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Abstract

The expansion of shell disease is an emerging threat to the inshore lobster fisheries in the

northeastern United States. The development of models to improve the efficiency and preci-

sion of existing monitoring programs is advocated as an important step in mitigating its

harmful effects. The objective of this study is to construct a statistical model that could

enhance the existing monitoring effort through (1) identification of potential disease-associ-

ated abiotic and biotic factors, and (2) estimation of spatial variation in disease prevalence

in the lobster fishery. A delta-generalized additive modeling (GAM) approach was applied

using bottom trawl survey data collected from 2001–2013 in Long Island Sound, a tidal estu-

ary between New York and Connecticut states. Spatial distribution of shell disease preva-

lence was found to be strongly influenced by the interactive effects of latitude and longitude,

possibly indicative of a geographic origin of shell disease. Bottom temperature, bottom salin-

ity, and depth were also important factors affecting the spatial variability in shell disease

prevalence. The delta-GAM projected high disease prevalence in non-surveyed locations.

Additionally, a potential spatial discrepancy was found between modeled disease hotspots

and survey-based gravity centers of disease prevalence. This study provides a modeling

framework to enhance research, monitoring and management of emerging and continuing

marine disease threats.

Introduction

The American lobster (Homarus americanus), which is of critical economic and ecological

importance throughout northeastern USA and Atlantic Canada, is currently being threatened

by the emergence of shell disease. The shell disease in H. americanus is manifested as necrosis

and lesions on the dorsal carapace of infected individuals that can result in decreased survival

[1] and decreased reproductive success [2]. Shell disease in H. americanus was first reported in

the 1930s, and various forms of lobster shell disease have been observed (e.g., endemic shell
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disease, impoundment shell disease, and diet-induced shell disease) [3–5]. Notably, shell deg-

radation associated with disease decreases the market value of infected individuals, resulting in

economic and market loss in this lucrative fishery [6,7].

Epizootic shell disease (ESD) is a recently observed degradation of the lobster cuticle by a

suite of bacteria (e.g., Aquimarina homaria) [1]. Individual susceptibility to ESD has received

increased research attention following the host susceptibility hypothesis proposed by Tlusty

et al. [8]. This hypothesis states that the internal condition of a lobster ultimately determines

whether an infection becomes established, with physiological stress likely being the strongest

indicator of susceptibility. This notion was generally supported by subsequent studies evaluat-

ing the influence of water temperature [9], pollutants [1,10], and diet [5]. Additional studies of

shell disease etiology noted significant shifts in microbial communities between the shells of

infected and uninfected lobsters, suggesting importance of a polymicrobial, rather than single

species, pathogen [11]. A major outbreak of ESD was first observed in Long Island Sound

(LIS) in 1996, which was followed by the unprecedented rise and spread of ESD among South-

ern New England (SNE) lobster stocks. Prior to 1999, the lobster fishery in LIS was the third

largest in the country, with landings valued at more than $35 million [12]. However, in 2013

the Atlantic States Marine Fisheries Commission (ASMFC) required the states surrounding

LIS to take steps to reduce the total lobster harvest by 10 percent, resulting in the first-ever sea-

sonal closure of the LIS lobster fishery [13]. Concern over the stability of the lobster fishery has

forced many fishermen to abandon their traditional livelihoods and pursue new careers out-

side of the lobster industry [14,15].

Tools are required that will allow the fishery to deal with possible future spread of lobster

shell disease. The development of a modeling framework that can provide (1) ecological inter-

pretation of factors associated with disease prevalence, and (2) more reliable, contemporary

disease maps at policy-relevant spatial scales has been advocated as an important step in

understanding the harmful effects of oceanic diseases [16,17]. There are presently two broad

types of modeling approaches available for predicting spatiotemporal disease prevalence:

empirical-based statistical models that seek to quantify associations between disease prevalence

and environmental factors (e.g., [18]) and process-based mechanistic models that seek to sim-

ulate biological or ecological processes that drive disease prevalence (e.g., [19]). It is generally

acknowledged that both approaches can be used to facilitate proactive disease management.

The objectives of this study were to develop empirical-based statistical models to (1)

quantify associations of lobster shell disease occupancy and abundance with environmental,

spatial, and ecological factors, and (2) predict relative lobster shell disease prevalence in non-

surveyed locations to provide a spatially-varying disease probability map across the entire

study area to identify potential disease hotspots that remain undetected by the existing sur-

vey programs. We hypothesized that the spatial distribution of shell disease prevalence is

associated with external factors such as salinity, water temperature, depth, distance offshore,

sediment type, latitude and longitude, as well as host sex and life stages. To this end, a delta-

generalized additive modeling (GAM) framework was developed to evaluate the relative con-

tributions of a variety of environmental and biological factors to shell disease occupancy and

abundance. GAMs have the advantage of reconciling highly non-linear and non-monotonic

relationships that are common in nature, and can serve as either descriptive or predictive sta-

tistical models [20].

This study highlights the utility of pairing existing fishery-independent datasets with a non-

parametric and parsimonious modeling approach to enhance the knowledge of how lobster

shell disease associates with various abiotic and biotic factors. Ultimately, our findings will

provide policy-relevant information for effective ecosystem-based marine disease surveillance

programs, which could be of value for the U.S. lobster fishery.

A statistical model for lobster shell disease in Long Island Sound
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Materials and methods

Case study area

The LIS is an estuary that is 182 km long and 33.8 km wide with an average depth of 22.6 m

(Fig 1). The bathymetry of LIS is composed by four major basins with a maximum depth of

60.4 m. The LIS is weakly stratified as the salinity ranges from 23 ppt at the western end to

35 ppt at the eastern end [21]. Three major rivers (Thames, Housatonic, and Connecticut)

account for the majority of freshwater input into LIS. Runoff and drainage along the coast of

New York and Connecticut also deliver freshwater into the sound [22].

Modeled data

The lobster shell disease data were collected by bi-annual bottom trawl survey conducted by

the Connecticut Department of Energy and Environmental Protection (CTDEP) during

2001 and 2013 (Fig 2). The CTDEP survey employs a stratified random design based on 12

strata (4 depth strata � 3 substrate strata). Samples were collected using a 14 m otter trawl

with a 51 mm codend. Date, location, bottom temperature, bottom salinity, depth, and bio-

logical information of each lobster (carapace length (CL), sex, and shell disease presence)

were recorded at each tow (Table 1). The survey area is divided into 1.85�3.7 km sites

assigned to the 12 strata [23]. Spring surveys were conducted during the months of April-

June, and fall surveys were conducted from September through October. In situ data are col-

lected once a month from 40 sites that are randomly selected from within each stratum,

resulting in a total of 200 sites annually. The survey was conducted at 3.5 knots for a targeted

duration of 30 minutes during daylight hours to reduce sampling bias related to diurnal vari-

ability in catchability [24,25]. There were no changes associated with the size specification

for the trawl equipment during the survey.

Fig 1. Sampling locations of the Long Island Sound bottom trawl survey used in this study (2001 to 2013). Each sampling site is 1.85*3.7 km.

doi:10.1371/journal.pone.0172123.g001

A statistical model for lobster shell disease in Long Island Sound
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The monitoring of lobster shell disease began in 2001, and a total of 1,246 tows that col-

lected 18,322 lobsters were initially explored in this study. A tow was considered satisfactory

for the analysis only when it recorded (1) number of shell disease-positive lobsters with rele-

vant biological information (e.g. sex and carapace length), (2) geographical information (e.g.

latitude and longitude), and (3) environmental information (e.g. bottom water temperature

and salinity, depth). A total of 1,234 tows that collected 17,838 lobsters met these criteria were

used for the analysis. The dataset showed an overdispersion of shell disease abundance due to

the high number of tows that caught zero infected lobsters. A lobster was considered to be free

Fig 2. Abundance indices of American lobster (Homarus americanus) and shell disease per tow in Long Island Sound, USA. For calculation

of American lobster CPUE see Tanaka and Chen (2015). CPUE: catch-per-unit-effort.

doi:10.1371/journal.pone.0172123.g002

Table 1. A list of variables identified as candidate explanatory variables for delta generalized additive modeling approach with corresponding VIF

value. All variables listed in this table were measured directly from the Long Island Sound bottom trawl survey (2001–2013).

Variables Type Description VIFb

Season Temporal Season trawl was conducted: Spring = March-May, Fall = September-November n/a

Year Temporal Year trawl was conducted n/a

Latitude (Degree) Spatial Measurement of latitude trawl was conducted (mid trawl point) 2.2312

Longitude (Degree) Spatial Measurement of longitude trawl was conducted (mid trawl point) 1.9888

Distance Offshore (km) Spatial Measurement of distance between trawl location and coastline 1.5965

Depth (m) Abiotic Observed depth at trawl location 2.2378

Bottom Temperature (˚C) Abiotic Observed bottom temperature at trawl location 1.4678

Bottom Salinity (ppt) Abiotic Observed bottom salinity at trawl location 1.7772

Stage Biotic Adult (CLa > 60 mm) and Juvenile (CL < = 60 mm) n/a

Sex Biotic Female and Male (unspecified sex were omitted) n/a

aCL: Carapace Length.

VIF: Variance Inflation Factor.

doi:10.1371/journal.pone.0172123.t001
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of shell disease if the shell surface shows no signs of the disease (i.e. the default condition) or if

the lobster had limited necrotic spots (e.g. pitting and “cigarette-like burn” mark on the shell

surface) or lesions (e.g. damage that penetrates carapace to inner musculature). A visual

inspection was conducted to identify shell disease on the claws, carapace, tail, and legs. A lob-

ster was considered to be infected if more than 10% of shell surface shows signs of shell disease

(e.g., pitting and lesions). Several types of lobster shell disease have been documented, which

are not differentiated here. Despite our inability to distinguish among shell diseases, the condi-

tion we describe here is most likely ESD given its known prevalence throughout the study area

[1,26–28].

The shell disease catch-per-unit-effort (CPUE) was considered to be a good indicator of

lobster shell disease prevalence in the study area [29–31]. Survey-CPUE is a commonly used

indicator for monitoring changes in relative abundance of fish stocks [32]. Studies have shown

that CPUE is most reliable when the sampling units are homogeneous in their characteristics

and operating procedure [32–34], and gravity centers of CPUE can be used to better under-

stand the spatiotemporal dynamics of fish stocks [34–37]. A nominal shell disease CPUE at sta-

tion i, in season j, and year y was calculated as;

CPUEi;j;y ¼
Counti;j;y

TowDurationi;j;y

 !

� 20 ð1Þ

where Count represents the total quantity of shell disease positive lobster caught. Tow duration

varied between 20 to 30 minutes but was standardized to 20 minutes at each sampling station

[31]. To analyze the spatial distribution of lobster shell disease, the longitudinal and latitudinal

gravitational centers of nominal disease CPUE in year y were calculated by;

Lony ¼

PK
i¼1
ðLoni � CPUEy;iÞ
PK

i¼1
CPUEy;i

ð2Þ

Laty ¼
PK

i¼1
ðLati � CPUEy;iÞ
PK

i¼1
CPUEy;i

ð3Þ

where Loni represents the longitudinal point of the station i between -73.63 and -72.07 E; Lati
represents the latitudinal point of the station i between 40.92 and 41.31 N; CPUEy,i denotes the

nominal shell disease CPUE at station i in year y; K is the total number of stations.

Generalized additive model

Model development. A delta (also known as Hurdle or Two-stage) generalized additive

modeling (GAM) approach was applied to account for zero-inflation and overdispersion [38–

40]. GAM is a semi parametric extension of the generalized linear model and commonly used

in ecological studies [41,42]. GAMs assume that the response variables are independent, and

use spline smooth function to define nonlinear relationships between the response and explan-

atory variables [20]. With the delta approach, occupancy and abundance observations are

modeled separately to formulate the overall prediction of relative species abundance while it

allows independent evaluation of predictor variables for both occurrence and abundance,

which often differ [43,44].

Lobsters within each tow were grouped by stage (adult: >60 mm carapace length, juvenile:

�60 mm carapace length) and sex (male and female), allowing every tow to have up to 4

groups of lobsters (2 stage � 2 sexes) [31,45,46]. This categorization technique developed by

[39] can relate biological characteristics of a tow-subgroup to environmental information

A statistical model for lobster shell disease in Long Island Sound
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recorded by the corresponding tow. For each tow-subgroup, the delta-GAM separately mod-

eled: (1) the “encounter rate probability” of shell disease (i.e. a proportion expressed as total

number of shell disease positive lobsters divided by total number of lobsters), and (2) the “pos-

itive catch probability” of shell disease (i.e. number of shell disease positive lobsters conditional

on presence). The general delta-GAM formulation can be written;

Encounter rate probability (y1):

logitðyÞ ¼ aþ
Xp

i¼1

f ðxiÞ þ ε ð4Þ

Positive catch probability (y2):

lnðyÞ ¼ aþ
Xp

i¼1

f ðxiÞ þ ε ð5Þ

Overall prevalence probability:

D ¼ y1 � y2 ð6Þ

where a denotes an intercept term, f denotes the non-parametric cubic spline smooth function;

xi denotes the ith explanatory variable directly measured by the CTDEP survey; and ε is the

residual error term. The first stage GAM modeled the proportion of shell disease per tow-sub-

group (i.e. encounter rate probability) using a logit link function and a binomial error distribu-

tion. Here, the total number of lobsters in each response variable served as a prior weight on

the contribution of the data to the first stage GAM fitting procedure to account for the differ-

ence in response variable size. The second stage GAM modeled the shell disease abundance

per tow-subgroup conditional on presence (i.e. positive catch probability) using a log link

function and a negative binomial error distribution. The overall prevalence probability (D)

was derived by multiplying the products from both stages [40,44].

Variance inflation factor (VIF) analysis with an acceptable value below 3.0 was conducted

to minimize collinearity among candidate explanatory variables [41]. To avoid unnecessary

model complexity and computation time, boosted regression tree (BRT) analysis was con-

ducted for each GAM to incorporate candidate bivariate terms [44,47]. To prevent model

overfitting, the maximum degrees of freedom was set at 5 (k = 5) for univariate terms and 30

(k = 30) for bivariate terms [42,44,48]. Furthermore, gamma = 1.4 was set for each GAM to

place a heavier penalty on each term to prevent overfitting [42,49].

All statistical analyses were conducted in the R programming environment [50]. GAMs

were built and fitted using the mccv package [51] and fmsb [52] and dismo [53] were used to

implement VIF and BRT analyses.

Model selection and validation. Chi-square statistical significance tests and Akaike infor-

mation criteria (AIC) were used as the model selection criteria. A stepwise backward selection

was applied to identify an optimal model in each stage [52]. First, a full model was built for

each stage using all of the candidate univariate and bivariate terms identified through VIF and

BRT analyses. Second, the least statistically significant variable was removed using the specified

p-value significance threshold (p< 0.05) [39,52–54]. Variable removal was conducted one at a

time and the reduced model was refit to the data. Candidate univariate and bivariate terms

were kept in the model if they contributed to a lower AIC [55]. The stepwise model selection

procedure was repeated until an optimal model was identified according to the above criteria

at each stage (i.e. a model with lowest AIC and included only significant variables). Finally,

model diagnostic plots were examined to evaluate residual patterns and model assumptions.

A statistical model for lobster shell disease in Long Island Sound
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A cross-validation study was conducted to evaluate the performance of the best-fitting

delta-GAM [41]. A randomly selected subset representing 80% of the original data (training

data) was used to develop and calibrate the delta-GAM, and the remaining 20% (testing data)

was used to evaluate the model performance. The model predictions were compared to the

observations and linear regression analysis was used to evaluate the model performance. The

cross-validation process was repeated 100 times using a random partition in each step. The

model performance was quantified by 100 sets of linear regression parameters: an intercept (α)

closest to 0, a slope (β) closest to 1, and higher R2.

Environmental data

Because a GAM does not generate coefficients that can be multiplied by conventional grid

maps of the covariates, spatial predictions were made by constructing new environmental

datasets of the study area [56]. Bottom temperature and salinity estimates by depth, time, and

location in the study area were modeled by the Finite-Volume Community Ocean Model

(FVCOM) runs from 2001 to 2013. FVCOM is an ocean circulation model developed by Uni-

versity of Massachusetts Dartmouth and Woods Hole Oceanographic Institution [57]. The

FVCOM has been configured for the Northwest Atlantic Shelf region, with horizontal resolu-

tion ranging from 20 m in river mouths to as coarse as 10 km towards the open boundary off

the shelf [57]. Bathymetry layers were obtained from the U.S. Coastal Relief Model [58]. The

surficial substrate layer in LIS was obtained from the U.S. Geological Survey (resolution:

0.00001 decimal degrees or 1.11 m) [59]. Substrate classifications in included; gravel (pebbles

defined as 2.00–64.00 mm, cobbles defined as 64–256 mm, boulder defined as above 256 mm),

gravel-sand (0.62–2.00 mm), sand-clay (0.001–0.004 mm), silt (0.004–0.062 mm)/sand, sand-

clay/silt, sand-silt/clay, and sand/silt/clay [60].

Predictions of spatiotemporal patterns in shell disease prevalence

The shell disease prevalence predictions derived by the best-fitting delta-GAM were assigned

to every FVCOM grid in the study area and universal kriging interpolation technique was used

to produce high-resolution maps for interpretation [41,61,62]. This procedure was repeated

for every year within the predictive capacity of the best-fitting delta-GAM (2001–2013). The

spatial distribution of median GAM outputs was mapped to interpret the overall spatial vari-

ability in shell disease prevalence. The longitudinal and latitudinal gravitational centers of

observed shell disease prevalence between 2001 and 2013 were compared to the modeled dis-

ease hotspots to evaluate magnitude of spatial discrepancy due to potential biases associated

with the survey design and subsequent sample size.

Results

Significance of abiotic and biotic variables

A total of 2,008 tow-subgroups out of 1,234 tows were analyzed during the time period of

2001–2013 (n = 17,838 lobsters). Shell disease positive lobsters (n = 363) sampled in LIS ranged

in size from 37.3 to 88.1 mm CL, with mean CL of 69.81 mm and median CL of 71 mm. The

shell disease samples were collected at various depth ranges from 4.9–42.7 m and between

40.98:41.31˚N and 73.37:72.07˚W. The observed bottom temperature and salinity associated

with shell disease positive lobster ranged from 3.9–22.1˚C and 24.8–31.5 ppt respectively.

The location variable identified as a bivariate interaction covariate by latitude and longitude

was found to be the most important determinant in the probability of shell disease presence.

The response surface of the location variable indicates that probability of shell disease presence

A statistical model for lobster shell disease in Long Island Sound
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increased toward the northeastern region of LIS (Fig 3). Neither longitude nor latitude was

found to be significant in the best-fitting positive catch probability model.

Bottom temperature and bottom salinity were included in the best-fitting encounter rate

probability model (Figs 4 and 5). Both abiotic variables had a significant non-linear effect on

the probability of shell disease presence. The bottom temperature response curves from the

best-fitting encounter rate probability model showed higher probability of shell disease pres-

ence at< 5˚C and between 10–15˚C, while the temperature response curve from the positive

catch model showed that the relationship was dome-shaped with a peak probability of shell

Fig 3. Partial generalized additive model (GAM) plot describing the significant interactive contribution of bivariate location variable in the

best-fitting encounter rate probability model (1st stage).

doi:10.1371/journal.pone.0172123.g003

Fig 4. Fitted back-transformed smoothing curves for significant univariate explanatory variables in the

best-fitting encounter rate probability model (1st stage). The tick marks on x-axis denote the relative

density of observation. The grey envelopes represent the 95% confidence intervals. Note that the range of y-

axis differs among the panels for display purposes. SD: shell disease.

doi:10.1371/journal.pone.0172123.g004
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disease abundance between 10–15˚C. Bottom salinity also showed significant effect on both

shell disease encounter rate and positive catch probability, where the probability of shell dis-

ease presence peaked at ~25 ppt, while the probability of shell disease positive catch increased

at higher salinity ranges (Figs 4 and 5). Distance offshore was included in the best-fitting

encounter rate probability model, while depth was included in the best-fitting positive catch

model (Figs 4 and 5). The distance offshore response curve from the encounter rate probability

model indicates that the probability of disease presence peaked between 5–10 km (Fig 4). The

probability of conditional disease abundance was lowest at approximately 20 m depth (Fig 5).

A year effect was included in the best-fitting encounter rate probability model as a signifi-

cant temporal variable (Fig 4). The disease encounter rate probability per tow was the lowest

in 2001, but peaked in 2011. Effects of bottom type, stage, and season were only significant for

the encounter rate probability model. The highest disease encounter rate probability was asso-

ciated with gravel, while the lowest encounter rate probability was associated with sand-silt/

clay (Fig 4). The adult life stage (CL > 60 mm) and fall season (September-October) were also

associated with higher probability of disease presence (Fig 4).

Model fitting and validation

All candidate explanatory variables were observed with VIF less than 3 (Table 1), therefore

multicollinearity was determined to be negligible in the model development. The best-fitting

binomial GAM (1st stage encounter rate probability model) explained 56.3% of the deviance,

while the best-fitting negative-binomial GAM (2nd stage positive catch model) explained

31.3% of the deviance (Table 2). A comparison of the mean cross-validation results with an

ideal model performance (e.g. a model without prediction bias; α = 0, β = 1, and R2 = 1) indi-

cated that the delta-GAM predicted the overall shell disease prevalence well (α = 0.134,

Fig 5. Fitted back-transformed smoothing curves for significant univariate explanatory variables in

the best-fitting positive catch probability model (2nd stage). The tick marks on x-axis denote the relative

density of observation. The grey envelopes represent the 95% confidence intervals. Note that the range of y-

axis differs among the panels for display purposes. SD: shell disease.

doi:10.1371/journal.pone.0172123.g005
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β = 0.809, and R2 = 0.43; Fig 6). A slight bias toward over-prediction at low prevalence was

observed while the degree of over-prediction increased with higher prevalence. However, the

model’s predictive performance was considered to be sufficient for predicting an overall distri-

bution of the true shell disease prevalence in this study.

Table 2. Comparison of full and best-fitting generalized additive model (GAM) results for the delta modeling approach.

1st stage "Encounter Rate Probability" GAM (n = 2008)

Model Formula edfa Deviance

explained (%)

AICb

Full Size + Sex + Season + Year + Sediment Type + s(Bottom Temperature) + s(Bottom Salinity)

+ s(Depth) + s(Distance Offshore) + s(Longitude) + s(Latitude)

3.98 3.89 3.62

3.50 3.06 1.00

50.10 1453.08

Best-

fitting

Size + Season + Year + Sediment Type + s(Bottom Salinity) + s(Distance Offshore) + s

(Bottom Temperature) + s(Longitude, Latitude)

3.86 3.67 3.95

26.72

56.30 1371.03

2nd stage "Positive Catch Probability" GAM (n = 142)

Model Model edf Deviance

explained (%)

AIC

Full Size + Sex + Season + Year + Sediment Type + s(Bottom Temperature) + s(Bottom Salinity)

+ s(Depth) + s(Distance Offshore) + s(Longitude) + s(Latitude)

2.99 2.96 1.04

1.00 1.04 1.00

53.20 217.346

Best-

fitting

s(Bottom Temperature) + s(Bottom Salinity) + s(Depth) 3.21 1.42 2.38 31.30 207.056

aedf: estimated degree of freedom
bAIC: Akaike information criterion

doi:10.1371/journal.pone.0172123.t002

Fig 6. Bivariate observed versus predicted plot complemented by the graphical summary of

regression analyses from 100 runs of cross-validations for the delta-generalized additive modelling

(GAM) effort. The light gray lines represent 100 linear regression lines. The black line represents the mean of

100 linear regression lines. The dashed line represents the 1:1 line and an ideal model performance.

doi:10.1371/journal.pone.0172123.g006
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Delta-GAM prediction and survey-based gravity centers of disease

prevalence

The delta-GAM was used to generate zero inflation adjusted estimate of shell disease preva-

lence (per minute towing; 101 m2). The predicted shell disease prevalence in LIS showed a

‘high-east: low-west’ spatial pattern (Fig 7). The delta-GAM predicted high disease prevalence

in the shallow waters on the southwestern and northeastern sides of Fishers Island in north-

eastern LIS. The survey-based gravity centers of shell disease shifted northeastward during

2001–2013 in the area between 72.8:72.3˚ W and 41.1:41.25˚ N (Fig 8); however, the survey-

based gravity centers did not coincide spatially with the predicted disease hotspots.

Discussion

Ecological interpretation of model outputs

The delta-GAM developed in this study identified a high concentration of shell disease preva-

lence in northeastern LIS (Fig 7). A similar pattern has been documented in other studies,

although its drivers remain difficult to identify. However, bottom water temperature has been

frequently cited as one major contributor to shell disease occurrence [1,63]. Because eastern

LIS has had higher rates of temperature increase and higher mean maximal monthly tempera-

tures than western LIS [28], this could be influencing the patterns we describe. Eastern LIS is

also known to have higher levels of contaminants such as PCBs, pesticides, and metals than

other regions of the Sound, which have also been noted as potential contributors to various

lobster diseases [1,64].

Other potential causes of shell disease seem to be distributed paradoxically to the east-high,

west-low spatial prevalence patterns. For example, shell diseased symptoms occur when the

loss of shell material exceeds its natural deposition [8], therefore it is expected that shell disease

would coincide with areas with high concentrations of alkylphenols, which inhibit shell growth

[65]. However, Jacobs et al. [66] found that levels of alkylphenol contamination was highest in

lobsters from western LIS, where observed disease prevalence is generally lowest. Similarly,

presumably stress-inducing hypoxia increases in severity from east to west, in opposition to

the shell disease prevalence documented here [67].

Fig 7. Mean spatial variation of predicted zero inflation adjusted shell disease (SD) prevalence,

expressed as ln(number of SD positive lobster per 101 m2), for 2001–2013. The red rectangle represents

the spatial domain of Figure 7b.

doi:10.1371/journal.pone.0172123.g007
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Potential insights into disease etiology in LIS can also be gained by evaluating univariate

explanatory variables individually. For instance, the response curves from best-fitting binomial

and negative-binomial GAMs were generally in agreement with existing literature related to

habitat tolerance of American lobster with regard to bottom temperature, bottom salinity,

depth and sediment type [7,31,39,68–71], indicating shell disease occurrence often coincides

with optimal or near-optimal lobster habitat conditions. For instance, Tanaka and Chen [31]

identified suitable salinity for lobster in LIS is between 21 and 30.4 ppt, which is also contained

the salinity range where shell disease is found (Fig 4). These results are unexpected given past

research (e.g., Tlusty et al. [8]) suggesting that environmentally-induced physiological stress

is a precursor to shell disease incidence. However, this pattern could be explained by an

increased propensity for infected individuals to move away from stressful conditions found in

suboptimal environments, due to the costs they are incurring while subjected to stressful

conditions.

Water temperature has been previously identified as a significant contributor to shell dis-

ease occurrence [1,63]. The significant, nonlinear relationship between bottom water tempera-

ture and shell disease encounter rate probability we documented (Fig 4) is likely reflective of

lobsters’ varied molting rate at different temperatures and ability to molt out of a moderately

infected shell [72]. For instance, encounter rate probability peaks between 10–14˚C, when dis-

ease progression may be outpaced by molting rates. Similarly, the reduction in prevalence

toward 20˚C could be attributable to molting rate exceeding disease progression. The increas-

ing presence of shell disease in fall as indicated by our model coincides with previous studies

performed in eastern LIS where disease prevalence increased through the summer and into fall

as waters warmed [73,74] as well as near Massachusetts where the highest concentration of

Fig 8. Observed inter-annual variability in shell disease gravity centers for 2001–2013.

doi:10.1371/journal.pone.0172123.g008
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shell disease in the study area correlated with cumulative periods of time where water tempera-

tures exceeded 20˚C [63].

This model further reinforces the likely role of demographic characteristics to shell disease

susceptibility. Because juveniles tend to molt more frequently, less time is allowed for shell dis-

ease to become established before a shell is molted. Therefore, the significance of age in our

model are likely due to extended intermolt durations for large individuals [72]. Ovigerous

females have often been found to have a higher incidence of shell disease than either males or

non-reproductive females due to delayed molting cycles [27,75]; however, our model did not

detect a significant effect of sex. We attribute this result to the concatenation of samples taken

throughout the year, which may mask the effects of higher prevalence for females during egg-

bearing times of the year when molting is postponed.

Model implications and limitations

For reasons of logistical rationality and simplicity, monitoring of marine species is conducted

based on a spatiotemporal scale relevant to observers, not marine species [76]. This bias, due

to differences between the stratification strategies employed by the observer and marine spe-

cies, results in disease presence, origins and spread often remaining undetected [16]. In this

study, the delta-GAM predicted a significant hotspot of lobster shell disease in the non-sur-

veyed area in the northeast of the LIS, which did not coincide with observed shell disease grav-

ity centers. The model-based disease probability map can be used to generate hypotheses

about exposure for further investigation by overlaying with maps of potential anthropogenic

pollution sources and areas where lobsters are under prolonged environmental-stress. Associa-

tion of the marine disease to surrounding abiotic and biotic factors in many cases is poorly

understood. The delta-GAM approach developed in this study can enhance our understanding

of continuing lobster shell disease threats and monitoring effort by (1) quantifying the signifi-

cance and association of environment and host characteristics in lobster shell disease preva-

lence, and (2) developing a parsimonious statistical modeling framework to predict the spatial

distribution of shell disease prevalence from zero-inflated observations.

Our approach has a number of potential limitations. While one of the objectives of this

study was to develop a simple, parsimonious modeling framework to complement both

descriptive and predictive research priorities, GAM is a data driven approach that is often lim-

ited by the data available for model calibration. For example, a p-value of 0.05 was used as cut

off for statistically significant associations, but it is important to acknowledge that some key

covariates (e.g. host sex) may be determined not statistically significant and excluded simply

due to; (1) the relatively small number of diseased lobsters in the original data, and (2) signifi-

cant associations exerted by abiotic (e.g. bottom temperature) and spatial variables (e.g. lati-

tude �longitude interaction) “masking” the weaker associations of these biological variables.

The location variables (i.e. latitude and longitude) were used to capture the localized effects

[55,77]; however, provided that the data are available, incorporating key variables such as pol-

lution, pH level, surface chlorophyll, hypoxia frequency, and population memory would likely

allows us to further tune the delta-GAM to be a more comprehensive management tool

[40,78]. Further improvements could be made by applying models that explicitly account for

progression of disease prevalence over time, integrate both measured and unmeasured covari-

ates, and include the consideration of spatial and temporal autocorrelation [40,79]. However,

while such an advanced model may yield better predictive performance, other aspects of

model performance should also be considered (e.g. ecological realism as well as model usability

to non-expert stakeholders)[56]. It is also important to acknowledge that the best-fitting mod-

els identified in this study were developed for specificity over generality to allow interpolation
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in LIS (i.e. filling in the gaps in survey data and describing known disease distributions), and

the model outcomes in the area outside of LIS should not be considered. A simpler model will

be required to make more general but robust extrapolation through space or time [56,80].

Finally, distinction and trade-off between empirical-based statistical modeling approaches

(e.g., GAM) and process-based mechanistic modeling approaches (e.g., agent-based model)

should be addressed explicitly [56]. In an epidemiological context, the strength of a statistical

modeling approach lies in its ability to provide a mathematical basis for hypothesized associa-

tions between observed disease prevalence and environmental factors [18], while mechanistic

modeling approaches can simulate underlying processes driving the disease prevalence [19].

As for the trade-off, both approaches are subject to specific sources of uncertainty. For

instance, where empirical-statistical models are unable to incorporate source-sink processes,

process-mechanistic models are unlikely to capture the true complexity of ecosystems [81].

The empirical-based statistical modeling framework presented in this study represents a first

step toward comprehensive modeling efforts to better understand the complex epizootic dis-

ease dynamics. For example, GAM can be used to incorporate ecological information associ-

ated with the geographical distribution and habitat suitability of diseased lobsters for more

mechanistic approaches [82], which can potentially predict the habitat-dependent environ-

mental impact on shell disease dynamics more accurately.

Management implications

Harvell et al. [16] identified several key marine disease management priorities, which can

enhance the research, monitoring and management of emerging and continuing marine dis-

ease threats. These include pinpointing the role of biotic and abiotic factors in disease spread,

developing forecasting models for outbreaks that are sensitive to environmental and climatic

factors, and implementing ecosystem-based surveillance programs for emerging marine dis-

eases. The combination of empirical data and modeling presented here aims to address these

management priorities and provide a valuable tool for the management of inshore and off-

shore lobster fisheries, which were the highest valued commercial fishery in 2014, worth in

excess of half a billion dollars [12]. The approach can be used to guide decision-making in

monitoring and management of lobster shell disease. Ultimately, our findings will provide pol-

icy-relevant information for effective ecosystem-based disease surveillance programs, which

could be of value for the fisheries.

The modeling approach described here also provides the framework from which similar

models could be developed for other marine organisms and marine diseases in the U.S. and

international fisheries. Groner et al. [83] call for “data driven forecasting and predictive model-
ing” to adaptively manage emerging marine diseases. The delta-GAM outputs presented in this

study can potentially facilitate an effective ecosystem-based management of the commercially

important fisheries that are under disease threat. If data are available, the model can also inves-

tigate the impact of anthropogenic agents and pathogens. The success of these actions are

dependent upon the major environmental risk factors for the disease being known and that

the relevant environmental data are of the appropriate temporal and spatial resolution for the

organism under investigation [83]. As the origins and spread of most marine diseases are

poorly known [16], the modeling approach described in this study renders a novel first step

towards identifying the potential biotic and abiotic conditions contributing to marine diseases

[83]. Furthermore, through establishment of a framework whereby environmental contribu-

tions to disease presence and prevalence may be identified, this modeling approach can poten-

tially provide reliable information for future mechanistic models that may provide the basis
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for models more predictive in nature, a need highlighted in recent work on marine disease

[28,83].

Fisheries managers require flexible low-cost tools to help deal with the emerging threat of

marine disease. This need is exacerbated by the increasing likelihood of abrupt, nonlinear

environmental and climatic changes [83]. Management strategies, such as closures to reduce

fishing morality in order to help restore the stock at broad spatial scales can be costly to

implement and to those whose livelihoods are dependent on the managed marine species. In

addition, these ‘broad brush’ approaches may impact areas not impacted by disease, thus

increasing their cost and impact unnecessarily. Reliable and up-to-date maps of marine dis-

eases, like those provided by this modeling approach, can enhance the monitoring of emerging

and continuing marine disease threats by improving the geographical targeting and cost-effec-

tiveness of existing sampling programs which are often limited by logistical hurdles (e.g. cost,

resources). Given the increasing uncertainty in the health of the marine resources upon which

people rely driven by linear long term climate trends and more abrupt climatic perturbations,

the types of low-cost tools that leverage existing monitoring datasets (e.g. trawl surveys) like

the model outlined here can provide essential information in managing wild harvest fisheries

that are constantly under disease threats.
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