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Abstract

Motivation: Ribosome Profiling (Ribo-seq) has revolutionized the study of RNA translation by providing information
on ribosome positions across all translated RNAs with nucleotide-resolution. Yet several technical limitations restrict
the sequencing depth of such experiments, the most common of which is the overabundance of rRNA fragments.
Various strategies can be employed to tackle this issue, including the use of commercial rRNA depletion kits.
However, as they are designed for more standardized RNAseq experiments, they may perform suboptimally in
Ribo-seq. In order to overcome this, it is possible to use custom biotinylated oligos complementary to the most
abundant rRNA fragments, however currently no computational framework exists to aid the design of optimal
oligos.

Results: Here, we first show that a major confounding issue is that the rRNA fragments generated via Ribo-seq vary
significantly with differing experimental conditions, suggesting that a ‘one-size-fits-all’ approach may be inefficient.
Therefore we developed Ribo-ODDR, an oligo design pipeline integrated with a user-friendly interface that assists in
oligo selection for efficient experiment-specific rRNA depletion. Ribo-ODDR uses preliminary data to identify the
most abundant rRNA fragments, and calculates the rRNA depletion efficiency of potential oligos. We experimentally
show that Ribo-ODDR designed oligos outperform commercially available kits and lead to a significant increase in
rRNA depletion in Ribo-seq.

Availability and implementation: Ribo-ODDR is freely accessible at https://github.com/fallerlab/Ribo-ODDR.

Contact: f.alkan@nki.nl or w.faller@nki.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Since its development, Ribosome Profiling (also known as Ribo-seq)
has revolutionized the study of RNA translation (Ingolia et al.,
2009). The technique allows the analysis of ribosomally associated
mRNA at codon-level resolution, providing a snapshot of the
mRNAs bound by ribosomes in the cell. Information on translation
efficiencies, open reading frame (ORF) usage, translation start sites,
ribosome pause sites, amino acid dependencies and translation
elongation rates can be gleaned from the data generated [reviewed
in Wang et al. (2019)]. Additionally, the level of ribosome binding
to an mRNA is a much better predictor of protein levels than the
quantity of mRNA that is present, underscoring the importance of
this technique (Blevins et al., 2019; Ingolia et al., 2009).

The Ribo-seq protocol takes advantage of the fact that at any in-
stant a ribosome covers a �28 nucleotide fragment of mRNA. This
fragment is protected from nuclease digestion as a result and is
hence known as the ribosome protected fragment (RPF). Following

ribosome stalling with translation blockers (e.g. cycloheximide), iso-
lation of a cell lysate and RNase treatment, a cDNA library can be
made from the resulting RPFs, and sequenced. By selecting the cor-
rect fragment size, the abundance of ribosomes at every location on
the transcriptome can be deduced.

Although this process has been somewhat standardized
(McGlincy and Ingolia, 2017), numerous problems remain in gener-
ating high quality data. The RNase enzyme used (Gerashchenko and
Gladyshev, 2017), or length of digestion (Liu et al., 2019) can sig-
nificantly bias the resulting data. Additionally, it is a common prob-
lem that a high proportion of sequencing reads derive from rRNA
sequences, despite the use of rRNA depletion strategies. Indeed, in
most experiments rRNA make up the majority of all reads
sequenced (McGlincy and Ingolia, 2017), and more than 90% in
some cases (Gerashchenko et al., 2012).

At present, the most common rRNA depletion strategies include
the use of commercial kits or custom-designed biotinylated oligos
previously reported in the literature. Both approaches make use of
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RNA oligos that are complementary to the rRNA, thus binding to
their target and allowing its depletion with a simple fishing ap-
proach. In addition, some commercial kits, such as Ribo-zero and
NEBNext, make use of nuclease digestion as part of the protocol,
which have been shown to introduce downstream biases in gener-
ated data (Zinshteyn et al., 2020). Moreover, the use of duplex-spe-
cific nuclease (DSN) has also been reported. However, DSN is
known to also deplete highly expressed genes (Chung et al., 2015).

Both commercial kits and custom oligos assume that the rRNA
fragments present in a sample are consistent across experiments.
Here, we show that this is not the case, and that the experimental
conditions and the tissue being used both introduce variations in the
abundance of rRNA fragments produced. This raises the possibility
that a standard oligo pool could cause differential rRNA depletion
across samples, with significant differences in the rRNA fragments
produced. When not addressed, this may lead to failed experiments
or cause low sequencing depths for some samples, introducing
downstream biases for comparative data analyses due to unbalanced
sequencing depth (Zhang et al., 2014).

There are a number of possible approaches that could be taken
to circumvent this problem. For example, there may be previously
published data that provides a list of oligos that is confirmed to be
efficient for Ribo-seq performed in a specific tissue and organism,
following a specific protocol.

The most reliable way to confront the problem of differential
rRNA fragment production is to perform pilot experiments on iden-
tical or similar samples and design novel biotinylated oligos that tar-
gets the most abundant rRNA fragments within generated pilot data
(Kraus et al., 2019; Zinshteyn et al., 2020). Unfortunately, this ap-
proach requires experimental effort and computational work, poten-
tially with a few rounds of optimization. However, this could be
avoided due to the increasing number of Ribo-seq datasets from di-
verse sources that are being published, which could also serve as
pilot data for researchers. Using this data, the most abundant rRNA
fragments can be identified, and oligos designed to deplete them.

With this study, we first provide evidence that commercial
rRNA depletion kits perform suboptimally and rRNA fragments
generated by nuclease treatment differ substantially under various
experimental conditions. Furthermore, we show that the same vari-
ability exists in fragments generated from different organs, even
when using identical protocols. To tackle this problem, we present
Ribo-ODDR, a Ribo-seq focused Oligo Design pipeline for experi-
ment-specific depletion of Ribosomal RNAs. This pipeline addresses
and automates the above mentioned problems and allows the design
or optimization of oligos with high rRNA depleting potential, based
on preliminary or previously published data. At default settings,
Ribo-ODDR oligos are designed as perfectly complementary to
given rRNA sequences. However, when calculating depleting poten-
tials, the contribution of near-complementary bindings are also con-
sidered. This approach also enables users to use the pipeline with a
collection of alternative rRNA sequences. It is freely accessible via
GitHub in order to help researchers improve the power of their
Ribo-seq experiments through more efficient rRNA depletion, thus
maximizing the information gained from Ribo-seq experiments.

2 Materials and methods

We first introduce the public datasets that are analyzed here. Then,
we present Ribo-ODDR. Finally, we explain the protocol for the
Ribo-seq experiments performed within this study.

2.1 Ribo-seq with commercial rRNA depletion kits
Suboptimal performance of commercial depletion kits in Ribo-seq is
a known issue (Chung et al., 2015) and we provide evidence on this
by analyzing two public datasets (Simsek et al., 2017; Zinshteyn
et al., 2020), in addition to one experiment performed here using the
RiboCop kit (Lexogen, catalog no. 037). We accessed the datasets
through NCBI using the GSE147324 (Zinshteyn et al., 2020) and
GSE96998 (Simsek et al., 2017) ids. For the former, adapter trim-
ming was performed with given instructions (Zinshteyn et al.,

2020), and, for the latter, cutadapt tool (Martin, 2011) was used
with the following parameters, –action¼trim –discard-untrimmed -
m 18 –adapter CTGTAGGCACCATCAAT -O 15 –error-rate¼0.1.
The rRNA fragments were then identified through mapping the
trimmed reads to human and mouse 28S, 18S, 5.8S and 5S rRNA
sequences, using TopHat (Kim et al., 2013) with the following
parameters, –no-novel-juncs –no-novel-indels –no-coverage-search.
We also mapped them to protein-coding transcripts (gencode v34
and vM21) after cleaning rRNA fragments using the SortMeRNA
tool (Kopylova et al., 2012), and calculated the rRNA percentages
by dividing the number of rRNA-mapping reads by the total number
of reads that maps to rRNAs or protein coding transcripts.

2.2 Organ-specific in vivo Ribo-seq dataset
To provide evidence on the necessity of experiment-specific rRNA
depletion, we made use of a comprehensive public dataset that gen-
erated in vivo Ribo-seq data for multiple tissues in mouse
(Gerashchenko et al., 2021). One should note that no rRNA deple-
tion protocol was applied within included experiments, however,
RNA digestion was performed differently for two groups of sam-
ples. This difference enables us to analyze not only the tissue specifi-
city of rRNA fragments but also their technical dependency on the
used experimental protocol. Dataset was accessed through NCBI
with the GSE112223 id and raw reads were trimmed using the cuta-
dapt tool (Martin, 2011) (same parameters as above but for adapter
AGATCGGAAGAGCACACGTCT) before running the Ribo-
ODDR pipeline (design-mode).

2.3 Other public Ribo-seq datasets
To highlight the effect of ribonuclease selection on produced rRNA
fragments, we made use of an in vivo Ribo-seq dataset (GSE82220),
where experiments were separately performed in mouse liver using
three different RNase pools (T1, S7 and T1&S7 together)
(Gerashchenko and Gladyshev, 2017). Additionally, to address the
rRNA fragment differences across experiments with identical proto-
cols performed in the same tissue, we made use of a in vivo Ribo-seq
dataset (GSE105147) where Ribo-seq was performed in mouse liver
tumors that have different oncogenic driver mutations, and in
healthy liver samples from WT mouse (Xu et al., 2019). We accessed
the raw sequencing data of both datasets using the given accession
ids and trimmed the adapter sequences using the cutadapt tool
(Martin, 2011) (same parameters as in previous subsection). Later,
we identified the rRNA fragments with the same approach used for
the first two datasets.

2.4 The Ribo-ODDR pipeline
The primary aim of the Ribo-ODDR pipeline is to aid the biotiny-
lated oligo design process for the depletion of rRNA fragments in
Ribo-seq experiments. This includes designing novel oligos based on
pilot experimental data and cross-species optimization of pre-com-
piled oligo sets. The tool does not contain any information on rRNA
sequences, enabling Ribo-ODDR to be applied to any organism as
long as rRNA (or other depletion-intended RNA) sequences are pro-
vided by the user.

In the following sections, we first describe how Ribo-ODDR
performs the cross-species optimization. Then, we explain the meth-
odology for designing novel oligos based on the pilot experimental
data. All oligo designs are reported in FASTA, CSV, BED and GFF3
file formats, which contain various relevant information on oligo
designs. One should note that Ribo-ODDR does not provide a final
optimal set of oligos to deplete rRNA fragments. Instead, it reports
the depleting potential of all high potential oligos to the user.
However, the ‘Ribo-ODDR oligo-selector’ user interface, intro-
duced below, can aid the oligo selection process.

2.4.1 Cross-species optimization mode

In this mode, Ribo-ODDR requires two inputs from the user. The
first input is the rRNA sequences of the organism in which the Ribo-
seq experiments are going to be performed. Second input is the
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sequences of pre-compiled oligos which are designed to deplete the
rRNAs of another organism. We refer to these oligos as source oli-
gos. Ribo-ODDR uses the following steps to optimize the source oli-
gos for given rRNA sequences. Using RIsearch2 RNA–RNA
interaction prediction tool (Alkan et al., 2017), Ribo-ODDR first
identifies the potential target regions of the source oligos in given
rRNA sequences. Later, for each source oligo, the interaction predic-
tion with lowest hybridization energy is accepted as the intended de-
pletion target of that oligo. New oligos, that will replace the source
oligos, are then designed as perfectly complementary to their identi-
fied depletion target. Later, to reach equivalent coverage as the
source oligo, each new oligo design is extended on both ends accord-
ing to its dangling ends within the source oligo–target rRNA inter-
action. This is done by extending the new oligo design by one
complementary base for each unpaired nucleotide on 50 and 30 ends
of the oligo. Note that if depletion target regions of source oligos are
identical in both organisms, Ribo-ODDR will report the source oli-
gos as optimized oligos unchanged.

2.4.2 Novel oligo design mode

The aim of this mode is to compute the depleting potential of all
novel oligos on the given pilot Ribo-seq data. In a simple use-case, it
requires the user to provide the rRNA sequences, the length range of
desired oligos and the pilot data in which rRNA fragments are abun-
dant. The workflow of the Ribo-ODDR (design mode) is shown in
Figure 1.

Identifying rRNA fragments. Several variations of the Ribo-seq
protocol exist, and for most the generated sequencing data requires
trimming of adapter sequences and/or cleaning of used size selection
markers before alignment. Ribo-ODDR does not perform these pre-
processings itself, therefore, requires the user to preprocess the
sequencing data prior to Ribo-ODDR use. Under default settings,
trimmed & cleaned reads, provided as input, are first aligned to
rRNA sequences using TopHat (Kim et al., 2013) with the following
parameter settings, -n 2 –no-novel-juncs –no-novel-indels –no-cover-
age-search –segment-length 25. However, users can also perform
this alignment and provide their rRNA alignment files as input.

Oligo-set generation and depleting potential computation. Next,
based on the user-given oligo length range constraint, depletion oli-
gos are generated in a position specific manner. Oligo designs cor-
respond to fixed length regions within user-given rRNAs, an oligo
sequence being perfect complementary to its region. Note that the
final oligo-set spans all possible regions across all given rRNAs.
Therefore, oligo designs overlap with each other but the depleting
potential of each oligo is computed separately following a novel
heuristic approach. For each pilot sample and oligo, Ribo-ODDR
determines the sample-specific oligo depleting potential by comput-
ing the oligo-specific percentage of depletable rRNA fragments
within all rRNA fragments of that sample. Depletable fragments
correspond to the reads that are primary-aligned to the oligo-specific
depletion regions within given rRNA sequences. Ribo-ODDR iden-
tify these regions using RIsearch2 with the following parameter set-
tings, -s maxðbl � 2=3c;10Þ -e 0 -w 0, l denoting the oligo length.
This allows Ribo-ODDR to identify all rRNA regions that are

complementary to the oligo sequence for a stretch of at least 10
nucleotides. However, not all reads mapping to these regions are
considered depletable. A rRNA fragment (read) is considered deplet-
able only if it satisfies the following constraints. The rRNA fragment
has to cover a minimum of 10 nucleotides or two thirds of the oligo
length, whichever is higher, within the depletion region under con-
sideration. Additionally, the rRNA fragment can have a maximum
of 10 nucleotides or one third of the oligo length, whichever is
lower, outside the depletion region to be considered as depletable.
This novel approach, as a whole, allows us not only to include the
contribution of suboptimal bindings to oligo depleting potential but
also to handle the multiple copies of rRNA sequences, when pro-
vided by the user.

Filtering oligos based on depleting potential. For fast computa-
tion of oligo features, Ribo-ODDR filter outs some of the low po-
tential oligos based on customizable thresholds. Under default
settings, oligos with a depleting potential less than 0.05 in more
than 75% of the provided pilot samples are discarded. However,
these thresholds can be altered by the user.

Computation of other oligo features. In addition to sample-spe-
cific depleting potential of oligos in pilot samples, Ribo-ODDR
reports a few other informative statistics on designed oligos, includ-
ing GC_content and target_rRNA_position. For each oligo, an over-
all_depletion_score is also computed, that is the ratio of samples
oligo has a depleting potential more than the user-given threshold,
(0.05 by default). Additionally, for each oligo, Ribo-ODDR reports
a minimum_hybridization_energy that is the free energy of the full
perfect complementary binding to an rRNA fragment at 37

�
C com-

puted by RIsearch2 (Alkan et al., 2017). Using the RNAfold pro-
gram (Lorenz et al., 2011), self-folding of the oligo is also predicted.
This is reported in three different features, predicted structure, the
MFE as the free energy of the predicted structure, and the base_pair-
ing_percentage within the given structure.

Off-target prediction for designed oligos. If protein-coding tran-
script sequences of the organism are provided by the user, Ribo-
ODDR computes the off-targeting potential of oligos as well.
Denoting the minimum binding free energy across all oligos as Emin

and the minimum oligo length as lmin, oligo off-targets are predicted
using RIsearch2 (Alkan et al., 2017) with the following parameter
settings, -s l0min -e E0min, where l0min ¼ b0:75� lminc and
E0min ¼ minð�25;0:5� EminÞ. This allows the detection of potential
off-target regions, where generated RPFs are susceptible to un-
desired depletion. The number of predicted off-targets are reported
to the user as an oligo feature, however, the additional information
on individual off-target predictions are outputted separately.

2.4.3 Selecting final oligos with Ribo-ODDR oligo-selector
To aid the final selection from all oligos outputted by the Ribo-
ODDR design mode, we developed the Ribo-ODDR oligo-selector
user interface using the R-shiny environment. With it, users can ex-
plore the features of the oligo designs, filter them according to dif-
ferent filters on reported features and add the desired ones to the
selection list, which results in removing the highly similar oligos
from the available oligo list. A snapshot from this interface is shown
in Supplementary Figure S1.

2.5 Experimental details on Ribo-seq experiments
C57BL/6 female and male mice between 8 and 12 weeks of age were
used for experiments. For Figure 6 experiments,
Lgr5CreERT2RPL22.HA and VillinCreERT2RPL22.HA mice were
generated by crossing Lgr5CreERT2 (Barker et al., 2007) and
VillinCreERT2 (el Marjou et al., 2004) mice with the RiboTag mouse
(Sanz et al., 2009). Due to differences in recombination efficiency
and total number of cells, for the former, recombination was
induced by a single intraperitoneal injection of 120 mg/kg tamoxifen
and samples were taken after 24 h and 48 h. Whereas, for the latter,
two consecutive injections of 80 mg/kg tamoxifen were performed
and samples were taken after 120 h. Due to availability of strains,
for Figure 7, Lgr5CreERT2Rptorfl=flRPL22.HA animals were used
for experiments. Recombination was induced by a single injection of

Pilot Experiments

trimmed
reads

(.fastq)

rRNA 
alignments

(.bam)

Ribo-ODDR
Identifying

rRNA fragments
(rRNA alignment)

Design oligos

Compute
depleting
potentials

Filter oligos

Compute
features

Ribo-ODDR:
oligo-selector

rRNA sequences (.fa)

OR

Oligo Designs
(CSV, GFF, FASTA, ...)

Fig. 1. The workflow diagram for the Ribo-ODDR pipeline (novel oligo design

mode)

Ribo-ODDR: oligo design pipeline for experiment-specific rRNA depletion in Ribo-seq 2661

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab171#supplementary-data


120 mg/kg tamoxifen and samples were taken after 24 h. Mice were
bred in-house at the Netherlands Cancer Institute and all experimen-
tal protocols were approved by the NKI Animal Welfare Body.

2.5.1 Sample preparation from in vivo small intestines

Mice were euthanized by CO2 and small intestines were immediately
dissected, flushed with cold PBS supplemented with 100mg/mL of cyclo-
heximide and snap frozen using liquid nitrogen. Frozen tissues were
ground by pestle and mortar while submerged in liquid nitrogen. The
resulting powder was rapidly dissolved in cold lysis buffer (20 mM Tris
HCl pH 7.4, 10mM MgCl2, 150mM KCl, 1% NP-40, 100mg/mL
cycloheximide and 1x EDTA-free proteinase inhibitor cocktail (Roche,
04693132001)) and incubated on ice for 30 min. Samples were then
homogenized using a Tissue Lyser (3 rounds of 45 sec at 50 oscillations
per second) and centrifuged at max speed for 20 min at 4

�
C.

2.5.2 Sample preparation from in vitro crypt cultures

Crypt cultures were generated from the VillinCreERT2RPL22.HA
mice as described previously (Faller et al., 2015). Around 120 plugs
of 30mL BME (Amsbio #3533-010-02) were used for each sample.
Cells were incubated with 100mg/mL cycloheximide for 3-5min at
37

�
C, after which all steps were done on ice. Cells were collected

and washed twice in cold PBS supplemented with 100mg/mL cyclo-
heximide, and homogenized with a 25 G needle in cold lysis buffer.
After incubating the lysates on ice for 20 min, samples were centri-
fuged at max speed for 20 min at 4

�
C.

2.5.3 Ribosome profiling

Pull down of HA-tagged ribosomes. All supernatants were pre-
cleared for 20 min at 4

�
C, using PierceTM Control Agarose Matrix

(ThermoFisher #26150), after which they were incubated with pre-
washed Anti-HA.11 Epitope Tag Affinity Matrix (BioLegend
#900801) overnight at 4

�
C. Ribosomes were eluted in lysis buffer

containing 200mg/mL HA peptide (ThermoFisher #26184) and sup-
plemented with 100mg/mL cycloheximide for 15 min at 30

�
C.

Exposed RNA was digested with RNase I (ThermoFisher
#AM2294) for 40 min at 25

�
C and was stopped by adding

SUPERASE (ThermoFisher #AM2694). RPFs were purified with
miRNeasy minikit (Qiagen #217004) following the manufacturer’s
protocol and used for the library preparation.

Library preparation. The library preparation was conducted as
previously described (Loayza-Puch et al., 2013) with some modifica-
tions. Briefly, RPFs were run in a 10% TBE-Urea polyacrylamide gel
and size selected between 19 nt and 32 nt using marker RNAs. Gel
slices were crushed, eluted and ethanol precipitated. Samples were
then dephosphorylated in the 30 using T4 polynucleotide kinase
(PNK) (NEB #M0201) and 1.5xMES buffer (150 mM MES-NaOH,
15 mM MgCl2, 15 mM b-mercaptoethanol and 450 mM NaCl, pH
5.5) and incubated at 37

�
C for 4 h. RNAs were purified using Trizol

and the 30 adapter was added using T4 RNA ligase I (NEB #M0204)
at 24

�
C overnight. The ligated products were size selected and 50

phosphorylated with T4 PNK for 30 min at 37
�
C. After purifying

the RNAs, the 50 adapter was added with T4 RNA ligase I for 2,5 h
at 37

�
C and the final products were size selected on a 10% TBE-

Urea polyacrylamide gel (see Supplementary Table S1 for adapter
and primer sequences). This was followed by rRNA depletion, that
is performed according to manufacturer’s instructions when using
the RiboZero (Illumina, catalog no. 20020598) and RiboCop
(Lexogen, catalog no. 037) kits. For depletion with custom oligos,
samples were incubated with 2mL of the biotinylated oligo pool
(10mM each oligo, Supplementary Tables S2–S5) in 20mL with
2xSSC (ThermoFisher #15557044). Samples were then denatured at
100

�
C for 1 min, followed by an incubation at 37

�
C for 15 min. In

the meantime, 40mL of MyOne Streptavidin C1 DynaBeads
(ThermoFisher #65001) were washed and re-suspended in 20mL of
2x wash/bind buffer (2 M NaCl, 1 mM EDTA, 5 mM Tris and 0.2%
Triton X-100) and mixed with the sample at 1000 rpm for 30 min
and at 37

�
C. Supernatants were collected and RNAs were precipi-

tated with isopropanol and re-suspended in 8mL of RNase-free
water. Reverse transcription was performed with SuperScript III

(ThermoFisher #18080051) following the manufacturer’s instructions
and using the RTP primer. cDNA was then purified using G-50 col-
umns (Merck GE27-5330-01) and used as a template for the PCR re-
action with Phusion High-Fidelity DNA Polymerase (ThermoFisher
#F530L) for 18 cycles, with primers listed in Supplementary Table
S1. PCR products were purified using the QIAquick PCR purification
kit (Qiagen #28104) followed by a E-Gel SizeSelect II 2%,
(ThermoFisher #G661012). The quality and molarity of the samples
were evaluated with the Agilent 2100 Bioanalyzer and the libraries
were sequenced on the Illumina HiSeq2500.

Data processing. Raw reads are trimmed and cleaned from the
size selection markers using the cutadapt tool (Martin, 2011), where
trimming parameters are set to –action¼trim –discard-untrimmed -m
18 –adapter TGGAATTCTCGGGTGCCAAGG –error-rate¼0.1,
whereas for cleaning -g AGTGTACTCCGAAGAGGAC; anywhere
-g GGCATTAACGCGAACTCGGCCTACAATAGTGA; anywhere
–discard-trimmed—error-rate 0.1 –overlap 15 parameters are used.
Then, Ribo-ODDR (design-mode) is used to align reads to mouse
rRNA sequences (28S: NR_003279.1, 18S: NR_003278.3, 5.8S:
NR_003280.2, 5S: NR_030686.1) and to design depletion oligos.
Preprocessed reads are cleaned from rRNA fragments using the
SortMeRNA tool (Kopylova et al., 2012) and remaining reads are
mapped to gencode release M21 protein-coding transcripts and
GRCm38.p6 (mm10) mouse genome using TopHat (Kim et al.,
2013) (–no-novel-juncs –no-novel-indels –no-coverage-search).

3 Results

3.1 Suboptimal rRNA depletion of commercial kits
Inefficient rRNA depletion is a known issue in Ribo-seq, and recent-
ly a comparative analysis of different rRNA depletion approaches
has been published (Zinshteyn et al., 2020). This analysis included
several commercially available kits (Ribo-Zero, Ribo-Zero Plus,
RiboCop, NEBNext and QIAseq FastSelect), as well as a pool of
biotinylated custom oligos (riboPool). Surprisingly, analysis of this
data showed that despite rRNA depletion, there was still a high
abundance of rRNA fragments in all samples. Of all reads that could
be mapped to rRNA and protein coding transcripts, an average of
85% of them were rRNA fragments (see Fig. 2). These unexpectedly
high percentages significantly reduce the resolution of the performed
experiments as they decrease the sequencing depth in open reading
frames (ORFs) and thus limit downstream analyses.

In order to further understand the inefficiencies of these kits, we
visualized this data using the svist4get tool (Egorov et al., 2019). In
line with the published analysis, we observed that rRNA depletion
using commercial kits resulted in the incomplete depletion of 28S

Fig. 2. Suboptimal performance of commercial rRNA depletion kits. Visualization is

based on a previously published dataset (Zinshteyn et al., 2020) where several dif-

ferent kits were tested for rRNA depletion in human cell lines. Each track shows the

positional abundance profile of 28S rRNA fragments coming from individual sam-

ples. For every position in the x-axis, y-axis represents the normalized read ratio,

number of rRNA reads mapped to that position divided by the total number of

reads mapped to all protein coding transcripts. Sample-specific total rRNA percen-

tages are given in track labels together with sample identifiers

2662 F.Alkan et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab171#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab171#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab171#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab171#supplementary-data


fragments, particularly those originating from several experiment-
specific hotspots. Interestingly however, there was significant vari-
ability in the rRNA fragments present, suggesting that there was a
depletion protocol driven heterogeneity in the rRNA fragments
sequenced (Fig. 2). Analysis of an additional dataset generated using
Ribo-Zero (Simsek et al., 2017) also showed this heterogeneity, sug-
gesting experiment-specific rRNA inconsistencies introduce varia-
bles that result in decreased protein coding sequencing depth (see
Supplementary Fig. S2).

In samples that are difficult to work with, this may be a terminal
issue for profiling experiments. Ribo-seq in intestinal epithelial cells,
for example, is known to result in a very high level of rRNA sequenc-
ing reads (unpublished data from this lab and personal communica-
tion from others). We therefore carried out a Ribo-seq experiment
using in vitro mouse intestinal organoids, with rRNA fragments
depleted with the RiboCop kit. This experiment resulted in 89%
rRNA reads (only 11% protein coding reads). In our analysis, we
identified three hotspots (one for each 28S, 18S and 5-8S rRNA),
where each hotspot individually accounted for more sequencing reads
than all protein-coding reads (see Supplementary Fig. S3).

These observations demonstrate that commercial rRNA deple-
tion kits perform suboptimally in Ribo-seq and suggest that custom-
designed oligos would be a powerful way to increase sequencing
depth in such experiments.

3.2 Tissue and RNase specificity of rRNA fragments
The use of custom-designed biotinylated oligos serves as a good alter-
native to overcome the inefficiency of commercial kits. However, there
is no consensus on which oligos to use for maximal rRNA depletion,
or even whether the same oligos are suitable for different experiments.
Our results above would suggest that this is not the case.

In order to assess this, we measured the variability in rRNA frag-
ment position and abundance in samples generated using different
protocols and tissues of origin. We made use of a previously pub-
lished dataset in which the authors performed in vivo Ribo-seq in
nine different mouse organs without any rRNA depletion
(Gerashchenko et al., 2021). In this dataset, six sets of samples
(brain, heart, kidney, liver, skeletal muscle and testis) were digested
using a mix of RNaseT1 and RNaseS7, with the remaining 3 (lung,
pancreas and spleen) being digested with only RNaseT1 as part of
the Ribo-seq protocol. After identifying 28S, 18S, 5-8S and 5S
rRNA fragments separately for each sample, we compared their
rRNA fragment profiles (based on number of fragments mapped to
each position in rRNAs) with a principal component analysis (PCA)
(Fig. 3). This analysis revealed a striking heterogeneity in rRNA
fragments in samples generated using different protocols, suggesting
that rRNA depletion oligos that are efficient in one experiment may
not be suitable for another. This protocol-derived heterogeneity of
rRNA fragments can be clearly observed in Figure 3A, where the
positional abundance profiles 28S rRNA fragments are shown for
individual organs (one representative sample for each).

Moreover, the PCA and abundance profiles also reveal signifi-
cant rRNA fragment differences in samples generated from different
organs even when using the same protocol. While our analyses
showed that there is a strong agreement between replicate measures
of each organ in terms of rRNA fragments produced
(Supplementary Figs S4–S12), we observed clear profile separation
between organs (Fig. 3 and Supplementary Fig. S13).

A complementary analysis with another dataset (Gerashchenko
and Gladyshev, 2017) showed that rRNA fragments still differ be-
tween experiments in the same tissue (liver), when experimental pro-
tocols are altered by the choice of RNase (see Supplementary Fig.
S14). This is in agreement with our observations of rRNA fragment
variability produced by different RNases. Furthermore, analysis of
an additional dataset (Xu et al., 2019) showed that, even when ex-
perimental protocols are identical, rRNA fragments can still vary be-
tween Ribo-seq in the same tissue, in this case in liver samples with
different oncogenic driver mutations (see Supplementary Fig. S15).

All in all, this suggests that rRNA fragment heterogeneity is a
common occurrence, and clearly shows that a ‘one size fits all’ ap-
proach is not appropriate for rRNA depletion.

3.3 Comparing the depleting potential of oligos across

different experiments
In order to understand the effect that this rRNA fragment hetero-
geneity has on the efficiency of rRNA depletion oligos, we devel-
oped Ribo-ODDR. Based on given pilot Ribo-seq data, this pipeline
measures the depleting potential of all possible oligos. For each
oligo, this potential is simply equal to the percentage of rRNA frag-
ments produced from the oligo target region on the rRNA, where
the oligo binds with near-perfect complementarity.

We ran Ribo-ODDR on the organ-specific data used above and
obtained the sample-specific depleting potentials of all 25 nt long oligos
(n ¼6782) that can deplete mouse rRNA fragments. For each individ-
ual oligo, the organ-specific depleting potential was calculated by sim-
ply averaging the values computed for each replicate of that organ.

In Figure 4, we compare the depleting potentials of oligos across
all organ pairs with a cross-organ correlation analysis. These data
makes it clear that the correlation in oligo depleting potential be-
tween samples treated using the same RNase digestion strategy is
significantly higher than those using another strategy. In the
RNaseT1-only digestion group, intra-group Pearson’s correlation
coefficients are between 0.65 and 0.75 (mean value of 0.69), and for
the RNaseT1/S7 group this is between 0.34 and 0.88 (mean value of
0.64), whereas inter-group coefficients are between 0.14 and 0.64
(mean value of 0.28). This confirms our observations detailed in
Figure 3 that differing experimental conditions results in substantial
differences in rRNA fragments created.

Furthermore, if the same RNase digestion protocol is used, oli-
gos designed for one tissue (assuming only high potential oligos are
selected) do not necessarily provide efficient depletion in another. In

Fig. 3. Tissue and RNase specificity of rRNA fragments in the Ribo-seq data from

(Gerashchenko et al., 2021). (A) Each track shows the positional abundance profile

of 28S rRNA fragments within the representative sample of the labeled organ. For

every position in the x-axis, y-axis represents the normalized read ratio, number of

rRNA reads mapped to that position divided by the total number of reads mapped

to all protein coding transcripts. (B) Using the sample-specific abundance profiles on

all rRNAs (28S, 18S, 5-8S and 5S), principal component analysis (PCA) was per-

formed for all samples of the analyzed dataset (number of replicates varies for each

organ). The first and second principal components are plotted against each other,

PC1 in x-axis and PC2 in y-axis. The percentage of variance explained by each com-

ponent is given in corresponding axis labels
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some cases, the oligos with high depleting potential in one tissue
show high depleting potential in others (kidney-versus-skeletal
muscle, for example), however, this is only the case for a minority of
tissues. Most tissue pairs show a low correlation in rRNA depleting
potential of oligos. For example, pancreas-versus-heart and skeletal
muscle-versus-lung both have Pearson’s correlation coefficients of
below 0.23, demonstrating that rRNA depletion oligos used success-
fully in one organ are unlikely to work in another. These observa-
tions are in agreement with our previous analysis of other publically
available datasets (Fig. 2), and suggest that maximizing the informa-
tion gained in Ribo-seq experiments may require experiment-to-ex-
periment optimization.

3.4 Improving overall rRNA depletion efficiency using

Ribo-ODDR, in vivo oligo design example
To test the power of the Ribo-ODDR design platform, we per-
formed in vivo Ribo-seq experiments in the mouse intestine (see
Fig. 5). We began by optimizing previously published human oligos
(Ingolia et al., 2009; Loayza-Puch et al., 2013) to mouse ribosomal
sequences which we named SET-1 oligos (see Supplementary Fig.
S16 and Supplementary Tables S2 and S3). This experiment resulted
in an average of only �6% of sequencing reads mapped to protein
coding regions, confirming the high levels of rRNA contamination
found in intestinal epithelial samples. With this pilot data, we ran
the Ribo-ODDR pipeline to design 5 additional oligos with high
rRNA depleting potentials and added them to the oligo pool, creat-
ing SET-2 (see Supplementary Table S4). In Figure 6 and
Supplementary Figure S17, we show that positional abundance pro-
file of rRNA fragments are highly conserved between replicates in
each experiment group, and newly designed oligos in SET-2 were
successful at depleting the fragments in their corresponding regions.
Crucially, rRNA depletion was far more efficient after the addition
of five Ribo-ODDR designed oligos, resulting in a �5-fold increase
in protein-coding transcript reads (�28% versus �6%), with SET-2
oligos giving �72% rRNA fragments on average, compared to
�94% rRNA fragments on average for experiments using SET-1 oli-
gos. This substantial increase in rRNA depletion efficiency demon-
strates the power of experiment-specific rRNA depletion in Ribo-
seq experiments and how using Ribo-ODDR can help this process.

Fig. 4. Cross-organ correlation analysis of Ribo-ODDR computed oligo depleting potentials for all 25 nt oligos (n¼ 6782) targeting mouse 28S, 18S, 5-8S and 5S rRNA frag-

ments. Each row and column corresponds to an organ. The diagonal plots (red boxes) show the histogram of oligo depleting potentials, computed for that organ based on the

analyzed dataset. Axes of diagonal plots are shared, x-axis (shown in bottom-right corner) representing the log-transformed depleting potential and y-axis (shown in top-left

corner) representing the number of oligos with that potential. Lower hex-binned scatter plots compares the depleting potential of all oligos between organ pairs (column versus

row) with the Pearson’s correlation coefficient given in their diagonal mirrors. In these plots, each bin contains one or more oligos with organ-specific rRNA depleting potential

given in x- and y-axes for column and row organs, respectively. Percentages in row and column labels show the average rRNA percentage for that organ

Fig. 5. Oligo sets used in this paper. SET-1 consists of mouse-optimized version of

eight human oligos and four additional ones, manually selected based on pilot

in vitro experiments. SET-2 includes all SET-1 oligos and 5 new oligos, designed by

Ribo-ODDR with data from pilot in vivo experiments using SET-1 oligos for rRNA

depletion
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3.4.1 Evaluating potential off-target effects of custom oligos

A potential drawback of oligo-based depletion of rRNA is the possi-
bility of complementarity to protein-coding fragments that can re-
sult in off-target depletion of mRNA. To ensure that this is not the
case with Ribo-ODDR designed oligos, the tool reports the off-tar-
get potential of all oligos, allowing the selection of those with min-
imal complementarity to mRNAs. Indeed, in-depth read count
analysis of potential off-target sites, shows that such depletion can
be avoided. As shown in Supplementary Figure S18, the average
read count of potential off-target regions of the Ribo-ODDR
designed SET-2 oligos does not change between experiments that
use SET-1 or SET-2 oligos. This observation suggests that these 5
oligos, designed and selected with Ribo-ODDR, do not cause un-
desired depletion of informative off-target fragments.

3.5 Ribo-ODDR oligo-based depletion versus

commercial kits
For comprehensive evaluation of rRNA depletion performances of
commercial kits compared to Ribo-ODDR designed oligos, we per-
formed six more in vivo Ribo-seq experiments in the mouse intes-
tine, comparing RiboZero, RiboCop (two of the most commonly
used commercially available kits) and Ribo-ODDR designed oligos.
We added 5 additional Ribo-ODDR-designed oligos, creating the

SET-3. In the resulting data we measured the percentage of reads
that map to the protein coding, ribosomal, intronic and other
RNAs, as well as the size of the RNA fragments produced.

Analysis of these Ribo-seq experiments showed that, as expected
from intestinal tissue, RiboCop and RiboZero kits produced less
than 5% protein coding mapped reads on average (see Fig. 7), se-
verely limiting the sequencing resolution of this experiment.
However, Ribo-ODDR oligos yielded �14% protein-coding
mapped reads, showing �3 to �4 times better performance than
commercial kits. Further analysis of these data showed that the com-
mercial kits differed in the quality of sequencing reads, with the
RiboCop kit resulting in a higher number of short sequencing reads
compared to RiboZero or Ribo-ODDR designed oligos. These
experiments clearly show that experiment-specific custom oligos are
superior to commercially available kits for rRNA depletion in Ribo-
seq experiments, and that Ribo-ODDR provides a suitable tool for
the design of such oligos. Furthermore, we have shown that in sam-
ples that have a low sequencing depth of protein coding RNAs, this
increased rRNA depletion can turn a failed experiment into a suc-
cessful one.

4 Discussion

Ribosome profiling has become a mainstay experiment in the ana-
lysis of RNA translation. It is one of the most informative techniques
available for studying the translatome and has become very widely
used in the decade since its development (Ingolia et al., 2009).
However, as the technique focuses on ribosomally bound RNAs, the
enrichment of rRNAs is an unfortunate necessity of the protocol.
The nuclease cleavage of rRNAs produces fragments of a similar
size to those being analyzed, creating an obvious technical challenge.
Indeed, rRNA fragments commonly far outnumber reads from pro-
tein coding genes. As a result, rRNA depletion is a vital step in gen-
erating high quality Ribo-seq data.

The most common approach to overcome this issue is the use of
commercially available rRNA depletion kits. However, our data
shows that the efficiency of depletion using this method is variable,

Fig. 6. Positional abundance profiles of 28S (A) and 18S (B) rRNA fragments com-

ing from in vivo (mouse intestine) Ribo-seq experiments performed with two differ-

ent sets of rRNA depletion oligos, SET-1 and SET-2. The latter set includes all

oligos from the former and 5 additional oligos designed with Ribo-ODDR, based

on pilot data generated using only SET-1 oligos. In each figure, top track indicates

the target regions of used oligos within that rRNA, where additional oligos of the

SET-2 are labeled as ‘new’. In all tracks, x-axis corresponds to position within

rRNAs. In profile tracks, y-axis is fixed for all samples and shows the normalized

read ratio, number of rRNA reads mapped to the position divided by the total num-

ber of reads mapped to all protein coding transcripts. The percentages given within

sample labels indicates the sample-specific percentage of rRNA fragments, within

all reads that is mapped to rRNAs and protein-coding transcripts

Fig. 7. Performance comparison of Ribo-ODDR oligos (SET-3) with RiboZero and

RiboCop rRNA depletion kits. (A) Fractions of sequencing reads that are mapped to

protein-coding genes, rRNAs, other non-coding transcripts and introns in 6 Ribo-

seq experiments, performed in vivo in mouse intestine (2 replicates per group). (B)

Read length histogram for protein-coding gene mapped reads in three experiment

groups. Percentages are given as average of two replicates for each group
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and suggests that combining this method with a small number of
custom designed oligos could significantly increase rRNA depletion.
Additionally, previously published studies have suggested that the
use of commercial kits can result in bias in individual mRNA frag-
ments (Chung et al., 2015; Zinshteyn et al., 2020), emphasizing that
the rRNA depletion strategy must be considered when planning
experiments.

Using publically available data, we have also shown that this
issue is compounded by variability in the specific rRNA fragments
that are introduced by differing experimental conditions. Both the
tissue origin, and the nuclease used for digestion significantly change
the rRNA fragment population, showing that a depletion strategy
that works for one experiment will not necessarily work for another.
The source of the tissue-specificity of rRNA fragments is unknown,
however it may be due to differences in the accessibility of the rRNA
to the nuclease and/or to the presence of different intrinsic RNases.
This in turn may result in differing abundances of rRNA fragments
between tissues, saturating the binding capacity of the probes
included in commercial kits in one tissue, and not in another.
Ultimately, regardless of the cause of this variability, significant
sequencing depth can be gained by improving the rRNA depletion.
This may be particularly important in samples and tissues that have
previously proven difficult to assay using Ribo-seq, such as the intes-
tinal epithelium and other in vivo tissues. Furthermore, with the re-
cent development of disome and trisome sequencing (Han et al.,
2020; Meydan and Guydosh, 2020), the ability to improve the
sequencing depth has the potential to significantly increase the infor-
mation that can be gained by such experiments.

We developed Ribo-ODDR to aid with the design of custom oli-
gos in an experiment by experiment manner. The tool enables users
to run the design mode using preliminary or previously published
data, allowing them to calculate the depleting potential of different
oligo designs and select a small number with high depleting potential.
We have shown that using such an approach can result in a 4-fold in-
crease in the percentage of protein coding transcripts detected.

Thus far, manual inspection of Ribo-seq reads and their align-
ments to rRNA sequences has already been in practice for custom
depletion oligo design. However, manual inspection cannot assess
the suboptimal bindings of the oligos to determine their true poten-
tial. Ribo-ODDR’s novel depleting potential calculation approach
addresses this by default. Additionally, this approach also enables
users to add alternative rRNA sequences to the pipeline. Moreover,
some oligo features, such as off-targeting potential, are often
ignored when using the manual inspection approach. However,
Ribo-ODDR integrates all the necessary design steps and enables
users to assess the different features in order to select the most opti-
mal oligos for highest rRNA depletion.

An obvious drawback of custom oligo design approach is the
need for preliminary data to optimize the depletion strategy.
Optimally, it is advisable to generate such preliminary data using
the exact protocol as planned under experimental conditions, par-
ticularly when using tissues that have previously proven difficult to
work with. However, as a result of the increasing number of Ribo-
seq studies being published, in many cases it may be sufficient to use
data from a similar source tissue that has been previously published.
This could then be analyzed using Ribo-ODDR to create an oligo
set that is likely to efficiently deplete rRNAs.

It is also important to point out that Ribo-ODDR is not necessarily
a stand-alone method. We envision that Ribo-ODDR will be used alone
in some cases, and in conjunction with other depletion strategies in
others. For instance, our data suggests that commercial kits can benefit
from the addition of a small number of custom designed oligos.

Ribo-ODDR provides a platform to assess the most optimal cus-
tom oligos, allowing for increased depth of mRNA fragment
sequencing, and maximizing the information gained in Ribo-seq
experiments.

5 Conclusion

In this study, we show that the use of commercial rRNA depletion
kits may result in suboptimal depletion in Ribo-seq experiments,

and that different tissues and experimental conditions result in het-
erogeneity of produced rRNA fragments. Both of these findings
demonstrate the necessity of experiment-specific custom oligo design
for efficient rRNA depletion. To aid the computational part of the
oligo design process, we have developed Ribo-ODDR. Oligos
designed using this platform resulted in a substantial increase in
rRNA depletion in vivo Ribo-seq experiments in mouse intestine,
with much higher depletion performance when compared to com-
mercial kits. Ultimately, this allows higher sequencing depth on the
translatome and more powerful downstream data analyses. The tool
is easy to use, and will allow the optimization of this crucial step in
the Ribo-seq protocol, particularly for samples that have proven dif-
ficult to assay. Ribo-ODDR is an open source software and freely
accessible at https://github.com/fallerlab/Ribo-ODDR.
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