and GD2, as well as GT3 and its acetylated derivatives, were detected on the neuronal
cells. Interestingly, in chronic MS lesions, the astrocytic gangliosides GM1 and GD1b were
preferentially expressed on oligodendrocyte precursors. Instead, selective expression of
GT1b was observed within plaques—the astrocyte and oligodendrocyte precursors—but
not in other neurological diseases (ONDs).
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Examination of spinal cord specimens from patients with MS indicated decreased
amounts of GM4, GM1, GD1b and GQ1b in comparison to tissues from the nCNS [77].
However, GM3 and GD3 were highly increased with respect to the nCNS. A slight elevation
of GM2 and a slight reduction in GT1b were also observed. Zaprianova et al. reported
ganglioside patterns in a chronic relapsing experimental autoimmune encephalomyelitis
(EAE) model [78]. Significant increases in GM1 and GD1a were captured in the brain and
spinal cord tissues. These changes found in the brains of patients with MS are consistent
with demyelination.

Analysis of a pooled MS sample of cerebrospinal fluid (CSF) indicated increases in
GM1 and GM3 in comparison to non-MS controls [79]. Consistent with these findings was
the report by Miyatani et al., who demonstrated increased levels of GM1 in the CSF of 16%
of examined patients with MS with respect to OND [80]. The authors also observed an
increased concentration of GD3 in 23% of patients with MS, in which 8% of them showed a
dramatic increase in sulfated glucuronyl paragloboside. These abnormalities can reveal the
pathological features attributed to MS plaques, such as demyelination and gliosis.

Regarding the plasma of patients with MS, earlier studies showed that the total
ganglioside concentration was significantly lower than that in healthy subjects (HS) [81]. In
contrast, Sela et al. reported a significantly increased ganglioside concentration in the sera
of patients with MS [82]. A detailed study of the ganglioside profile in plasma revealed
that GM3 and GD3 were slightly elevated in patients with MS. In turn, Zaprianova et al.
reported significant increases in GM1 and GD1a and a decreased level of GM3 in the sera
of patients with the first clinical episode suggesting MS [83]. The patients with subsequent
MS relapses (especially those with a long duration of the disease) presented a significant
decrease in GM1 and an increased level of GD1a in the serum. The increase in GD1a
seems to indicate the presence of neurodegeneration already at the onset of MS, continuing
over the course of the disease. On the other hand, an increase in GM1, the main myelin
ganglioside, is apparently a marker of inflammatory demyelination, most active at the early
stage of MS [83]. Analysis of peripheral blood lymphocytes in patients with RRMS in the
remission phase indicated an increased level of total gangliosides in 39% of MS patients
examined in comparison to HS [82].

3.2. Alterations of Other SL Metabolism in MS

The CNS SL composition has been extensively studied in MS in order to detect lipid
signatures in the pathogenesis of the disease (Table 2). In particular, the SL content of
WM, GM and both active (Ac-MS) and inactive (In-MS) plaques in different stages of MS
was analyzed in great detail to discern a primary lipid defect. An early report from 1968
indicated a reduced GalCer/sGalCer ratio in the altered WM of patients with MS [84].
Many years later, in 2000, Marbois at al. demonstrated reduced sGalCer content in the
altered WM and MS lesions in comparison to the nCNS. In addition, there were significant
increases in the amount of hydroxylation of sGalCer (h24:0-sGalCer) in MS plaques in
relation to the nCNS [85]. In turn, Singh et al. found Cer content to be increased in areas
around MS plaques compared to the X-adrenoleukodystrophy brain [86].

Table 2. SL alterations in MS.

SL Subspecies * Altered In/Compared To Specimen References

GalCer/sGalCer ratio↓ MS/nCNS NAWM [84]

Total sGalCer↓ MS/nCNS NAWM [85]

C18:0-Cer↓, C20:0-Cer↓,
C22:0-SM↓, C24:0-SM↓ Ac-MS and In-MS/nCNS NAWM [87]

Total Cer↓, Sph↑, S1P↓,
C16:0/C24:0-Cer ratio↑,
C18:0/C24:0-Cer ratio↑

MS/nCNS and WM of AD NAWM [88]
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Table 2. Cont.

SL Subspecies * Altered In/Compared To Specimen References

C20:0-Cer↓, C22:0-Cer↓,
C16:0-SM↓ Ac-MS and In-MS/nCNS NAGM [87]

C18:0-Cer↓, C20:0-Cer↓,
C20:0-SM↓, C22:0-SM↓ Ac-MS/nCNS NAGM [87]

Total sGalCer↓, h24:0:0-sGalCer↑ MS/nCNS Plaque [85]

Total Cer↑ MS/X-adrenoleukodystrophy Plaque [86]

Total Cer↓, Sph↑, S1P↓,
C16:0/C24:0-Cer ratio↑,
C18:0/C24:0-Cer ratio↑

MS/nCNS, WM of AD Plaque [88]

C18:0-Cer↑ Ac-MS/nCNS Plaque [89]

C18:0-SM↓, C18:1-SM↓, C24-SM↓,
C24:1-SM↓

In-MS/nCNS
and

In-MS/Ac-MS
Plaque [90]

C16:0-HexCer↑, C18:0-HexCer↑,
C18:1-HexCer↑, C24:0-HexCer↑,

C24:1-HexCer↑

In-MS/nCNS
and

In-MS/Ac-MS
Plaque [90]

C16:0-C1P↑, C18:0-C1P↑, C18:1-C1P↑,
C24:0-C1P↑, C24:1-C1P↑

In-MS/nCNS
and

In-MS/Ac-MS
Plaque [90]

Total LacCer↑ MS/WM of MS Plaque [91]

C16:0-Cer↑, C24:0-Cer↑, C16:0-HexCer↑ MS/ONDs CSF [92]

C16:0-HexCer↑ MS/ONDs CSF [93]

sGalCer↑ MS/nCNS CSF [94]

C16:0-Cer↑, C22:1-Cer↑, C24:1-HexCer↑,
C24:1-LacCer↑, C22:0-LacCer↑,
C20:0-dhCer↑, C24:0-dhCer↑,

C16:1-HexCer↓, C20:1-LacCer↓,
C26:0-dh-HexCer↓

RRMS and PPMS and SPMS/HS Serum [95]

C20:0-Cer↑, C20:1-Cer↑, C26:1-Cer↑,
C20:1-HexCer↓, C22:1-HexCer↑,
C16:0-HexCer↑, C18:0-HexCer↑,
C20:0-HexCer↑, C22:0-HexCer↑,
C26:0-HexCer↑, C16:1-LacCer↑,

C16:0-LacCer↑, C22:0-dh-HexCer↑

Progressive MS/HS Serum [95]

C18:0-sGalCer↑, C24:1-sGalCer↑ RRMS/
RRMS with higher disability Plasma [96]

C16:0-Cer↑, C24:1-Cer↑,
C16:0-GluCer↑, C24:1-GluCer↑,

C16:0-LacCer↓
MS/HS Plasma [97]

C20:0-HexCer↑, C14:0-SM↓
C18:2-LPA↓ PPMS/HS Plasma [98]

C24:0-Cer↓, C16:0-LacCer↓ MS/HS WBC [97]

All listed SLs or dhCers are based on sphingosine (d18:1) or sphinganine (d18:0) backbones, respectively. The alterations
are shown as colored arrows: increase in red and decrease in green. * SLs that contain N-acetylneuraminic acid have not
been included in this table. They have been presented separately; see Table 1. Abbreviations: Ac-MS—chronic active
multiple sclerosis, AD—Alzheimer’s disease, C1P—ceramide 1-phosphate, Cer—ceramide, CSF—cerebrospinal fluid,
dhCer—dihydroceramide, GluCer—glucosylceramide, GM—grey matter, HexCer—hexosylceramide, HS— healthy
subjects, In-MS—chronic inactive multiple sclerosis, LacCer—lactosylceramide, LPA—lysophospatidic acid, MS—
multiple sclerosis, NAWM—normal appearing white matter, nCNS—normal central nervous system, OND—other
neurological disease, PPMS—primary progressive MS, RRMS—relapsing–remitting MS, S1P—sphigosine 1-phosphate,
SM—sphingomyelin, Sph—sphingosine, SPMS—secondary progressive MS, WBC—white blood cells, WM—white
matter. The table was adopted from reference [99] and modified.
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Later, a great deal of progress regarding the analysis of MS-related lesions in the CNS
tissues was made. Analysis of the altered WM in Ac-MS and In-MS indicated that the level
of specific SLs, e.g., C18:0-Cer, C20:0-Cer, C22:0-SM and C24:0-SM, was below the level
found in NAWM of the nCNS. In turn, studies of the altered GM of Ac-MS and In-MS re-
vealed that the level of C20:0-Cer, C22:0-Cer and C16:0-SM was lower than that observed in
the nCNS [87]. Qin et al. reported that in WM and plaques from the brains of patients with
MS, sphingosine (Sph) and C16:0/C18:0-Cer levels were increased while the sphingosine
1-phosphate (S1P) level was decreased as compared with matched controls or pathological
autopsy specimens of AD [88]. In addition, C18:0-Cer was found to be accumulated in
reactive astrocytes of Ac-MS lesions. Furthermore, mass spectrometry results confirmed
the upregulation of C16:0-, C18:0- and C20-Cer subspecies during demyelination in an
in vivo model. They also found the level of Sph to be increased and SIP to be decreased [89].
We have recently reported distinctive SL modification patterns occurring in chronic MS
lesions [90]. We noted that the level of major dihydroceramide (dhCer) subspecies in
Ac-MS lesions was higher than that observed in NAWM of the nCNS. Sphingolipidomic
analysis indicated different alterations in In-MS. We observed reduced levels of Cer and
its precursors (dhCer and SM), while the levels of hexosylceramide (HexCer) and Cer
1-phosphate (C1P) were significantly elevated—in both cases, in relation to NAWM of
the nCNS and Ac-MS. Our findings indicate that SL metabolic pathways in the advanced
stages of MS may differ, depending on the presence of inflammatory activity (active versus
inactive plaques).

Recent evidence suggests that an impaired SL pathway may reflect MS activity and
progression. Specifically, such an association has been shown for perturbation in Cer
metabolism, a precursor of complex SLs. Checa et al. reported that a significantly increased
level of C16:0-HexCer correlated well with the Expanded Disability Status Scale (EDSS)
in both RRMS and progressive MS subtypes [93]. Concerning the role of other complex
SLs, Mayo et al. reported that the lactosylceramide (LacCer) level and, associated with
its synthesis, β-1,4-galactosyltransferase 6 (B4GALT6) expression were increased in MS
lesions [91].

Cer and its glycosylated derivatives were also examined in other biological specimens,
such as the CSF [92–94], serum [95], plasma [96–98] and white blood cells (WBCs) [97] of
patients with MS. It was reported that the elevated concentrations of C16:0-Cer, C24:0-Cer
and C16:0-HexCer found in the CSF of MS patients were able to impair mitochondrial
function, followed by axonal injury [92]. The presence of C16:0-HexCer in the CSF of
patients with MS was also confirmed by Checa et al. [93]. In contrast to reduced sGalCer
levels in MS tissues [85], Haghighi et al. found increased levels of sGalCer in the CSF of
patients with MS [94]. Moreover, Moyano et al. reported that the level of C18:0- and C24:1-
sGalCer found in plasma in patients with RRMS correlated well with their disability level,
assessed with EDSS [96]. Interestingly, Kurz et al. observed the levels of C16-Cer, C24:1-Cer,
C16-GluCer, C24:1-GluCer and C16-LacCer in plasma to be altered. The same group also
reported that C24-Cer and C16-LacCer subspecies found in WBCs were reduced [97]. In line
with these discoveries, Filippatou et al. showed significant changes for specific SLs in the
serum of MS patients, as compared to HS. They included alterations of dhCer, Cer, HexCer
and LacCer subspecies [95]. Moreover, some of the aforementioned subspecies (dhCer, Cer,
HexCer and LacCer) were altered only in patients with progressive MS [95]. In addition,
Amatruda et al. identified lipids related to faster clinical deterioration in the plasma of
patients with PPMS [98]. Thus, C14:0-SM, C20:0-HexCer and C18:2-lysophosphatidic acid
(LPA) seem promising candidates for markers of immune-mediated inflammation and
progression in MS, which deserve further exploration.

3.3. The Role of the CNS Lipid-Raft-Associated SLs in the Pathogenesis of MS

The altered composition of lipid rafts in the nervous tissue may contribute to the
pathogenesis of CNS disorders, including MS [100]. These alterations were suggested to
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modulate signal transduction, adversely affect the function of neurons and result in the
death of glial cells; all these aspects are important in the pathology of MS.

It was reported that alteration of Nf-15, a protein that is associated with lipid rafts [101–103],
may be involved in the pathogenesis of MS. This cell adhesion molecule, representing the L1
family, is specifically colocalized at the PN (Figure 1B) [104] and plays an important role in the
stabilization of the PN structure, necessary for the maintenance of myelin sheath integrity [105].
Nf-155 is expressed specifically in myelinating glia [106] and represents a sensitive marker
of inflammation and myelin damage [107]. Antibodies against this protein inhibited axonal
conduction in a complement-dependent manner. The distribution of this protein is altered in
MS, which results in damage to myelin and the emergence of axonal dysfunction [101,105].
Schafer et al. reported that mice lacking Cer galactosyltransferase, an enzyme that is required
for the production of GalCer and sGalCer, exhibited an altered structure of the PN loops, as well
as myelin structural and functional abnormalities [103]. Immunohistochemical staining of the
nodes of Ranvier from sciatic nerves and optic nerves revealed that Nf-155 was dramatically
reduced in mutant mice. Compared to the wild type, in lipid rafts isolated from the brain
membrane homogenates of mutant mice, there was a remarkable reduction in the amount of
Nf-155. Thus, it can be supposed that the loss of myelin-associated GalCer may alter the PN
lipid raft composition. These results suggest that the reduction in lipid-raft-associated Nf-155
is a consequence of the perturbation of myelin lipids and that Nf-155 is essentially required
for PN formation and maintenance. Similar PN abnormalities were found in the brains of
GM2-synthase-deficient mice, which lacked all major brain gangliosides but expressed GM3 and
GD3 [37]. These mutant mice revealed disruption of the PN junctions and altered localization
and function of ion channels, resulting in slowing motor nerve conduction. Immunostaining
near the nodes of Ranvier in these mice revealed that Nf-155 staining was partially decreased.
Likewise, the amount of Nf-155 in cerebral membrane homogenates was reduced in these mice
in comparison with wild-type ones. Thus, the loss of complex gangliosides caused disruption
of the PN junctions and resulted in a reduction in lipid-raft-associated Nf-155. These findings
indicate an important role of complex gangliosides in stabilizing interactions between neurons
and glia at the PN junctions in peripheral nerves. Furthermore, Zhang et al. examined the
lipid raft components in rat brains after perinatal hypoxic–ischemic damage and reported an
association with the expression of Nf-155 and GM1 in lipid rafts [102]. Interestingly, after the
administration of GM1, there was an increase in GM1 content in lipid rafts, resulting in the
concomitant expression of Nf-155. GM1 may promote the repair of the structure of lipid rafts,
enable their association with Nf-155, stabilize the PN structure and thus prevent myelin sheath
damage, revealing also neuroprotective properties. Overall, reduced lipid raft association of
Nf-155 in Ac-MS lesions is linked with the disassembly of the PN junction, which may contribute
to demyelination as the main feature of MS pathology [101].

3.4. Antibodies against SLs in MS: Potential Candidate Biomarkers of Pathophysiology with
Clinical Utility

Increasing interest in the role of anti-lipid antibodies in MS has been noted recently [15].
Initially, anti-ganglioside antibodies were detected in the serum and the CSF of patients with
immune-mediated polyneuropathies [54,108]. A number of antibodies against gangliosides
were found in the serum and the CSF of patients with MS (Table 3). Screening of serum
antibodies for their reactivity against gangliosides, performed independently in different
laboratories, indicated reactivity against GM1 in the range between 20% up to 38% of
MS patients examined [109–114]. Only Koutsouraski et al. detected serum anti-GM1
reactivity in a much higher percentage (approximately two-fold) of MS patients [115].
Zaprianova et al. suggested that IgG anti-GM1 antibodies, found in the serum of patients
with RRMS, could be involved in demyelination. Moreover, the authors concluded that
these antibodies were associated with the clinical progression of MS [114], but not with
brain atrophy [112]. Increased serum anti-GM1 reactivity occurred along with reactivities
against asialo-GM1 [110,113], GD1a [113,116], GD1b [115] and GQ1b [115] in some patients
with MS.
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Table 3. Anti-ganglioside antibodies in MS.

Name of Antibodies
against Gangliosides Isotype(s) Specimen Percentage of Positive

Patients/MS Subtype(s) References

Anti-GM1 IgG and IgM Serum 20%/SPMS [109]

Anti-GM1 IgM Serum 23.7%/n.d. [110]

Anti-GM1 IgM Serum 30%/n.d. [111]

Anti-GM1 IgG Serum 37.8%/RRMS [112]

Anti-GM1 IgG and IgM Serum 38%/n.d. [113]

Anti-GM1 IgG Serum n.d./RRMS and SPMS [114]

Anti-GM1 IgM Serum 75%/n.d. [115]

Anti-asialo-GM1 IgM Serum 13.6%/n.d. [110]

Anti-asialo-GM2 IgG and IgM Serum 23.8%/n.d. [113]

Anti-GD1a IgG and IgM Serum 33.3%/n.d. [113]

Anti-GD1a IgG Serum 23%/n.d. [116]

Anti-GD1a IgG Serum 40%/malignant MS [116]

Anti-GD1a IgG Serum 6%/benign MS [116]

Anti-GD1b IgM Serum 57%/n.d. [115]

Anti-GM3 IgM Serum 2.9%/RRMS [117]

Anti-GM3 IgM Serum 42.9%/SPMS [117]

Anti-GM3 IgM Serum 56.3%/PPMS [117]

Anti-GQ1b IgM Serum 29%/n.d. [115]

Anti-GD2-like IgM Serum 30%/n.d. [118]

Anti-GD1a and GD3 IgM Serum Below 10%/n.d. [118]

Anti-GM4 IgG CSF n.d./n.d. [119]

Anti-GD1a IgG CSF 13%/n.d [116]

Abbreviations: CSF—cerebrospinal fluid, GalCer—galactosylceramide, MS—multiple sclerosis, n.d.—not deter-
mined, PPMS—primary progressive MS, RRMS—relapsing–remitting MS, SPMS—secondary progressive MS.

GM3, as the major ganglioside representative, was detected in the plasma of MS
patients but also HS. It was reported that anti-GM3 antibodies were found more frequently
in the sera of patients with PPMS and SPMS subtypes than in RRMS [117].

Interestingly, anti-GD2-like IgM autoantibodies were found in the sera of 30% of MS
patients, with approximately 10% also reacting with GD3 and/or GD1a [118]. Moreover,
anti-GD2-like IgM reactivity correlated positively with the degree of disability [118].

Besides serum anti-ganglioside antibodies, their presence was also detected in the CSF
of patients with MS. Mata et al. found elevated titers of IgG antibodies against GD1a [116],
while Kasai et al. observed increased levels of IgG against GM4 [119].

According to the current view on the MS background, neurodegeneration constitutes
an important component, besides inflammatory demyelination [120]. Emerging axonal
damage is regarded as the main pathological substrate for the progression of disability in
the course of disease [121]. Although it is not clear whether anti-ganglioside antibodies
contribute to axonal degeneration or appear as a consequence, they might be considered as
a marker of this process. Several studies showed the potential of anti-ganglioside antibodies
to cause BBB disruption [122], as well as conduction block at the level of the neuromuscular
junction, and to prevent axonal regeneration [120,123]. Interestingly, Ravindranath et al.
reported that the impact of anti-ganglioside IgM antibodies upon the BBB leakage is
concentration-dependent but complement-independent [124].
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For a long time, myelin lipid antigens have been overlooked as potential targets for
immune-mediated attack in MS. However, there is increasing evidence that antibodies
not only against gangliosides (Table 3) but also against GalCer [119,125], acetylated Gal-
Cer [126], sGalCer [127,128] and their complexes [129], PLs [130] as well as oxidized PLs,
oxidized sterols and SM [129,131,132], can be specifically found in the body fluids of pa-
tients with MS. Moreover, anti-ganglioside antibodies were considered as potentially useful
indicators in the differentiation of MS from other mimicking disorders [133].

In summary, anti-ganglioside antibodies could be candidate biomarkers for particular
stages or types of MS as well as a measurement for MS activity and/or progression. The
insight into immunoglobulins as indicators of CNS inflammation and neuronal/axonal
damage could offer intriguing prospects for the pathophysiology of MS. It has not been
clarified whether the B cell response initiates elements of MS pathogenesis or develops
secondary to the Th1-mediated activity [99]. However, identifying SL antigen(s) that
are specific to MS (or its particular phases) may appear relevant for a better understand-
ing of the processes underlying the MS background [134], with potential diagnostic and
therapeutic applications [15].

3.5. Gangliosides’ Effect upon Cellular Response in MS

The autoimmune response targeting the CNS myelin components, i.e., the proteolipids
and GSLs, along with an impaired balance between pro-inflammatory (Th1, Th17) and
anti-inflammatory (Th2) cytokines, is considered to be a crucial mechanism beyond MS
initiation [135]. Gangliosides are supposed to play a relevant role in the initiation and
modulation of this inflammatory process. Monteiro de Castro G et al. reported the effects
of gangliosides on shifting Th1 to Th2/Th3 cytokine profiles during the acute phase of
EAE [53]. In a group of Lewis rats treated with gangliosides, low expression of IFN-γ mRNA
and high expression of TGF-β mRNA were observed, resulting in mild disease symptoms.

Shamshiev et al. [136] demonstrated that T cells recognizing self-glycolipids are more
frequent in MS patients than in HS. They suggested that gangliosides derived from myelin
could be presented together with CD1 molecules by macrophages and astrocytes, and thus
become an additional target of the inflammatory cascade, initiated by autoreactive T cells.

It was also suggested that a ganglioside-targeted cellular response may contribute not
only to the destruction of myelin, but also to axonal damage. Pender et al. [137] indicated
increased levels of auto-reactive T cells against GM3 and GQ1b in patients with PPMS.
These autoreactive circulating lymphocytes were found more often in MS patients, as
compared to HS or ONDs. The authors speculated that this activity could be involved in
axonal loss, predominating in progressive forms of MS [137].

3.6. SL Ligands for Receptors Expressed on NKT Cells and Their Modulatory Functions in MS

SLs may serve as ligands for receptors expressed on natural killer T (NKT) cells.
There has recently been growing interest in invariant NKT (iNKT) cells, an innate type of
CD4+ lymphocytes having an invariant T cell receptor (iTCR). The characteristic feature of
this population is its reactivity with lipid antigens presented by the CD1 molecule [138].
These cells are also able to respond to α-GalCer, a synthetic GSL derived from the marine
sponge Agelas mauritianus [139]. Besides synthetic GSL, α-GalCer and its analogues, the
still growing list of lipids that are stimulants of iNKT cells includes endogenous antigens
(e.g., iGB3, FMCs) as well as exogenous bacterial ligands.

NKT cells have been proven to display a regulatory function towards the autoimmune
response, involved in the background of many diseases, including MS [138]. An emerging
body of evidence points to the modulatory role of SL ligands for their receptors in this
process. In some reports, α-GalCer has been shown to prevent EAE [140–144]. Singh et al.
suggested that such a protective effect of repeated α-GalCer injections might be due to
Th2 stimulation [141]. However, Pal et al. observed no effect upon EAE after repeated
α-GalCer injections [143], and Jahng et al. indicated a protective effect from EAE using
a single administration of α-GalCer only [140]. Moreover, Furlan et al. indicated the



Int. J. Mol. Sci. 2022, 23, 5330 14 of 23

suppression of EAE activity after the administration of α-GalCer along with complete
Freund’s adjuvant, but only when given subcutaneously and not intraperitoneally [144].
The authors concluded that the critical factor to obtain the protective effect of α-GalCer is
the administration route.

In order to better define the impact of NKT cells upon MS, O’Keeffe et al. conducted
a quantitative analysis of iNKT cells in the peripheral blood of patients with MS. They
indicated an increased percentage of T cells expressing the iTCR, defining the iNKT cells,
in patients with MS in comparison to HS [145]. To clarify the relevance of these findings,
further functional studies were performed [31]. A mixture of endogenous myelin-derived
acetylated β-GalCer antigens (FMC-5 and FMC-7) and purified FMC-7 (Figure 2) was
used as ligands to stimulate iNKT from patients with MS in vitro. These cells failed to
respond, or indicated hyporesponsiveness, to the stimulation of these ligands, contrary to
the findings among HS controls, including the excessive production of cytokines by Th1,
Th2 and Th17 cells [31]. A similar phenomenon was observed in the case of iNKT cells
from patients with MS stimulated with synthetic α-GalCer antigen, with the exception of
some for TNF-α production. The state of GSL ligand-driven anergy may have significant
clinical implications [146].

3.7. The Role of EV-Associated SLs in MS

Keeping in mind the role of lipid homeostasis in the adequate functioning of the
CNS, it seems likely that SL-laden EVs may influence the development and progression
of MS. Increased levels of EVs in both the plasma [147] and the CSF [148] of MS patients
seem to support this hypothesis. However, more studies are warranted to determine
whether, for example, C16:0-sGalCer associated with EVs isolated from plasma can be used
as a biomarker of progression in MS [147]. It was shown that the injection of MVs from
microglial cells into the brain in vivo resulted in enhanced inflammation and caused disease
exacerbation [149]. Microglia-derived MVs were also shown to influence synaptic activity
through enhanced SL metabolism, specifically Cer and Sph production, in neurons [150].
In line with these facts is also our recent observation that Cer-laden exosomes (specifically
C16:0-, C24:0- and C24:1-Cer) released from human oligodendroglioma cells, followed by
exposure to TNF-α and IFN-γ in vitro, caused the death of these cells in a time-dependent
manner [151]. We speculated that these EVs can exert a similar function in vivo and promote
the autoimmune response that causes demyelination in the CNS. Thus, modulation of the
EV lipidome may represent another promising therapeutic target.

4. A Future Prospect for MS Therapy Based on SL Investigations

Currently available therapeutic strategies in MS include pulses of corticosteroids
applied in acute relapse, long-term disease-modifying therapies (DMTs) and symptomatic
treatment, relieving particular neurological symptoms [152]. Although there is already
a wide range of DMTs that aim to reduce the autoreactive inflammatory response by
targeting immunological pathways, they are only partially effective. These drugs modify
and allow control of the active course of MS, but they have little or no potential to stop
the disease permanently or reverse MS-related damage to the CNS. Furthermore, the
majority of therapeutic agents target mainly immune-mediated active demyelination, while
only a few drugs demonstrate some neuroprotective effects or are supposed to promote
remyelination [153]. Recent progress in identifying SL properties and their role in the
background of MS opens up a perspective in the design of novel therapeutic options, which
would cover a wider extent of the MS pathophysiology.

With regard to immune-mediated activity, the endogenous myelin-derived acetylated
β-GalCer ligands as well as synthetic α-GalCer ligand were used as stimulators of iNKT
cells in MS patients, with subsequent diminished responsiveness of these regulatory cells
observed [31]. Recognizing this phenomenon of GSL ligand-driven anergy and the func-
tional consequences of the lipid–CD1d interaction may contribute to designing selective
lipid antigen-specific therapeutics [138].
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Targeting altered ganglioside metabolism [75,77] may represent another opportunity
for a novel therapeutic approach in MS. An increased level of GM1 was found to correlate
with enhanced susceptibility to an animal model of MS-EAE, while its binding to the
endogenous lectin galectin-1 (Gal-1) ameliorated EAE symptoms [154]. Gal-1 seems an
appealing candidate for the modulation of GM1 upregulation and enhanced autoimmune
response. Furthermore, exogenous GM1 was demonstrated to reduce neuronal injury and
neurodegeneration in animal models, and this effect reached beyond restoring normal
levels of endogenous gangliosides. The suggested mode of action involved the modulation
of various T cell effector functions [155] and suppression of pro-inflammatory Th1 cells’
activity [156]. Studies on EAE [155–157] have shown that the administration of brain
ganglioside mixtures considerably reduces mortality, prolongs the lifespan and reduces
the severity of clinical scores, roughly proportional to disease severity [157]. Beneficial
clinical effects of these mixtures have been also reported in stroke and neurodegenerative
disorders [3,72,158–160]. Thus, ganglioside-based therapies are likely to combine anti-
inflammatory and neurotrophic effects.

Examples of complex SL-based agents, considered for potential therapeutic use in MS
because of their effects on inflammation and degeneration in the CNS, are GluCer synthase
inhibitors (PDMP, miglustat) and sGalCer. LacCer synthesis by β-1,4-galactosyltransferase 6
(B4GALT6) in astrocytes was shown to recruit and activate the CNS infiltrates (monocytes and
microglia). The inhibition of LacCer synthesis by PDMP resulted in the suppression of local
CNS innate immunity and neurodegeneration in EAE [91]. The proposed mechanism that
promotes neuroinflammation and neurodegeneration in EAE includes the activation of cytosolic
phospholipase A2 → a mitochondrial anti-viral signaling protein → NF-κB pathway [161].
Miglustat was found to inhibit this pro-inflammatory signaling pathway and suppress the CNS
injury in a chronic progressive type of EAE [161]. Thus, PDMP [91,162] and miglustat [161,163]
seem to be good candidates for therapeutic use in progressive MS, still not sufficiently addressed
by available treatment strategies.

Another potential target for therapeutic options might be associated with impaired Cer
metabolism, which is considered an important element of MS pathology [90,92,95,97,151].
Modulation of Cer metabolism could occur on many levels, including its de novo biosynthesis,
SM hydrolysis and GSL breakdown, besides the re-acylation of Sph expression [90,164,165].
Our ex vivo studies could suggest that the increased Cer level in MS may come from the active
dhCer→Cer pathway (de novo synthesis) in the case of Ac-MS or the active SM→Cer pathway
(SM hydrolysis) in the case of In-MS [90]. Moreover, this investigation indicated C1P as a new
potential biomarker of the progressive phase of MS. Thus, a novel therapeutic approach in this
field might be developed [90].

The beneficial effect of ganglioside-based agents upon MS-related CNS damage might
comprise also their potential to stimulate myelin repair. The contribution of GM1 to lipid
raft formation may promote their stabilization and association with relevant proteins
(e.g., Nf-155) and eventually prevent myelin sheath damage [102]. Administration of
exogenous GM3, GM4 or GD1a was shown to induce the proliferation and differentiation of
oligodendrocytes and maturation of their precursors [166–168], which resulted in initiating
remyelination in in vitro and in vivo conditions [166]. Furthermore, sGalCer was also
demonstrated to stimulate oligodendrocyte precursor differentiation, induced by laminin-2
binding [169].

Interesting observations concerning the possibilities of myelin repair were reported in
studies on EVs containing SLs (e.g., S1P, GalCer and sGalCer) [170,171]. EV-associated SLs
were suggested to have a dual effect on oligodendrocytes (affecting the balance between
their apoptosis and maturation), as well as to boost the migration of oligodendrocyte
precursors to the sites of demyelination, where they could stimulate repair processes. An
intriguing approach proposed in another study [172] included the intranasal administra-
tion of EVs that contained a mixture of lipids, proteins and nucleic acids resembling the
secretome of mesenchymal/parental stem cells. It is worth highlighting that these findings
indicate a relevant role of SLs both as active agents and components of nano-carriers. Lipid-
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based EVs could be more effective in bypassing the BBB and reliably delivering a wide
range of drugs or potentially active molecules to the affected structures of the CNS [65,173].

5. Conclusions and Future Directions

Despite recent progress in understanding the factors involved in the pathogenesis of MS
and management of the disease, there are still some open questions worth further exploration.

The unique structural and functional features of SLs (especially gangliosides) offer
new additions to the still incomplete view of these compounds, which have been referred
to as a “factotum of nature” [58]. Recent studies suggest that SLs may represent key factors
in the MS background in many aspects, including alterations of SL metabolic pathways,
their role as putative antigens responsible for initiating the autoimmune response or
modulators of iNKT cells’ regulatory features, as well as their contribution to the stability
and functioning of intracellular lipid rafts. Further exploration seems necessary to clarify
why particular SL-associated pathways become affected in MS, which of them are more
specific for immune-mediated inflammation or neurodegeneration in the CNS and whether
serum or CSF levels of gangliosides and anti-ganglioside antibodies might be used as
biomarkers of disease activity and progression. Considering these challenges, SLs may
represent an underexploited opportunity for further investigation in MS.

Intriguing future prospects of novel therapeutic options in MS are associated with SLs’
potential for myelin repair and neuroprotective effects, which have not yet been addressed
in the available treatment strategies. The implications of the novel findings discussed in this
review encourage the further development of SL-based investigations in the field of MS.
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Abbreviations

Ac-MS chronic active multiple sclerosis
AD Alzheimer’s disease
BBB blood–brain barrier
C1P ceramide 1-phosphate
Cer ceramide
CNS central nervous system
CSF cerebrospinal fluid
dhCer dihydroceramide
DMT disease modifying therapy
EAE experimental autoimmune encephalomyelitis
EV extracellular vesicle
FMC fast migrating cerebroside
GalCer galactosylcermide
GM grey matter
GSL glycosphingolipids
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HexCer hexosylceramide
HS healthy subjects
iNKT invariant natural killer T cells
In-MS chronic inactive multiple sclerosis
INT internode
JPX juxtaparanode
LacCer lactosylceramide
LPA lysophosphatidic acid
MS multiple sclerosis
MV microvesicle
NAWM normal appearing white matter
nCNS normal central nervous system
NeuAc N-acetylneuraminic acid
Nf neurofascin
NKT cells natural killer T cells
OND other neurological disease
PN paranode
PPMS primary progressive multiple sclerosis
RRMS relapsing–remitting multiple sclerosis
S1P sphingosine 1-phosphate
SL sphingolipid
SM sphingomyelin
Sph sphingosine
SPMS secondary progressive multiple sclerosis
Th T helper
WBC white blood cell
WM white matter
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