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Isoprenoid compounds are biologically ubiquitous, and their characteristic modularity has 
afforded products ranging from pharmaceuticals to biofuels. Isoprenoid production has 
been largely successful in Escherichia coli and Saccharomyces cerevisiae with metabolic 
engineering of the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways 
coupled with the expression of heterologous terpene synthases. Yet conventional microbial 
chassis pose several major obstacles to successful commercialization including the 
affordability of sugar substrates at scale, precursor flux limitations, and intermediate 
feedback-inhibition. Now, recent studies have challenged typical isoprenoid paradigms 
by expanding the boundaries of terpene biosynthesis and using non-model organisms 
including those capable of metabolizing atypical C1 substrates. Conversely, investigations 
of non-model organisms have historically informed optimization in conventional microbes 
by tuning heterologous gene expression. Here, we  review advances in isoprenoid 
biosynthesis with specific focus on the synergy between model and non-model organisms 
that may elevate the commercial viability of isoprenoid platforms by addressing the 
dichotomy between high titer production and inexpensive substrates.

Keywords: isoprenoids, metabolic engineering, synthetic biology, non-model organisms, C1 metabolism, terpenes

INTRODUCTION

Isoprenoids are ubiquitous across all domains of life and span a wide and varied range of 
natural products. Isoprenoids are characterized by condensation of the five carbon precursor 
molecules isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are 
typically generated through either the mevalonate (MVA) or methylerythritol phosphate (MEP) 
pathways. The ease with which specialized synthases and cytochromes can conjugate or decorate 
these precursors has led to a uniquely diverse class of chemicals. Estimates of natural isoprenoid 
compounds in the last several decades have steadily increased from 20,000 (Chappell, 1995) 
to over 70,000 (Moser and Pichler, 2019). The advent of advanced sequencing, -omics, and 
bioinformatics technologies coupled with protein structural software and flux balance analyses 
have facilitated a veritable revolution in synthetic biology and assured the continued elucidation 
of isoprenoid compounds through bioprospecting and biosynthetic efforts.

Isoprenoids serve a number of critical roles both as primary and secondary metabolites. 
Primary metabolites are essential to cell survival and propagation. They include carotenoids 
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that serve as auxiliary molecules for photoprotection and 
antioxidants (carotene, lycopene, lutein, and zeaxanthin) as well 
as sterols that help maintain membrane structure. Other 
isoprenoids function as components of dolichols, quinones, 
and essential proteins that aid in glycosylation and electron 
transport (Chappell, 1995). Secondary isoprenoid metabolites 
impart a non-essential benefit to cells usually by providing 
some defensive benefit or, in higher plants, hormone signaling. 
As for isoprenoids, these include pigments, fragrances, essential 
oils, and defensive chemicals that are most prominent in higher 
plants. Many secondary metabolites have attracted particular 
interest due to their applications as pharmaceuticals [e.g., 
artemisinin (Ro et al., 2006) and pacilitaxel (Biggs et al., 2016)], 
nutraceuticals, biofuels [e.g., isoprenol (Kang et  al., 2019), 
prenol (Zheng et al., 2013), bisabolene, and limonene (Alonso-
Gutierrez et  al., 2013)], and cosmetics (Schempp et  al., 2018). 
Hybrid technologies have capitalized on isoprenoid versatility 
through semi-synthetic approaches to generate elastomers (Della 
Monica and Kleij, 2020). Collectively, the bioproduction of 
these chemicals has enabled access to multibillion dollar 
chemical markets.

Microbial pathway engineering has proven especially successful 
in Escherichia coli and Saccharomyces cerevisiae, which have 
produced many of the aforementioned isoprenoid compounds. 
E. coli and S. cerevisiae maintain certain metabolic advantages 
including a fast growth phenotype, historical breadth of 
knowledge, ease of transformation and hence heterologous 
protein expression, substrate specificity, and published successes 
of bioproduction (Vickers et al., 2017; Ward et al., 2018). These 
advantages are complemented by specialized synthetic biology 
strategies that enable tuning of ribosome binding site and 
promoter strength, codon optimization of heterologous proteins, 
protein fusions, and the knocking out of competing pathways. 
In recent years, this has been accomplished by systematic gene 
downregulation using regulatable CRISPR interference systems 
(Kim et  al., 2016; Tian et  al., 2019) that express a modified 
dCas9 protein for fine-tuning of the overall pathway and 
optimization of target production. Furthermore, E. coli 
endogenously generates isoprenoids through the MEP pathway 
while S. cerevisiae utilizes its native MVA pathway, together 
enabling researchers to combine synthetic biological toolkits 
with the abundance of information of these strains to facilitate 
high-titer isoprenoid production. As for downstream isoprenoid 
functionalization, these metabolic chassis are genetically tractable 
whereas many natural isoprenoid production pathways are 
prevalent in recalcitrant organisms that make high-titer 
production infeasible. Only recently have certain non-model 
organisms been engineered to yield comparable or higher 
isoprenoid titers than in E. coli and S. cerevisiae.

Despite the clear successes of isoprenoid production, E. coli 
and S. cerevisiae have significant disadvantages that limit 
successful bioproduction at scale. Precursor limitations, either 
the availability of IPP and DMAPP for direct synthesis of 
isoprenoids or the availability of MVA/MEP precursors, have 
been identified as a major obstacle to advancing isoprenoid 
synthesis (Zu et  al., 2020). Fine-tuning of metabolic pathways 
within the cell to balance cofactor supply by downregulation 

or upregulation of select enzymes has been identified as a 
major engineering opportunity and, although generally successful, 
often involves strain-specific and product-guided strategies (Zu 
et  al., 2020). Scaling of successful production is also limited 
by the necessity of episomal expression systems, which are 
ill-suited for industrial production due to the necessity of 
selective markers and their general instability.

A second major challenge in industrial isoprenoid biosynthesis 
is simultaneously increasing titer, rate, and yield while reducing 
the environmental and monetary burden intrinsic to industrial 
production. Precursor limitations are also complicated by 
isoprenoid production platforms that rely on sugar-based 
metabolism. Although sugars like glucose and glycerol provide 
high MVA/MEP flux by generation of G3P/pyruvate or 
acetyl-CoA, respectively, the high production costs are prohibitive 
to competition with petroleum-derived analogs. The greatest 
cost drivers of isoprenoid biosynthesis stem from carbon feed, 
which accounts for over 90% of production costs, and product 
yield (Wu and Maravelias, 2018).

A promising solution to exorbitant substrate costs is carbon 
source switching, especially to carbon waste streams like cellulosic 
biomass or C1 substrates (e.g., methane, methanol, carbon 
dioxide, and formate). Recent estimates assert that sugar switching 
from glucose to pretreated cellulosic biomass could yield a 
53% decrease in cost (Wu and Maravelias, 2018) with further 
gains if organisms can simultaneously consume multiple 
substrates (e.g., hexose and pentose sugars). Growth and 
production on atypical carbon sources and native generation 
of secondary metabolites is prevalent among many 
microorganisms. Recent advances have capitalized on the diversity 
of microbial carbon assimilation pathways, especially in the 
elucidation of synthetic and natural C1 metabolic pathways 
that enable access to cheap, abundant carbon sources (Aldridge 
et  al., 2021).

Many archaea have also evolved a robust array of resistance 
strategies to cope with inhibitory chemicals and conditions. 
These include tolerance mechanisms (efflux pumps, heat tolerance, 
membrane modifications, and general stress resistance; Dunlop, 
2011) that facilitate extremophilic growth in inhospitable 
environments like anaerobic conditions or deep sea vents. These 
mechanisms in some cases directly involve secondary metabolite 
production and even enable enhanced tolerance to secondary 
metabolite toxicity (Dunlop et  al., 2011). Toxicity tolerance is 
an appealing phenotype for biofuel production systems as well 
as for survival on substrates that are typically toxic to many 
microorganisms like pretreated lignocellulosic biomass (Dunlop 
et  al., 2011). To date, bioproduction on pretreated cellulosic 
biomass has proven challenging due to the associated toxicity 
of the substrate, especially the prevalence of aromatic compounds. 
In response, researchers have begun focusing on resilient 
bioproduction chassis like Pseudomonas putida and 
Rhodosporidium toruloides that can readily degrade aromatic 
compounds (Yaegashi et  al., 2017; Johnson et  al., 2019).

Conversely, microbes with unique phenotypes tend to have 
limited metabolic toolkits available. Next generation sequencing 
technologies have expedited exploration and characterization 
of novel organisms from unique environments, yet direct 
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engineering of such organisms for production remains a 
fundamental challenge. Neither E. coli or S. cerevisiae naturally 
accumulate isoprenoids at high titer and bioproduction is often 
limited to heavily modified strains with inducible episomal 
expression systems. Even so, the highest production of isoprenoids 
has been achieved in E. coli and S. cerevisiae (Moser and 
Pichler, 2019). As a result, there is a significant disparity between 
model and non-model isoprenoid production.

Addressing the disparity between the prevalence of nature’s 
clever solutions to environmental challenges and the genetic 
tractability of those organisms remains a principal obstacle in 
isoprenoid bioproduction. In many instances, it poses the 
question of whether to heterologously express pathways in 
common metabolic chassis or to optimize pathways in situ, 
both of which come with drawbacks. In this review, we highlight 
recent advances in core understanding of isoprenoid synthesis, 
namely the elucidation of the archaeal MVA pathways, precursor 
flux modulation, and how those discoveries have contributed 
to novel isoprenoid production schemes. We  then explore the 
exchange between lessons learned in the metabolic engineering 
of E. coli and S. cerevisiae and of non-model microorganisms 
with natural predispositions for atypical and economical carbon 
substrates. Pathways include C1 metabolism in methylotrophic 
organisms (Methanosarcina sp., Methylorubrum extorquens) and 
phototrophic microbes (cyanobacteria, purple non-sulfur bacteria, 
diatoms, and green algae) capable of fixing CO2. We  also 
explore advances in engineering of oleaginous yeast naturally 
capable of efficient lipid toleration and accumulation (R. toruloides 
and Y. lipolytica) and finally soil bacteria with special focus 
on their propensity for survival on and degradation of aromatic 
substrates (B. subtilis and P. putida). Collectively, these advances 
move isoprenoid biosynthesis toward economic and 
environmental feasibility.

ADVANCES IN ISOPRENOID PATHWAY 
CONSTRUCTION:

All isoprenoids are generated from the common cellular 
precursors acetyl-CoA or glyceraldehyde 3-phosphate (G3P) 
and pyruvate via either the MVA or MEP pathway, respectively 
(Figure  1). These pathways share no homology and are 
evolutionarily distinct. Comparisons of the MVA and MEP 
pathway efficiencies, cofactors, and energetic requirements have 
been well documented in previous reviews (Dugar and 
Stephanopoulos, 2011; Yadav et  al., 2012). The recent 
characterization of archaeal MVA pathways, shunts, and 
alternative precursors for these pathways have harbored the 
development of unique and more efficient routes for isoprenoid 
production (Kang et al., 2017; Hayakawa et al., 2018; Clomburg 
et  al., 2019).

Mevalonate Pathway
The MVA pathway is native to eukaryotes, some ancient and 
often predatory gram-positive bacteria (Pasternak et  al., 2013), 
as well as, with some significant deviations, archaea (Boucher 

et  al., 2004). The canonical MVA pathway commences with a 
Claisen condensation of two acetyl-CoA thioester molecules 
followed by five sequential enzymatic steps that ultimately yield 
IPP. IPP is then converted to DMAPP by the isopentenyl 
diphosphate isomerase (IDI) for further condensation into 
isoprenoid compounds.

Over the last decade, the origin of the archaeal MVA  
pathway – either progenating from horizontal gene transfer or 
a cenancestor – has been hotly debated. However, recent analysis 
of monophylogenetic candidate phyla radiation and DPANN 
(Diapherotrites, Parvarcheota, Aenigmarchaeota, Nanoarchaeota, 
and Nanohaloarchaeota) have provided conclusive evidence to 
support an extant ancestral MVA in all domains of life (Castelle 
and Banfield, 2018). Most notably, the archaeal pathway lacks 
PMK, PMD, and IDI1. Instead, archaea have an alternative 
IDI2 similar in function to IDI1 and rely upon the recently 
discovered isopentenyl phosphate kinase (Dellas et  al., 2013) 
to generate IPP through unique MVA intermediates. Specifically, 
three distinctive archaeal MVA pathways have been elucidated: 
the haloarchaea-type MVA, the thermoplasma-type MVA, and 
the archaeal MVA pathway that is conserved throughout the 
kingdom (Hayakawa et  al., 2018; Thomas et  al., 2019; Yoshida 
et  al., 2020) as depicted in Figure  1.

Beyond the perplexities of phylogenetic classification 
(hereditary, horizontal gene transfer, etc), the elucidation of 
archaeal MVA pathways and their associated enzymes has 
proven instrumental in optimizing S. cerevisiae/E. coli production 
titers by capitalizing upon enzyme promiscuity or efficiency. 
Collectively, heterologous expression and fine-tuning of the 
MVA pathway to minimize flux bottlenecks has included the 
expression of genes across different domains. Overexpression 
of HMGS and HMGR from Staphylococcus aureus (Tsuruta 
et  al., 2009) as well as a kinase from the archaeal M. mazei 
(Primak et  al., 2011), for example, was successfully shown to 
improve C5 isoprenoid accumulation and laid the groundwork 
for longer chain isoprenoid production via the MVA pathway 
(George et  al., 2015).

Methylerythritol Phosphate Pathway
The MEP pathway is native to most Gram-negative bacteria 
and cyanobacteria as well as to algae and higher plants, but 
in the latter eukaryotes it is compartmentalized in the plastid. 
Despite being theoretically more efficient than the MVA pathway, 
the MEP pathway is more tightly regulated and challenging 
to engineer. Studies have elucidated rate limiting enzymatic 
steps in the MEP pathway, namely IDI and DXS, for β-carotene 
production (Yuan et  al., 2006). However, overexpression of 
MEP pathway genes can also have deleterious effects on actual 
isoprenoid synthesis due to accumulation of intermediates. Our 
fundamental understanding of MEP pathway regulation is 
incomplete, encompassing some feedback and feedforward 
mechanisms between downstream isoprenoids and MEP 
intermediates (Bitok and Meyers, 2012). Studies in higher plants 
and algae, which have demonstrated that circadian light/dark 
cycling have a significant influence on pathway regulation, 
further complicate our understanding (Vranová et  al., 2012).
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FIGURE 1 | A depiction of isoprenoid synthesis through the core 6 enzyme MVA and 7 enzyme MEP pathways. Also depicted are the newly discovered archaeal 
branches from the MVA pathway. The thermoarchaeal-type branch begins with mevalonic acid whereas the archaeal and haloarchaeal-type branches stem from 
MVAP. Typically, isoprenoids are synthesized by acetyl-CoA, pyruvate, and G3P, however IPP and DMAPP can also be synthesized from C5 alcohols, D-ribulose or 
D-ribulose-5-phosphate, and a synthetic route in which HMG-CoA is ultimately converted to prenol. AibAB, 3-methylglutaconyl-coenzyme decarboxylase; AtoB, 
acetyl-CoA acetyltransferase; BMD, bisphosphomevalonate decarboxylase; cbjALD, 3-methylcrotonyl-CoA reductase; DXR, 1-deoxy-D-xylulose 5-phosphate 
reductase; DXS, 1-deoxy-D-xylulose 5-phosphate synthase; HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase; HMGS, 3-hydroxy-3-methylglutaryl-CoA synthase; 
IDI, isopentenyl diphosphate isomerase; IPK, isopentenyl phosphate kinase; IspD, 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; IspE, 
4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; IspF, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; IspG, 4-hydroxy-3-methylbut-2-enyl diphosphate 
synthase; IspH, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase; LiuC, 3-hydroxy-3-methylglutaryl CoA dehydratase; M3K, Mevalonate 3-kinase; M3P5K, 
Mevalonate 2-phosphate-kinase; nDXP, 1-deoxyxylulose-5-phosphate synthase; PMD, phosphomevalonate decarboxylase; PMK, phosphomevalonate kinase; 
tAHMP, anhydromevalonate diphosphate decarboxylase; ThiM, hydroxyethylthiazole kinase; XK, xylulose kinase; YahK, aldehyde reductase.
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A recent metabolic control analysis employed -omics studies 
with recombineering to show that, normalized to DXS flux, 
IspG is the rate limiting step for isoprene synthesis with other 
enzymes increasing linearly with DXS concentration (Volke 
et  al., 2019). This is an important finding as isoprene is the 
simplest hemiterpene and therefore a good reporter for MEP 
tuning. Yet production did not increase with overexpression 
of IspG and IspH, suggesting instead that other cofactors may 
be  limiting (Volke et  al., 2019). Indeed, careful balancing of 
IspG and IspH expression has shown enhanced β-carotene 
and α-lycopene production (Li et  al., 2017), suggesting that 
pathway tuning should be based on an intricate, product-driven 
approach (e.g., different tuning for isoprene vs. higher chain 
length terpenoids) rather than an intuitive, generalizable rule. 
In general, careful expression balancing has been the most 
successful strategy to MEP pathway optimization due to the 
complexity of regulatory mechanisms in E. coli, though even 
careful balancing in other organisms like the cyanobacterium 
Synechococcus elongatus has proven challenging (Englund 
et  al., 2018).

Synthetic Isoprenoid Production Pathways
Although essential to isoprenoid production, high IPP and 
DMAPP accumulation is toxic and can result in significant 
growth inhibition (George et  al., 2018). This dilemma has 
led to a number of clever strategies for synthetic “growth-
decoupled” and “bypass” isoprenoid production routes that 
comprise components of MVA/MEP pathways but avoid IPP/
DMAPP accumulation. Many of these strategies have been 
informed or directly use elements from the recently elucidated 
archaeal MVA pathways, either through direct codon optimized 
expression or as templates for engineering promiscuous 
activity. A mevalonate decarboxylase from Halobacterium 
volcanii, for example, was expected to demonstrate conversion 
of MVAP to IP and employed as a template to rationally 
design PMDs for C5 alcohol production. The strategy 
successfully enhanced isoprenol production by bypassing 
intracellular IPP accumulation (Vannice et  al., 2014; Kang 
et  al., 2016). Further mutagenesis of a S. cerevisiae PMD 
in tandem with an endogenous phosphokinase resulted in 
an IPP-bypass pathway that yields IP and ultimately the 
highest isoprenol titer reported at 10.8 g/L (Kang et  al., 
2017, 2019).

Retro-biosynthetic approaches postulated that archaeal 
IPKs could enable phosphorylation of the C5 alcohols 
(isoprenol and prenol) into IPP and DMAPP, respectively. 
Direct feeding of alcohols for production of isoprenoid 
precursors could thereby decouple isoprenoid production 
from central carbon metabolism. Of particular interest were 
IPKs from Halobacterium volcanii, Methanothermobacter 
thermautotrophicus, Thermoplasma acidophilum, and 
Methanocaldococcus jannaschii (Chatzivasileiou et  al., 2019). 
In one study, IPKs from the latter three archaea were screened 
for activity and cloned into an E. coli strain harboring a 
β-carotene production pathway (Liu et al., 2016). Expression 
of the IPK from T. acidophilum and feeding of 2 mM prenol 

resulted in a 45% increase in β-carotene production and 
was further improved by site-specific mutagenesis to 97% 
(Liu et al., 2016). Growth-decoupled production of lycopene 
was also demonstrated by overexpressing a codon-optimized 
T. acidophilum IPK paired with an endogenous E. coli 
phosphatase PhoN, with titers nearing 190 mg/L in an mixture 
of 2.5 mM prenol and isoprenol (Chatzivasileiou et al., 2019; 
Clomburg et  al., 2019; Lund et  al., 2019). IPK-mediated 
production of carotenoid and neurosporene was also improved 
in E. coli by 18-fold and 45-fold, respectively, by decoupling 
terpene synthesis from central carbon metabolism through 
production on C5 alcohols (Rico et  al., 2019).

Several other strategies utilize two upper MVA pathway 
genes (E. coli AtoB, Staphylococcus aureus HMGS) prior to 
diverging with the expression of the hydratase LiuC and 
Myxococcus xanthus decarboxylase AibAB (Clomburg et  al., 
2019; Eiben et al., 2020). From there, Eiben et al. demonstrated 
80 mg/L isopentanol production through subsequent expression 
of M. xanthus AibC and Clostridium acetobutylicum AdhE2 
(Eiben et  al., 2020). In a more holistic approach, AibAB 
was followed with expression of the Clostridium beijerinckii 
acyl-CoA reductase (cbjALD), and E. coli YahK to generate 
prenol at the highest titer reported for biological production 
(Figure  1; Clomburg et  al., 2019). Conversion of prenol to 
DMAP was then accomplished by the E. coli 
hydroxyethylthiazole kinase (ThiM) and finally converted 
to DMAPP by the M. thermoautotrophicus IPK (Clomburg 
et  al., 2019). The unique approach employed by Clomburg 
et  al. succinctly demonstrates how novel enzymes wrought 
by recent discoveries can be  instrumental in designing 
pathways that circumvent metabolic bottlenecks to yield high 
titer production platforms.

To conclude, several studies have explored novel precursors 
to the MEP pathway using ribulose. The initial step in the 
MEP pathway, condensation of G3P and pyruvate with DXS, 
results in production of DXP with the loss of a CO2 molecule 
or one sixth of total carbon (Kirby et al., 2015). A D-ribulose 
5-phosphate shunt by nDXP was initially explored in E. 
coli by a semi-rational approach, which identified yajO and 
ribB gene mutants as candidate enzymes and improved 
carbon efficiency by direct conversion of C5 sugars to C5 
MEP intermediates. Expression of the nDXP shunt enabled 
a 4-fold increase in MEP derived bisabolene production 
(Kirby et al., 2015). This approach was further demonstrated 
in P. putida by expression of the mutant ribB gene, but 
with low efficiency (Hernandez-Arranz et  al., 2019). In an 
analogous work, promiscuous activity of fructose-6-phosphate 
aldolase in E. coli was used to generate D-ribulose from 
the glycolaldehyde and hydroxyacetone. Another DXP shunt 
overexpressed a native xylulose kinase (King et  al., 2017). 
These novel shunts, like the archaeal informed MVA pathways, 
have the potential to alleviate precursor flux limitations. 
While the MVA pathway modifications have had clear success, 
it has yet to be determined whether these shunts can address 
the regulatory challenges associated with MEP derived 
isoprenoid production.
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ADVANCES IN ISOPRENOID 
FUNCTIONALIZATION

The C5 precursors IPP and DMAPP are dephosphorylated, 
cyclized, and modified to create a structurally diverse group 
of over 70,000 chemicals through a coordinated enzyme network 
(Kirby and Keasling, 2009; Moser and Pichler, 2019). The first 
stage or module of isoprenoid biosynthesis is characterized by 
the successive addition of the diphosphate precursor via head-
to-head or tail-to-head condensation. The second module is 
an operation or series of operations conducted by terpene 
synthases (TSs) in which the terpenoid skeleton is 
dephosphorylated and cyclized. The third module involves 
further decoration by cytochrome P450s (CYPs), 
acetyltransferases, methyltransferases, dehydrogenases, and in 
some cases, glycosylations. This overall framework is consistently 
repeated in nature with some variations (Zhou and Pichersky, 
2020). In this section we  discuss recent advances in the 
functionalization of isoprenoids. Broad ranges of chemical 
production targets have been demonstrated and scaled from 
biofuels to pharmaceuticals by heterologous expression of prenyl 
diphosphate synthases, TSs, and CYPs.

Cytochrome P450s
Heme-thiolate monooxygenases or CYPs are an interesting class 
of enzymes that functionalize terpenes through oxygenation 
reactions (hydroxylation, dealkylation, demethylation, 
decarboxylation, cyclization, C-C bond cleavage, among others) 
and present an important opportunity for generating highly 
decorated natural products. To date, over 300,000 CYPs have 
been discovered, with less than 1% actually characterized (Li 
et  al., 2020; Liu et  al., 2020). There is particular interest to 
produce CYP-derived terpenoids in microbial chassis due to 
the high barriers of slow growth and costly deconstruction 
inherent to native plant extraction.

Engineering CYPs has significant implications for novel 
and unnatural bioproducts (Helfrich et  al., 2019; Xiao et  al., 
2019). The range of oxygenated terpenes is complemented 
by the sheer expanse of CYP availability in plants (Zhou 
and Pichersky, 2020). For example, CYPs are critical for the 
production of bioactive molecules with high pharmacological 
impacts. Case studies of microbial expression include 
production of precursor intermediates to artemisinin 
(CYP71AV1, aaCPR) and taxadiene (CYP725A4, tcCPR), 
which are natively produced by wormwood (Artemisia annua) 
and the Pacific yew tree (Taxus brevifolia) and were 
heterologously expressed in E. coli and S. cerevisiae, respectively. 
Indeed, the diversity and complexity of plant TSs, presented 
elsewhere (Karunanithi and Zerbe, 2019) offer tremendous 
potential as candidates for microbial production.

These specific examples demonstrate successful engineering 
of CYPs for pharmaceutical production, however functional 
plant CYP expression in microbes has proved challenging. 
Unfortunately, E. coli cannot naturally perform most 
posttranslational modifications and expression of membrane 
bound proteins like CYPs generates inclusion bodies or 

aggregates of insoluble proteins. The production of oxygenated 
taxanes in E. coli (Biggs et  al., 2016), for example, required 
extensive engineering of the CYP redox-partner cytochrome 
P450 reductase (CPR) pairings, N-terminal modifications 
for better solubility, and had significant repercussions on 
upstream MEP pathway balance. These pairings and 
modifications are necessary for any heterologous CYP 
expression in E. coli and vary depending on the selected 
proteins. Remarkably, although yeasts are naturally capable 
of many posttranslational modifications, express native CPRs, 
and require less N-terminal modification, meta-analyses have 
shown that E. coli studies tend to have higher yield CYPs 
than S. cerevisiae despite the necessity of many more genetic 
modifications (Hausjell et  al., 2018). Many CYP-reductase 
pairings have been explored in E. coli and S. cerevisiae as 
listed in Table  1.

In recent years, microbial expression of CYPs has produced 
many variable length terpenoids (Figure 2). Of special significance 
are the monoterpene perillyl alcohol, an anti-cancer drug, from 
limonene (Alonso-Gutierrez et al., 2013) and the sesquiterpenes 
nootkatone, a pharmaceutical, from valencene (Guo et al., 2018) 
and zerumbone, an antioxidant, from α-humulene (Zhang et al., 
2018). Of further interest are the pharmacologically relevant 
diterpenes taxadiene and oxygenated casbenes as well as 
triterpenoids glycerrhetol from 11-oxo-b-amyrin and betulinic 
acid from lupeol.

There have been many breakthroughs in CYP-derived terpenes 
in the last 5 years that may provide guidance in the engineering 
of other CYP expression systems. Their interest has led to 
toolkits for enhanced CYP selection for targeted product 
engineering to streamline oxyfunctionalization of terpenes 
(Hernandez-Ortega et al., 2018). Challenges remain with regards 
to CYP promiscuity, enantiomeric purity, and, perhaps most 
importantly, production titers. Hopefully, such tools will guide 
hypotheses and penetrate into the library of known but currently 
inaccessible plant bioactive terpenes for use in high titer 
therapeutic production.

Atypical Terpenoid Production
Several studies have investigated novel isoprenoid chain 
lengths through the expression of unique S-adenosyl-
methionine (SAM)-dependent methyltransferases that 
methylate the fundamental IPP/DMAPP building blocks and 
thereby break the natural C5 dogma. In a pioneering study, 
a GPP methyltransferase (2meGPP) from the cyanobacterium 
Pseudanabaena limnetica was expressed in S. cerevisiae with 
its native 2-methylisoborneol synthase and then with seven 
distinct plant monoterpene synthases (Ignea et  al., 2018). 
Each synthase generated a unique fingerprint of novel C11 
compounds. By demonstrating a range of C11 targets, the 
authors provided a proof of concept for future enzyme 
optimization strategies toward specific C11 targets. In another 
work, IPP SAM-dependent methyltransferases enable 
conversion of IPP to C6 and C7 prenyl diphosphates with 
a methyltransferase from Streptomyces monomycini, which 
could then generate C11, C16, and C17 terpenes as well 
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as zeaxanthin-like C41, C42, and C43 compounds depending 
on methylation (Drummond et  al., 2019). A product-driven 
approach was also able to elucidate a C-methyltransferase 
that generated sodoferin, an atypical C16 sesquiterpene (von 
Reuss et  al., 2018). The work demonstrated that sodoferin, 
which is produced naturally and perhaps exclusively by a 
Serratia plymuthica, could be  produced in E. coli through 
heterologous expression of the methyltransferase and TS 
(von Reuss et al., 2018). A final, completely divergent approach 
utilizes a thiolase from lepidoptera (butterflies and moths) 
that naturally produces juvenile hormones in the form of 
C16 methylated diterpenoids (Eiben et al., 2019). Specifically, 
the thiolase PhaA condenses a propionyl-CoA with an 
acetyl-CoA as opposed to the standard AtoB of the MVA 
pathway, which condenses two acetyl-CoA substrates.

It is probable that the control of specific methylation sites 
decreases with compound size such that targeting specific 
triterpenoids would remain an obstacle. In the case of C11 
targets, site-directed mutagenesis of the monoterpene synthases 
did enable higher selectivity (Ignea et  al., 2018), which is 
encouraging for future engineering. These unique approaches 
have expanded the boundaries of isoprenoid synthesis well 
beyond the C5 rule, though admittedly practical applications 
of these novel compounds have yet to be  realized.

Meroterpenoids
Partial isoprenoids or meroterpenoids are a class of compounds 
containing an isoprenoid chain paired with another structure 
and may have beneficial bioactive properties. Broadly, 
meroterpenoids include cytokinins, quinones, steroids, and 
porphyrins like heme A and chlorophyll a. The optimization 
of heterologous meroterpenoids poses a unique engineering 
challenge as the isoprenoid compound must be  cogenerated 
with another structure, then converted to the terpenoid by a 
specified synthase.

A good case study is the production of cannabinoids in 
S. cerevisiae. Cannabinoids are of commercial interest but, 
like many natural products, suffer from low in planta yields. 
In a recent publication, the production of olivetolic acid from 
acetyl-CoA was engineered using a six gene pathway (Luo 
et  al., 2019). Prenylation of olivetolic acid using a Cannabis 
sativa prenyltransferase (csPT4) and further heterologous 
synthases led to in vivo production of cannabigerolic acid, 
Δ9-tetrahydrocannabinolic acid, cannabidiolic acid, 
Δ9-tetrahydrocannabivarinic acid, and cannabidivarinic acid 
(Luo et  al., 2019). The work not only presents a novel 
production scheme in S. cerevisiae but demonstrates the ease 
with which transgenic elements can be  translated into 
production chassis.

TABLE 1 | CYP expression, reductase pairing, and production of oxygenated terpenoids in various microbial hosts.

CYP Reductase pair Source organism(s)
Expression 
organism

Precursor Product Titer Ref.

CYP71AV1 aaCPR Artemisia annua S. cerevisiae Amorphadiene Artemisinic acid 100 mg/L Ro et al., 2006
CYP71AV1 aaCPR A. annua E. coli Amorphadiene Artemisinic acid 5.8 mg/L Chang et al., 2007
CYP706B1 ctCPR Candida tropicalis E. coli Cadinene 8-hydroxycadinene 105 mg/L
CYP71BA1 atCPR Zingiber zerumbet,  

A. thaliana
E. coli α-humulene 8-hydroxy-a-

humulene
2.972 μg/L Yu et al., 2011

CYP76AH1 atCPR1 Salvia miltiorrhiza,  
A. thaliana

S. cerevisiae Miltiradiene Ferruginol 10.5 mg/L Guo et al., 2013

CYP153A6 mCPR Mycobacterium sp. E. coli Limonene Perillyl alcohol 100 mg/L Alonso-Gutierrez 
et al., 2013

HPO atCPR Hyoscyamus muticus, 
A. thaliana

P. pastoris (+)-valencene (+)-nootkanone 208 mg/L Wriessnegger et al., 
2014

CYP725A4 tcCPR Taxus cuspidata E. coli Paclitaxel Oxygenated taxanes 570 mg/L Biggs et al., 2016
CYP726A20 jcCPR1 Jatropha curcas S. cerevisiae Casbene Oxidized casbanes ~1 g/L Wong et al., 2018
CYP716A12 atCPR Callitropsis 

nootkatensis,  
A. thaliana

Y. Lipolytica (+)-valencene (+)-nootkanone 978.2 μg/L Guo et al., 2018

CYP71BA1 atCPR Z. zerumbet;  
A. thaliana

S. cerevisiae a-humulene A-humulene 
8-hydroxylase; 
zerumbone

40 mg/L Zhang et al., 2018

CYP716A12 atCPR Medicago truncatula,  
A. thaliana

Y. lipolytica Lupeol Betulinic acid 26.53 mg/L Sun et al., 2018

CYP716A47 pgCPR1 Panax ginseng,  
A. thaliana

S. cerevisiae Dammarenediol II Protopanaxidiol 11.02 g/L Wang et al., 2019

CYP716A12 mtCPR M. truncatula Phaeodactylum 
tricornutum

Lupeol Betulinic acid 0.1 mg/L D’Adamo et al., 
2019

BcABA1

BcABA2

bcCPR1 Botrytis cinerea S. cerevisiae FPP Abscisic acid 4.7 mg/L Otto et al., 2019

CYP72A63 atCPR1, mtCPR2, 
mtCPR3, guCPR2

A. thaliana, M. 
truncatula, Glycyrrhiza 
uralensis

S. cerevisiae 11-oxo-b-amyrin Glycyrrhetol 31.8 mg/L Sun et al., 2020

Culture conditions, scale, and medium vary significantly. HPO, hyoscyamus muticus premnaspirodiene oxygenase; CPR, cytochrome P450 reductase.
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Another relevant example is the production of prenylated 
flavonoids, which are derived from cyclic amino acid biosynthesis 
and can serve as nutraceuticals and medicines. They, again, 
are found in low natural abundance in plant species like Sophora 
flavescens, a shrub and Humulus lupulus, brewing hops (Yang 
et  al., 2015). Production of naringenin in S. cerevisiae coupled 
with overexpression of a plant flavonoid prenyltransferase enabled 
production of the pharmaceutically relevant 8-prenylnaringenin 
(Levisson et  al., 2019). Although both strategies were limited 
to yeast, they underline the flexibility of engineering 

meroterpenoid production in microbes to address commercial 
needs and provide a promising opportunity for accessing low 
abundance natural products.

Unique meroterpenoids are also generated in high natural 
abundance in certain microbes. Archaea differ from bacteria 
primarily in membrane composition. Archaea produce 
isoprenoid-derived glycerol lipid ethers (namely ester linked 
sn-glycerol 3-phosphates rather than ether linked sn-glycerol 
1-phosphates) that facilitate growth in unique environments. 
Full reduction of these long length C20/C40 membrane isoprenoid 

FIGURE 2 | Overview of varied length terpenoids from their diphosphate precursors (red circle, IPP; blue circle, DMAPP; green circle, FPP) with further modification 
by TSs and subsequent decoration by CYPs. The production of unnatural C11 monoterpenoid compounds via methyltransferase 2me-GPP is indicated with red 
arrows. CAS, casbene synthase; LS, limonene synthase; clLS, Citrus limon limonene synthase; 2me-GPP, GPP methyltransferase; TxS, taxadiene synthase; bAS, 
β-amyrin synthase; LUP1, lupeol synthase 1; ValS, valencene synthase; ZSD1, zerumbone synthase; ZZS1, α-humulene synthase.
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chains is accomplished by downstream geranylgeranyl reductases 
(GGR). While they provide an evolutionary advantage for 
survival in extreme conditions, membrane isoprenoids may 
also be  utilized to generate unsaturated chemicals of interest 
(Jain et  al., 2014). Archaeal lipids, namely archaeol and 
caldarchaeol, have been identified as potentially valuable for 
the formation of archaeosomes. Archaeosomes are lipid vesicles 
composed of archaeal derived lipids and have shown higher 
physicochemical stability than liposomes, a conventional drug 
delivery system. As a result, archaeosomes have been singled 
out as a possible adjuvant and could prove particularly valuable 
in slow release drug delivery systems (Caforio and 
Driessen, 2017).

INDUSTRIAL PRODUCTION FROM C1 
CHEMICAL FEEDSTOCKS

C1 substrates are typically generated as industrial and 
petrochemical byproducts and, in general, C1 substrates are 
stable, abundant, and inexpensive. Advances in sequestration 
and hydrogenation of atmospheric CO2 via heterogeneous 
catalysts have enabled the conversion of emissions into valuable 
C2+ substrates (Ye et  al., 2019). Metabolic engineering of 
organisms capable of C1 growth is an enticing opportunity 
for achieving cost parity with petrochemical products while 
simultaneously improving sustainability metrics. C1 metabolism 
may be  subdivided into phototrophic, methylotrophic, or 
formatotrophic microbes that consume CO2, methane/methanol, 
and formate/formic acid, respectively. Here, we describe recent 
approaches for converting C1 substrates into isoprenoid 
precursors with specific attention to works demonstrating 
isoprenoid production. The generalized pathways for C1 
metabolism are illustrated in Figure  3.

Methylotrophic Isoprenoid Production
Methane is an abundant byproduct of many chemical processes 
including fracking and petroleum drilling (Clomburg et  al., 
2017). In terms of greenhouse gas emissions, methane is 
approximately 20 times more potent than CO2 and excess 
capacity is flared at refineries, lending to an increase in direct 
CO2 emissions and a loss of revenue (Conrado and Gonzalez, 
2014). Methane is also generated through anaerobic digestion 
of waste biomass. To date, many successful chemical platforms 
utilize methane as a feedstock to generate alcohols, carboxylic 
acids, as well as other common C2/C3 chemicals (Kuhl et  al., 
2012). While biological conversion rates tend to be  lower, 
certain methylotrophic organisms have arisen as potential 
candidates to capitalize upon methane/methanol availability for 
more complex bioproduction. In this section, we discuss recent 
advances in isoprenoid biosynthesis in methylotrophic cell 
factories across domains.

Archaea are well regarded for their ability to thrive in 
nutrient-limited anaerobic and extreme conditions. As a result, 
many archaea have evolved highly efficient strategies for C1 
assimilation. On one hand this has helped elucidate more 

efficient MVA pathways as previously described, but on the 
other it makes the engineering of tightly regulated archaeal 
pathways that are geared toward energy conservation 
thermodynamically challenging. Nonetheless, one study 
demonstrated production of isoprene from methanol in 
Methanosarcina acetivorans and Methanosarcina barkeri under 
anaerobic conditions and showed a redirection of electron flux 
from membrane precursors in favor of isoprene accumulation 
(Aldridge et  al., 2021). The diverted isoprene accounted for 
4% of total carbon flux.

More substantial success has been achieved in methylotrophic 
bacteria, many of which thrive in more mesophilic conditions. 
Methylotrophic bacteria are predominantly divided into two 
types: Type I  assimilates formaldehyde using the RuMP cycle 
and Type II assimilates formaldehyde via the serine cycle. 
Methylorubrum extorquens AM1 (formerly Methylobacterium 
extorquens AM1), a Type II methylotroph, has been studied 
for over 60 years such that many genetic tools are available 
(-omics data, metabolic networks, genome-scale model; Schrader 
et  al., 2009). M. extorquens fermentations have produced 
methanol-derived products ranging from 1-butanol (Hu and 
Lidstrom, 2014) to polymers (Orita et  al., 2014). A series of 
stepwise optimizations in M. extorquens AM1 included 
heterologous expression of the M. xanthus MVA genes, an 
FPP synthase from S. cerevisiae, α-humulene synthase from 
Zingiber zerumbet, and reduced carotenoid flux. Combinedly, 
these modifications resulted in the accumulation of 1.65 g/L 
α-humulene on methanol in fed-batch cultivation, which stands 
as the highest titer reported (Sonntag et al., 2015). Other works 
have explored high titer production of the MVA pathway 
intermediates, including 2.59 g/L mevalonic acid from methanol 
on minimal media using a mevalonate biosensor strategy (Liang 
et al., 2017), which suggests that high titer production of other 
isoprenoids is also possible. As another attractive feature, M. 
extorquens harbors the ethylmalonyl-CoA pathway (EMCP) 
that includes a series of anaperlotic activated CoA esters useful 
for pathway remodeling (Schrader et  al., 2009; Schada von 
Borzyskowski et  al., 2018). Interpathway metabolite exchange 
has risen as a major avenue for further C1 metabolism, especially 
for formatotrophs as discussed later.

Recently, the methylotrophic yeast Pichia pastoris (formerly 
known as Komagataella phaffii) has arisen as a promising 
candidate for isoprenoid production on methanol. P. pastoris 
maintains several unique characteristics including a tightly 
regulated and highly expressed alcohol oxidase AOX1, which 
catalyzes oxidation of methanol to formaldehyde. AOX1 is 
strongly induced by methanol but repressed by glucose and 
glycerol (Hartner and Glieder, 2006). As a result, fed-batch 
production schemes have been designed to partition high cell 
density growth on glycerol/glucose and production on methanol. 
This strategy has successfully demonstrated the production of 
714 mg/L lycopene (Zhang et  al., 2020), (+)-ambrein, squalene 
(Moser et al., 2018), and 208 mg/L (+)-nootkatone (Wriessnegger 
et  al., 2014). Interestingly, the latter study successfully used 
an approach for CYP production that had failed in S. cerevisiae. 
More involved engineering of P. pastoris has demonstrated de 
novo production using heterologously expressed 
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Calvin-Benson-Bassham (CBB) Cycle enzymes along with native 
genes in the xylulose monophosphate (XuMP) cycle and deletion 
of certain fatty acid enzymes, ultimately yielding a mutant 
exhibiting autotrophic growth on CO2 (Gassler et  al., 2020).

Methylotrophic production has garnered special interest for 
reducing bioproduction costs either through valorization of 
commercial waste streams or CO2 conversion. Table 2 provides 
a list of methylotrophic production strains, their respective 
C1 substrates, and product titers. In most cases, titers are 

significantly lower than comparative production in E. coli or 
S. cerevisiae and methylotrophic cultures require significant 
supplementation with a rich medium that may somewhat reduce 
the benefits of C1 production.

Past attempts at methylotrophic production have historically 
been hindered by low carbon and energy efficiencies and 
addressing these issues by leveraging RuMP/Serine cycles with 
the CBB cycle have been long postulated (Conrado and Gonzalez, 
2014). Recently, major breakthroughs in P. pastoris demonstrated 

FIGURE 3 | An amalgamated and simplified depiction of relevant C1 metabolic pathways, namely the ribulose monophosphate (RuMP) cycle, the xylulose 
monophosphate (XuMP) cycle, the Calvin-Benson-Bassham (CBB) cycle, the serine cycle, reductive acetyl-CoA (Wood-Ljungdahl) cycle, and the reductive glycine 
pathway. Intracycle reactions and conversion of metabolites by glycolysis is not shown. Emphasis is placed on precursors for isoprenoid and central carbon 
metabolism, namely G3P, acetyl-CoA, and pyruvate. For clarity, only the enzymes involved in the initial C1 assimilation are listed. For simplicity, FALDH is the 
depicted enzyme for conversion of formaldehyde to formate and the canonical methanogenic reactions are omitted. 1,3BPG, 1,3-bisphosphoglyceric acid; 6PG, 
6-phosphogluconate; DAS, dihydroxyacetone synthase; DHA, dihydroxyacetone; DHAP, dihydroxyacetone phosphate; F6BP, fructose 6-bisphosphate; F6P, 
fructose 6-phosphate; FALDH, formaldehyde dehydrogenase; FDH, formate dehydrogenase; FTL, formate-THF ligase; G3P, glyceraldehyde 3-phosphate; G6P, 
glucose 6-phosphate; H6P, hexulose 6-phosphate; HPS, hexulose-6-phosphate synthase; MDH, methanol dehydrogenase; MMO, methane monooxygenase; PEP, 
phosphoenolpyruvate; PGA, 3-phosphoglyceric acid; Ru5P, ribulose 5-phosphate; RuBisCO, ribulose 1,5-bisphosphate carboxylase-oxygenase; RuBP, ribulose 
bisphosphate; THF, tetrahydrofolate; Xu5P, xylulose 5-phosphate.
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de novo production using heterologously expressed CBB cycle 
enzymes, overexpressed native genes in the XuMP cycle, and 
deletions of certain fatty acid enzymes. The mutant was ultimately 
capable of autotrophic growth on CO2 (Gassler et  al., 2020). 
Likewise, artificial methanotrophy and formatotrophy have been 
explored in a complex rewiring of E. coli (Bennett et  al., 2018; 
Chen et  al., 2020; Kim et  al., 2020). These seminal works are 
excellent examples of how systems biology can be  applied to 
tune precursors, adapt strains, and incorporate well-defined 
isoprenoid pathways for higher production efficiency at lower 
substrate costs.

Phototrophic Isoprenoid Production
Phototrophic growth is characterized by the photosynthetic 
conversion of CO2 to sugars via complex photoreductive reactions 
and the Calvin-Benson-Bassham cycle. Photosynthetic organisms 
naturally produce carotenoids in high concentrations to cope 
with excess intracellular reactive oxygen species. Specifically, 
lutein is used in non-photochemical quenching of chlorophyll 
triplets during photosynthesis (Dall’Osto et al., 2006), zeaxanthin 
for heat dissipation and photoprotection, while carotene and 
chlorophyll absorb light. In many cases, gains from the 
engineering of the genetic architecture of photosynthesis (e.g., 
light harvesting complexes, RuBisCo) have been limited. 
Nonetheless, cyanobacteria, which only exhibit the MEP pathway, 
have become major targets for metabolic engineering due to 
their genetic plasticity and malleability with respect to isoprenoid 
precursors, especially through carbon sinks.

Engineered carbon sinks operate on the hypothesis that 
carbon fixation reactions are faster than downstream carbon 
utilizing growth reactions such that the accumulation of 
intracellular carbon metabolites reduces NADPH consumption 
and ultimately inhibits photosynthesis (Oliver and Atsumi, 
2015). Introduction of exogenous genes demonstrated a 1.8-fold 
increase in carbon yield for the generation of 2,3-butanediol 

(Oliver and Atsumi, 2015). Others have shown sucrose, ethylene, 
and isobutyraldehyde production all while enhancing 
photosynthetic activity through more optimal use of the electron 
transfer chain (Ducat et  al., 2012; Santos-Merino et  al., 2021). 
This effect was also found to be  additive when multiple sinks 
were introduced, suggesting that “sink engineering” could 
be  conceptually applied to secondary metabolite synthesis 
through downstream modifications of the MEP pathway (Santos-
Merino et  al., 2021). Several works have capitalized on this 
upregulation of photosynthesis by combining this source/sink 
approach with computationally informed modification of 
limonene synthase, resulting in a 100-fold production 
improvement in limonene production (Wang et  al., 2016) and 
potential applications for other isoprenoids.

Cyanobacterial studies have also made improvements through 
direct modification of native isoprenoid pathway genes in 
combination with a product-specific terminal synthase. 
Synechococcus elongatus and Synechocystis sp. PCC 6803 have 
been primary targets for production with recent attempts 
focusing on generation of isoprene, with a hallmark study 
demonstrating 1.26 g/L production (Gao et al., 2016; Yang et al., 
2016) albeit over several weeks. This feat was accomplished 
through the overexpression of MEP pathway enzymes though, 
more importantly, by bioprospecting for a more efficient isoprene 
synthase. Comprehensive analyses of the MEP pathway metabolic 
bottlenecks in S. elongatus have also been studied by a systematic 
investigation of each enzymatic step in the MEP pathway, 
specifically using isoprene as a simple reporter for MEP flux 
(Englund et  al., 2018). The work found that the regulatory 
circuitry of the S. elongatus MEP pathway is, like that of many 
other MEP pathway harboring organisms, complex and that 
a simple overexpression of select pathway genes does not 
necessarily equate to higher/lower production. Despite this 
complexity, products including squalene (Pattanaik et al., 2020), 
bisabolene (Sebesta and Peebles, 2020; Rodrigues and Lindberg, 
2021), and α-farnesene (Lee et  al., 2017) have been produced 
in S. elongatus through some combination of idi, dxs, ispA, 
and terminal synthase overexpression. It is possible that 
cyanobacteria could benefit from acetyl-CoA/pyruvate precursor 
rebalancing. In one study, overexpression of a pyruvate 
dehydrogenase increased the pool of available acetyl-CoA for 
isopropanol production (Hirokawa et  al., 2020) and could, in 
theory, be applied to facilitate a heterologously expressed MVA 
pathway or, in the reverse, to enhance pyruvate accumulation.

Unlike cyanobacteria, eukaryotic algae maintain both the 
MVA pathway, located in the cytosol, and the MEP pathway, 
which is sequestered to the chloroplast in proximity to CO2-
derived metabolites from photosynthesis. Algae have been hailed 
as candidate bioproduction microbes for many years due to 
their propagation in many media and thus potential for growth 
in wastewater streams like agricultural runoff rich in phosphorus 
and nitrogen. In general, however, eukaryotic algae are notably 
more challenging to engineer due to their comparably smaller 
metabolic toolkits and robust regulatory mechanisms on 
metabolic flux. Studies have established their propensity for 
some algal isoprenoid production in low titers including 
patchoulol (Lauersen et al., 2016), bisabolene (Wichmann et al., 

TABLE 2 | Production of isoprenoids by methylotrophic organisms.

Organism Feedstock Product Titer Ref.

Methylomonas 
sp. 16a

Methane astaxanthin 2.4 mg/g CDW Ye et al., 2007

P. pastoris Methanol** (+)-nootkanone 208 mg/L Wriessnegger 
et al., 2014

P. pastoris Methanol** (+)-valencene 136 mg/L
M. extorquens Methanol a-humulene 1.65 g/L Sonntag et al., 

2015
P. pastoris Methanol** (+)-ambrein 105 mg/L Moser et al., 

2018
P. pastoris Methanol** squalene 58 mg/L
P. pastoris Methanol** lycopene 714 mg/L Zhang et al., 

2020
M. alcaliphilum Methane α-humulene 0.75 mg/g 

CDW
Nguyen et al., 
2020

M. acetivorans Methanol* isoprene 0.954 mM/L Aldridge et al., 
2021

M. barkeri Methanol* isoprene 36.0 μM/L

*Complex medium; **Carbon sources switched from glycerol to methanol in fed-batch 
fermentation.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Carruthers and Lee Diversifying Isoprenoid Platforms

Frontiers in Microbiology | www.frontiersin.org 12 December 2021 | Volume 12 | Article 791089

2018), and mixed diterpenoids (Lauersen et  al., 2018) in the 
modal alga Chlamydomonas reinhardtii with CO2 as the sole 
carbon source. Another alga, Dunaliella salina, has been singled 
out due to its resilience to highly saline environments that 
serve as a natural antibiotic against contaminants like protozoa, 
bacteria, dinoflagellates, and other algae. D. salina also naturally 
accumulates β-carotene under abiotic stress and remains one 
of the few commercially exploited green algae (Borowitzka, 
2013; Fachet et  al., 2020) along with Haematococcus pluvialis 
for astaxanthin production. Lastly, Botryococcus braunii, a 
colonial green alga, is rich in isoprenoid derived lipids that 
consist of 35% dry cell weight (DCW) biomass. The isoprenoids 
generated are characterized by race and consist of either 
Botryococcenes (C30–C37), methylated squalenes (C31–C34), 
or odd-number n-alkadienes or trienes (C23–C33; Metzger 
and Largeau, 2005). Despite their unique composition, broad 
attempts to culture and optimize isoprenoid production have 
been limited in part due to slow growth comparative to other 
green algae (Morales-Sánchez et al., 2017). Somewhat remarkably, 
both commercial successes stem from unmodified organisms 
that simply generate isoprenoids under abiotic stress conditions.

Diatoms are a unique subset of algae with a characteristic 
cell-wall composed of silica. Certain diatoms are capable of 
generating highly branched isoprenoids (HBIs) like trienes, 
tetraenes, and pentaenes intrinsic to some diatoms with potential 
for pharmaceutical or biofuel usage (Athanasakoglou et  al., 
2019), possibly generated by promiscuous activity of diatom 
specific farnesyl pyrophosphate synthases (Ferriols et al., 2015). 
A specific diatom, Haslea ostrearia maintains a plastidal MEP 
cycle with a cytosolic MVA pathway and has demonstrated 
significant crosstalk between these localized elements, suggesting 
complex regulatory mechanisms perhaps in response to external 
stimuli and pose potential opportunities to tune both pathways 
for downstream C5 precursors depending on target terpenoids.

A final distinctive group of phototrophic organisms are 
purple non-sulfur bacteria, which are identified by a unique 
color that stems from a combination of pigmented carotenoids. 
In particular, Rhodobacter sphaeroides is a well-established 
isoprenoid producer, with industrial production of sesquiterpenes 
valencene and nootkanone demonstrated by BASF (Beekwilder 
et  al., 2014; Schempp et  al., 2018). Like many bacteria, R. 
sphaeroides accumulates polyhydroxybutyrate (PHB), a 
biopolymer with industrial bioplastic applications in of itself, 
under nitrogen limited conditions. Elimination of the PHB 
biosynthetic pathway (phaC1, phaC2) and expression of the 
heterologous MVA pathway contributed to increased flux through 
the isoprenoid pathway under nitrogen limited conditions (Orsi 
et  al., 2020b).

As a whole, photosynthetic organisms remain tantalizingly 
elusive for high titer heterologous isoprenoid production despite 
advances in “sink engineering” and successes in the production 
of certain short chain biofuels.

Formatotrophic Production Pathways
Formate remains an enticing C1 substrate due to the relative 
ease with which it may be generated. Proposed strategies include 

the hydration of syngas, the hydrogenation of CO2, and 
electrochemical reduction of CO2 using, preferably, renewable 
generated electricity (Yishai et  al., 2016). Bioproduction on 
formate remains challenging, though recent works have attempted 
to address this challenge by mapping natural pathways within 
the context of microbial metabolism (Bar-Even, 2016). The 
intrinsic nature of formate as an intermediate and availability 
of natural formate assimilation pathways like the serine, reductive 
acetyl-CoA, RuMP, XuMP, and reductive glycine pathways have 
led to the proposal of many synthetic pathways that could 
theoretically outperform their natural counterparts (Bar-Even, 
2016). This hypothesis was encouraged by a previous study 
that determined formate, not formaldehyde, was the major 
branch point in M. extorquens methylotrophy (Crowther et  al., 
2008). In particular, this suggested that direct feeding of formate 
could be  energetically beneficial due to the affiliated reduction 
of NAD+ in aldehyde dehydrogenase thereby further supporting 
formatotrophic pathways (Crowther et  al., 2008).

Acting on this hypothesis, M. extorquens genes encoding 
formate-THF ligase, methenyl-THF cyclohydrolase, and 
methylene-THF dehydrogenase were heterologously expressed 
in E. coli to enable growth on formate through the serine 
cycle. In combination with downstream modifications, the strain 
was capable of 90 mg/L ethanol production on sugar-free formate 
minimal medium by adaptive laboratory evolution (ALE; Kim 
et al., 2019). In a subsequent study, expression of the reductive 
glycine pathway (rGlyP) in E. coli enabled growth on methanol 
and formate (Kim et  al., 2020). Despite clear demonstration 
of formate-based growth here and M. extorquens isoprenoid 
production on methanol above, few formate derived isoprenoid 
compounds have been shown. A single exception was a study 
of the archaea Methanococcus maripaludis, which is capable 
of growth on H2, CO2, formate, and acetate as substrates under 
strict anaerobic conditions. Heterologous expression of a geraniol 
synthase enabled production of 4.0 mg/g and 2.8 mg/g geraniol 
on H2/CO2 and formate feeds, respectively (Lyu et  al., 2016). 
Although meager, this represents a baseline for further isoprenoid 
production and, with the addition of the groundbreaking 
production of formatotrophic E. coli works, likely represents 
the first of many formate-based production strains.

So far, we have described a number of routes for isoprenoid 
production on C1 substrates, including several instances in 
which whole pathways have been translated between organisms. 
Life cycle assessment (LCA) and technoeconomic analysis (TEA) 
will both be  critical in quantifying the relative process level 
sustainability and monetary impacts, validating whether modified 
microbes are competitive with conventional production on 
glucose or from petroleum, and prioritizing future optimization 
opportunities based on projected impact gains. Growth and 
production on C1 substrates are inherently more sustainable 
than on pure sugar substrates, however the sustainability of 
the entire process from cradle-to-gate will be  contingent on 
nontrivial improvement of production titer, rate, and yield. 
While LCAs and TEAs are common in CO2-derived biofuel 
production, they remain uncommon for all other C1 substrates. 
Indeed, the first LCA/TEA of a methane-derived bioproduct 
was only recently published (Fei et  al., 2020). Nonetheless this 
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initial study provides a baseline for future valorization of other 
C1-derived chemicals and, hopefully, represents a first effort 
to quantify the economic and sustainability advantages of 
C1 substrates.

ISOPRENOID PRODUCTION ON 
LIGNOCELLULOSIC CARBON SOURCES

Certain microbes are capable of valorizing more complex waste 
streams due to unique evolutionary predispositions. Here, 
we describe two strains of oleaginous yeasts, Yarrowia lipolytica 
and Rhodosporidium toruloides, capable of high titer isoprenoid 
production from woody biomass and waste cooking oil (WCO). 
Lastly, we  describe two prototypical isoprenoid production 
platforms: P. putida, which is a prime candidate for conversion 
of pretreated lignocellulosic biomass, and B. subtilis, a candidate 
bacteria renown for high titer protein production.

Yarrowia lipolytica
The oleaginous yeast Yarrowia lipolytica can naturally assimilate 
many atypical carbon sources including glycerol, organic acids, 
succinate, citrate, and even WCO. Likewise, Y. lipolytica is of 
keen interest due to its natural accumulation of β-carotene, 
farnesene, and linalool. Multi-copy pathway integration has 
proven especially successful in targeted isoprenoid overproduction 
(Xie et al., 2015). A recent work applied a random chromosomal 
integration approach of multiple MVA pathway operons, cofactor 
modulation, and culture condition tuning produced 25.55 g/L 
α-farnesene on YPD complex medium over 20 days in fed-batch 
production with significant byproduct formation (Liu et  al., 
2019). A similar strategy led to 6.5 g/L production of β-carotene 
by chromosomal integration of multiple copies of CarB, CarRP, 
and GGPPS in fed-batch production with over 40 g/L lipid 
byproduct (Larroude et al., 2018). Other reports of note include 
high squalene production at titers of 531.6 mg/L (Gao et  al., 
2017) and 402.4 mg/L (Arnesen et  al., 2020). Building upon 
previous limonene demonstrations with neryl diphosphate 
synthase (tNPPS1) from Agastache rugosa (Korean mint) and 
limonene synthase from Solanum lycopersicum (tomato; Cao 
et al., 2016), Y. lipolytica ultimately yielded 165.3 mg/L limonene 
on glycerol/citrate (Cheng et  al., 2019). More comprehensive 
descriptions of Y. lipolytica regulatory changes for production 
have also been published (Arnesen et  al., 2020).

Y. lipolytica is also capable of converting fatty acids into 
C2 substrates through the beta-oxidation pathway and has high 
native lipid tolerance. Recent works have demonstrated high 
lipid production of modified Y. lipolytica on pretreated 
lignocellulosic biomass (0.11 g lipids/g sugars), even approaching 
efficiencies observed on glucose (Yook et  al., 2020). In fact, 
Y. lipolytica has shown up to 90% DCW lipid accumulation 
(Park et al., 2018), which demonstrates an encouraging propensity 
for lipid tolerance. This tolerance has been harnessed by works 
that have grown Y. lipolytica strains on WCO. Growth on 
WCO increased lipolytic activity (Domínguez et al., 2010) and, 
in one study, a Y. lipolytica strain expressed D-limonene synthase 

(Citrus limon) and L-limonene synthase (Mentha spicata) to 
yield 2.4 mg/L of each enantiomer on WCO (Pang et al., 2019). 
Although this strain has produced only 11 mg/L of each 
enantiomer on complex medium, this stands as an excellent 
proof of concept for future ALE and optimization 
studies on WCO.

Xylose catabolism and overcoming catabolite repression are 
major boundaries to bioproduction on lignocellulosic biomass 
(Sun et  al., 2021). One study showed that carbon source 
switching enabled production of 20.6 mg/L and 15.1 mg/L 
limonene in Y. lipolytica from xylose and a 50% lignocellulosic 
biomass 50% YP rich medium broth, respectively (Yao et  al., 
2020). This feat was accomplished by overexpression of a native 
xylulose synthase with heterologous expression of xylitol 
dehydrogenase and xylulose reductase from Scheffersomyces 
stipitis (Yao et al., 2020). Together, these modifications provided 
increased G3P production and, ultimately, increased flux through 
the MVA pathway.

Rhodosporidium toruloides
R. toruloides has attracted attention due to natural high titer 
lipid and carotenoid accumulation, namely torularhodin, torulene, 
γ-carotene, and β-carotene, as a convenient carbon storage 
mechanism under nitrogen-limited conditions (Park et  al., 
2018). Originally isolated from wood pulp, R. toruloides can 
also metabolize many components of lignocellulosic biomass 
and has shown simultaneous uptake not only of pentose and 
hexose sugars, but of p-coumaric acid and aromatic motifs 
analogous to lignin, which suggest that it could be  adapted 
for direct consumption of lignin (Yaegashi et  al., 2017). These 
traits are further complemented by its ability to thrive on 
various pretreatment conditions. For example, growth has been 
demonstrated on ionic liquid (choline α-ketoglutarate) and 
alkaline pretreated cellulosic biomass, with the latter accumulating 
680 mg/L α-bisabolene in fed-batch reactor conditions (Yaegashi 
et al., 2017). Further optimization of the α-bisabolene synthase 
cassette yielded 4-fold increased titer on lignocellulosic biomass, 
reaching a final titer of 2.2 g/L on corn stover hydrolysate 
(Kirby et  al., 2021). 1,8-cineole was also accumulated to a 
titer of 1.4 g/L on the same substrate, both of which represent 
titers that, even without significant core metabolic rewiring 
or downregulation, outstrip comparative E. coli and S. cerevisiae 
production. Importantly, pilot scaling of R. toruloides to a 
1,000 L bioreactor for lipid production has been successfully 
shown (Soccol et  al., 2017). Collectively, these traits establish 
R. toruloides as a potential microbial host for lignin valorization. 
The translation of successful pilot scale R. toruloides lipid 
production platforms to strains with tuned lipid reflex pathways 
could elevate the yeast to an industrially competitive isoprenoid 
production platform.

Pseudomonas putida
As noted with Y. lipolytica, tolerance to and simultaneous 
uptake of multiple carbon substrates is a key phenotype for 
successful bioproduction on lignocellulosic biomass. The soil 
bacterium Pseudomonas putida maintains significant advantages 
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over common production chassis due to its natural biodegradation 
pathways and oxidative stress tolerance, which has contributed 
to its broad proliferation in many environmental niches. Several 
studies have explored substrate tolerance through toxicity 
adaptive laboratory evolution (TALE) of P. putida (Mohamed 
et  al., 2020; Lim et  al., 2021). A recent work integrated three 
different xylose pathways (Dahms, Isomerase, and Weimberg) 
on plasmids to enable growth on xylose, a prominent component 
of degraded hemicellulose (Bator et al., 2019). The combination 
of pathway expression and ALE resulted in improved tolerance 
and hence improved growth rate (Bator et  al., 2019).

Other production schemes have exploited the natural aromatic 
tolerance of P. putida for growth on substrates like toluene, 
m-xylene, and p-xylene (Nikel and de Lorenzo, 2018). 
Comparatively, P. putida maintains better de novo tolerance 
toward products that are typically toxic to other organisms 
(Mi et al., 2014). For example, the saprophytic uptake of organic 
nutrients and high tolerance to oxidative stress is ideal for 
biofuel production candidates (Kim and Park, 2014). These 
traits coupled with overexpression of efflux pumps have shown 
increased tolerance to short chain C4 and C5 alcohols, which 
could prove especially valuable for production of isoprenoid 
biofuels (Basler et  al., 2018).

In a hallmark bioproduction study, 2.21 g/L of mevalonate 
were generated by P. putida in M9 minimal medium supplemented 
with 7.5 g/L 2,3-butanediol by overexpression of the upper 
MVA pathway enzymes, namely the native AtoB and the MvaE/
MvaS from Enterococcus faecalis (Yang et al., 2020). Mevalonate 
production on 2,3-butanediol proved 6.61- and 8.44-fold higher 
than production on glucose and glycerol, respectively, though 
with manageable growth inhibition (Yang et al., 2020). Overall, 
P. putida isoprenoid production has historically been limited 
to zeaxanthin and geranic acid such that only recently have 
studies begun addressing MEP/heterologous MVA precursor 
limitations. One such study exhibited metabolic rerouting of 
central carbon metabolism from the EMP to ED cycles for 
better precursor management, namely efficient pyruvate 
production (Sánchez-Pascuala et  al., 2019). This strategy led 
to a 2-fold increase in carotenoid yield on glucose with plasmid 
expression of a lycopene synthesis pathway but without any 
modification to the endogenous MEP pathway (Sánchez-Pascuala 
et  al., 2019).

It is clear that P. putida has high innate tolerance to toxic 
substrates and, as in nature, can adapt to adverse growth 
conditions. The next, critical stages of realizing P. putida as 
a chemical production platform will be  combining advances 
in ALE, precursor availability, and pathway tuning to enhance 
terpene synthesis on atypical carbon substrates.

Bacillus subtilis
Bacillus subtilis is one of the best characterized gram-positive 
bacteria to date and has been an attractive bioproduction 
candidate due to high titer protein production and high secreting 
properties. Largely, the industrial focus has been on the 
production of biologics and enzymes (Pham et  al., 2019). B. 
subtilis maintains a faster growth rate than S. cerevisiae, a 

robust metabolism on diverse carbon substrates, and has also 
shown natural isoprene production at titers comparable to E. 
coli (Zhang et  al., 2015). Unlike other chassis organisms like 
P. putida, B. subtilis is generally recognized as safe (GRAS), 
a designation that reduces regulatory boundaries to 
commercialization. Collectively, these factors suggest that B. 
subtilis could be an excellent candidate for isoprenoid production. 
Unfortunately, production studies remain relatively limited in 
part due to a poorly defined metabolic toolkit, which has 
historically been hampered by a limited subset of selection/
counterselection markers that have made genetic 
manipulation challenging.

Mirroring in E. coli from the early 2000s, recent production 
studies demonstrated that incorporation of amorphadiene 
synthase (ADS) with overexpression of DXS and IDI led to 
the accumulation of 20 mg/L amorphadiene (Zhou et al., 2013). 
This titer has dramatically improved to 116 mg/L using a 
CRISPR-cas9 system without culture medium optimization 
(Song et  al., 2021) and then to 416 mg/L (Pramastya et  al., 
2021) with pyruvate supplementation. Another recent study 
overexpressed the entire MEP pathway excluding IDI, a taxadiene 
synthase, and a heterologous GGPPS in B. subtilis, leading to 
an accumulation of 17.8 mg/L taxadiene (Abdallah et al., 2019). 
Expression of a squalene synthase from Bacillus megaterium 
also enabled 7.5 mg/L production of squalene, which can serve 
as a precursor to other triterpenoids (Song et al., 2020). Although 
far from competitive with E. coli and S. cerevisiae, these initial 
demonstrations have provided a basis of isoprenoid production 
in B. subtilis. The publication by Song et  al. is of particular 
interest due to their application of CRISPR-cas9 to circumvent 
boundaries that have historically limited the establishment of 
B. subtilis as an isoprenoid production workhorse. In theory, 
this approach could be  easily translated to the production of 
other isoprenoid targets.

PERSPECTIVES AND CONCLUSION

The rapid expansion of -omics studies, deep sequencing, and 
pathway engineering have facilitated bioprospecting of more 
efficient enzymes, robust combinatorial approaches for tailored 
isoprenoid production, and the design of altogether novel 
production pathways. Such tools have also facilitated the 
exploration of plant derived CYPs and terminal synthases whose 
subsequent expression has expanded the microbial isoprenoid 
repertoire to more pharmacologically relevant as well as entirely 
synthetic terpenoids. In this review, we focused on improvements 
to isoprenoid precursor biosynthesis and translation of enzymes 
or pathways between organisms, which could assist in overcoming 
current major barriers to commercial viability (Zu et al., 2020). 
Specifically, we  highlighted how atypical carbon sources and 
non-model organisms harbor metabolic advantages that could 
be  harnessed to reduce substrate costs and the associated 
emissions of bioproduction. Co-substrate utilization by certain 
organisms as in the case of R. toruloides and P. putida has 
the potential to unlock lignocellulosic biomass and many 
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methylotrophs could tap into inexpensive and highly 
abundant substrates.

We have also described works that capitalized upon the 
modularity of isoprenoid advances through heterologous 
expression of entire pathways. Systems engineering strategies 
are of particular interest for C1 metabolism. The translation 
of successful whole systems engineering strategies from E. 
coli and S. cerevisiae to non-model organisms will prove useful 
in further optimization. For example, the entire MVA pathway 
had been expressed in E. coli many years ago (Martin et  al., 
2003) and a decade later, the entire MEP pathway has been 
expressed in S. cerevisiae conversely (Kirby et  al., 2016). Both 
strains have also been extensively mapped through metabolic 
flux analysis (MFA) which has proven pivotal in metabolic 
engineering (Orth et  al., 2010). The translation of systems 
engineering strategies like MFA and genome-scale modeling 
to other organisms will undoubtedly help to inform and 
improve isoprenoid production in non-model organisms. An 
MFA of R. sphaeroides, for example, showed a mutualistic 
coupling between its MEP and MVA pathways (Orsi et  al., 
2020a). Remarkably the true extent of the MEP pathway – 
MVA pathway relationship could not be  resolved as gene 
knockouts tended to have unpredictable effects on C13 product 
partitioning but suggested complex regulatory interactions. 
Nonetheless further work could shed light on how such 
combined MVA/MEP pathway systems could prove beneficial 
(Orsi et  al., 2020a). Similarly, a metabolic flux reconstruction 
of Dunaliella salina established baseline carbon metabolism 
during carotenogenesis (Fachet et  al., 2020), a critical step 
in elucidating metabolic bottlenecks. TALE has also proven 
a powerful strategy for increasing resistance to toxicity of 
high titer products especially with alcohols. TALE has now 
been applied to P. putida and enhanced toxicity tolerance 
against the lignocellulosic aromatics such as p-coumaric acid 
and ferulic acid (Lim et  al., 2020; Mohamed et  al., 2020). 
The application of machine learning approaches has enabled 
extrapolation and gap filling in genome-scale models for 
rationally designed engineering strategies of non-canonical 
organisms, as demonstrated to great effect in Y. lipolytica 
(Czajka et  al., 2021). And, finally, C1 assimilation pathways 
have been thoroughly explored, synthetic and natural routes 
hypothesized (Bar-Even, 2016), then optimal pathways have 
been heterologously expressed in conventional production 
chassis (Kim et  al., 2020). Having shown adapted growth on 
C1 substrates there is now a tremendous opportunity to further 
develop strains for isoprenoid production especially given the 
comparative sustainability and cost reduction of such substrates 
with respect to production on refined sugars.

Consortial approaches are also valuable by improving 
total system productivity. Microbial consortia have proven 
successful for short chain alcohol production from 
lignocellulosic biomass (Minty et al., 2013) and have recently 
been explored in the cross-feeding of methane-derived organic 
acids produced by Methylococcus capsulatus to E. coli for 
the generation of mevalonate at 60 mg/L (Lee et  al., 2021). 
Building upon CYP optimization, an E. coli and S. cerevisiae 
consortium produced 33 mg/L oxygenated taxanes in a 

consortia where E. coli consumes xylose and produces acetate 
and the precursor taxadiene for consumption and further 
conjugation in S. cerevisiae, respectively (Zhou et  al., 2015). 
Another group produced 0.32 g mevalonate/g ethanol in P. 
putida batch experiments (Yang et  al., 2019) that, paired 
with the aforementioned successes in ALE, could provide 
another promising cross-feeding consortial bioproduction 
strategy. Finally, isoprenoid production has been expanded 
to 2,3-butanediol (Yang et  al., 2020), which could facilitate 
consortial bioproduction by subdividing pathways 
between members.

Exploration of the microbial tree of life has continued 
to yield an abundant natural diversity of protein homologues, 
pathway shunts, and mechanisms with which targeted 
production of isoprenoids has been demonstrably improved. 
The principal challenge of isoprenoid bioproduction in the 
next decade will be  bridging the knowledge gap between 
conventional high titer bioproduction on pure sugar substrates 
and non-model comparatively low titer production on 
affordable substrates.
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