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Machine learning-based CT radiomics 
approach for predicting WHO/ISUP nuclear 
grade of clear cell renal cell carcinoma: 
an exploratory and comparative study
Yingjie Xv1,2†, Fajin Lv1†, Haoming Guo1, Xiang Zhou2, Hao Tan2, Mingzhao Xiao2* and Yineng Zheng1*  

Abstract 

Purpose: To investigate the predictive performance of machine learning-based CT radiomics for differentiating 
between low- and high-nuclear grade of clear cell renal cell carcinomas (CCRCCs).

Methods: This retrospective study enrolled 406 patients with pathologically confirmed low- and high-nuclear grade 
of CCRCCs according to the WHO/ISUP grading system, which were divided into the training and testing cohorts. 
Radiomics features were extracted from nephrographic-phase CT images using PyRadiomics. A support vector 
machine (SVM) combined with three feature selection algorithms such as least absolute shrinkage and selection 
operator (LASSO), recursive feature elimination (RFE), and ReliefF was performed to determine the most suitable 
classification model, respectively. Clinicoradiological, radiomics, and combined models were constructed using the 
radiological and clinical characteristics with significant differences between the groups, selected radiomics features, 
and a combination of both, respectively. Model performance was evaluated by receiver operating characteristic (ROC) 
curve, calibration curve, and decision curve analyses.

Results: SVM-ReliefF algorithm outperformed SVM-LASSO and SVM-RFE in distinguishing low- from high-grade 
CCRCCs. The combined model showed better prediction performance than the clinicoradiological and radiomics 
models (p < 0.05, DeLong test), which achieved the highest efficacy, with an area under the ROC curve (AUC) value 
of 0.887 (95% confidence interval [CI] 0.798–0.952), 0.859 (95% CI 0.748–0.935), and 0.828 (95% CI 0.731–0.929) in the 
training, validation, and testing cohorts, respectively. The calibration and decision curves also indicated the favorable 
performance of the combined model.

Conclusion: A combined model incorporating the radiomics features and clinicoradiological characteristics can 
better predict the WHO/ISUP nuclear grade of CCRCC preoperatively, thus providing effective and noninvasive 
assessment.

Keywords: Machine learning, Tomography (X-ray computed), Clear cell renal cell carcinoma, WHO/ISUP grading, 
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Key points

• Nephrographic-phase CT radiomics is valuable in 
predicting the WHO/ISUP nuclear grade of CCRCC.

• Machine learning can noninvasively predict the 
WHO/ISUP nuclear grade of CCRCC.
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• CT radiomics integrated with clinicoradiological 
parameters can facilitate differentiating between low- 
and high-grade CCRCCs with improved diagnostic 
efficacy.

Introduction
Renal cell carcinoma accounts for 5% and 3% of all diag-
nosed cancers in men and women, respectively, and clear 
cell renal cell carcinoma (CCRCC) represents the most 
common subtype (∼ 80%) [1–3]. With a relatively poor 
prognosis, there is great interest in the field for improving 
diagnostic accuracy in order to start antineoplastic pro-
tocols at the early stage of CCRCC [4], because its biolog-
ical aggressiveness significantly affects the prognosis. The 
pathological nuclear grade is an independent prognostic 
factor for CCRCC [5, 6]. Although the four-tiered Fuhr-
man grading system (FGS) for the pathological classifi-
cation of CCRCC is widely used before, the 2016 World 
Health Organization/International Society of Urological 
Pathology (WHO/ISUP) grading system has achieved 
widespread usage and has now replaced the FGS globally 
[7, 8]. This system can be simplified as two-tiered classi-
fication combining grade I and II as low-grade and grade 
III and IV as high-grade. Moreover, low-grade cancers 
are generally considered less aggressive than high-grade 
ones [9]. The two-tiered classification has been verified 
to predict cancer-specific mortality and guide clinical 
practice in the same way as four-tiered systems, while it 
can reduce inter-observer variability and promote clinical 
practice [10, 11].

Percutaneous biopsy is a common method that can 
identify the pathology of the lesions, but it may be con-
troversial because of invasive operation and sampling 
bias and even result in the increased risk of complica-
tions [12, 13]. Moreover, tumor heterogeneity refers to 
the existence of different subpopulations of cells, which 
can show distinct genotypes and divergent biological 
behaviors in different parts of a tumor. Thus, a nonin-
vasive approach that can provide more information of 
lesions without the spatial and temporal restriction in tis-
sue sampling is urgently needed, because it is too hard to 
biopsy each part of an entire tumor [14].

Despite its status as a routine noninvasive method 
to detect CCRCC, the routine computed tomography 
(CT) has the limitative power to differentiate renal can-
cer histologic grade with high consistency and accuracy 
[15]. Since resecting radiographically suspicious CCRCC 
without a tissue diagnosis is recommended, and this may 
lead to overtreatment in patients with low-grade CCRCC 
[16, 17], an exploration of the noninvasively preopera-
tive differentiating between low- and high-nuclear grade 
of CCRCCs is urgent. Radiomics analysis enables the 

measurement of repetitive texture patterns at the voxel 
or pixel levels of medical images that are beyond the 
identification of the naked eye [18–20]. Previous inves-
tigations have shown that CT-based radiomics analysis 
performed efficiently in differentiating between low- and 
high-grade CCRCCs [21–24]. It might be a promising 
noninvasive assessment for predicting the nuclear grade 
of CCRCC. To our knowledge, most studies only con-
structed machine learning (ML) models using radiomics 
features extracted from CT images rather than a compre-
hensive model combined with those and clinicoradiologi-
cal information. Furthermore, no previous studies have 
evaluated the performance of nephrographic-phase (NP) 
CT radiomics analysis for predicting the nuclear grade of 
CCRCC. Therefore, this study aims to investigate if radi-
omics features extracted from NP CT images combined 
with clinicoradiological characteristics may have poten-
tial in preoperatively differentiating the WHO/ISUP 
nuclear grade of CCRCC.

Materials and methods
Patient cohort
This retrospective study was approved by the Institu-
tional Review Board of the First Affiliated Hospital of 
Chongqing Medical University, and the requirement for 
the acquisition of informed consent from patients was 
waived. The initial query yielded a target population of 
808 patients with pathologically confirmed CCRCC who 
underwent partial or radical nephrectomy between Janu-
ary 2013 and October 2020 in our institution. Finally, a 
total of 406 patients with 330 low-grade and 76 high-
grade CCRCCs were included in this study based on the 
following exclusion criteria: (1) pathology grade that was 
not classified according to the WHO/ISUP grading sys-
tem (n = 243); (2) absence of NP CT images (n = 117); (3) 
images with poor definition or severe artifacts (n = 31); 
(4) a history of radiotherapy or chemotherapy before 
surgery (n = 10); and (5) radiomics features  could not 
be extracted due to an undersized tumor volume (n = 1). 
The flowchart of this study is presented in Fig. 1. Moreo-
ver, the synthetic minority oversampling technique was 
used to increase the cases of high-grade CCRCC by over-
sampling for data balance [25].

Nuclear grade and clinical characteristics
Two independent histopathological specialists re-evalu-
ated each CCRCC sample regarding nuclear grade based 
on the criteria of the 2016 WHO/ISUP classification [8]. 
Discordant reports were resolved by a third senior histo-
pathologist. We exhibit four hematoxylin–eosin staining 
slides with different magnifications from four patients 
with WHO/ISUP grading I–IV CCRCCs  (Additional 
file 1: Figure S1). Data on the clinical characteristics that 
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were presumed potentially grading-correlated (age, sex, 
body mass index [BMI], smoking history, hypertension 
history, diabetes history, tumor location, resection sur-
gical procedure, etc.) and were extracted from the elec-
tronic medical record system of our institution.

CT acquisition
All patients underwent a routine preoperative abdomi-
nal CT scan performed on a GE Discovery 750 HD (GE 
Healthcare, Milwaukee, WI) multidetector scanner. The 
parameters for CT imaging were as follows: tube voltage, 
120–140  kV; tube current, 220–300 mAs; detector col-
limation, 0.625×64  mm; matrix, 512 × 512; slice thick-
ness, 5  mm. All patients were injected with nonionic 
intravenous contrast agent, via the antecubital vein with 
mechanical power injector, according to their weight 
(1  mL/kg body weight, with a maximum of 150  mL). 

Phase and delay time were as follows: Phase 1, unen-
hanced; Phase 2, postcontrast corticomedullary phase 
(CMP): 25–28  s after contrast agent was administrated; 
Phase 3, postcontrast nephrographic phase (NP): 65–70 s 
after contrast agent was administrated; and Phase 4, 
postcontrast excretory phase [26].

Image analysis
The semantic annotations of CT images and the corre-
sponding diagnostic criteria were as follows: (a) tumor 
size, defined as the maximum diameter on transverse 
images; (b) intratumoral necrosis, defined as the non-
enhanced fluid region of the tumor, which was greater 
than 50% of the tumor [27]; (c) cystic degeneration, 
defined as target lesion showing uniform water density 
and signal intensity, but no enhancement on enhance-
ment examination [28]; (d) intratumoral calcification, 

Fig. 1 Flowchart of the procedures for this study (CCRCC  clear cell renal cell carcinoma, CT computed tomography, ROI region of interest)
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interpreted as obvious dense shadows in the parenchyma 
that were speckled, lined, or shell-shaped; (e) violation 
of the renal capsule, interpreted as abnormal lesion vio-
lating the margin of the renal capsule; (f ) intratumoral 
angiogenesis, defined as vascular enhancement observed 
in the parenchyma of the cortical stage tumor [27, 29]; 
(g) venous invasion, interpreted as radiological charac-
teristics of tumor thrombosis in the renal vein and infe-
rior vena cava [27]; (h) perinephric metastasis, defined as 
perinephric invasion phenomenon on CT images; and (i) 
distant metastasis, considered as metastasis in the lung, 
liver, bone, brain, or other organs via the blood or lym-
phatics. In our study, two radiologists with 10 or more 
years of experience in renal imaging who were blinded 
to histopathological results independently identified and 
evaluated these characteristics. Any discrepancy was 
resolved by reaching a consensus via discussion, and the 
results agreed on were used for further analysis.

Tumor segmentation
All CT images were downloaded in DICOM format from 
the pictured archiving and communication system (Care-
stream, Canada) at their original dimensions and resolu-
tion and loaded into ITK-SNAP software version 3.8 [30]. 
A radiologist with ≥ 10  years of experience in abdomi-
nal imaging who was blinded to the pathological results 
(reader 1) meticulously manually delineated the regions 
of interest (ROIs) in a slice-by-slice manner (Fig.  2). 

To evaluate the reproducibility of radiomics features, 
ROI-based radiomics features of 30 randomly selected 
patients (from the whole study cohort) were re-extracted 
by reader 1 and another radiologist with 15 years of expe-
rience (reader 2). Thereafter, the intraclass correlation 
coefficient (ICC) values of both intra- and inter-observer 
agreement analyses were calculated to evaluate consist-
ency and reproducibility in terms of feature extraction, 
where features with ICC values > 0.80 were included in 
the subsequent analysis. Inter-observer variation refers 
to the discrepancy between the results obtained by two 
or more observers performing the same ROI detection. 
Intra-observer variation refers to the discrepancy in the 
measurements of one observer when performing an 
experiment more than once.

Radiomics feature extraction
All images were preprocessed before radiomics feature 
extraction as follows: first, the images and ROIs were 
resampled to an isotropic voxel size of 1 × 1 × 1  mm3 
using B-spline interpolation; second, we focused on the 
chosen region and divided by standard deviation to nor-
malize the images; third, the gray level of the image was 
discretized by a fixed bin width of 25 in the histogram. 
An open-source PyRadiomics library [31] was employed 
to extract radiomics features, which were divided into 
the following three subgroups: (1) descriptors of the size 
and shape of the ROI, such as the volume and maximum 

Fig. 2 Examples of manually delineated regions of interest (ROIs) on NP images. a, b The delineation of ROI on two patients with low-grade CCRCC. 
c, d The delineation of ROI on two patients with high-grade CCRCC 
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surface, compactness, and sphericity of the tumor; (2) 
first-order statistics features, such as the mean, median, 
maximum, and minimum values, that described the 
distribution of voxel intensities within tumor; and (3) 
second- and higher-order statistics features (texture fea-
tures) that reflected changes in the gray levels of image 
space and were used to measure the inter-relationships 
between voxel distributions within tumor. Gray-level co-
occurrence matrix, gray-level run-length matrix, gray-
level size-zone matrix, and gray-level dependence matrix 
were included in these features.

Prediction model construction
The following three models were built to predict the 
WHO/ISUP grade in this study: clinicoradiological, radi-
omics, and combined models. To construct the clinico-
radiological model, univariate regression was first used 
to analyze radiological and clinical characteristics, such 
as sex, age, and intratumoral necrosis. Significant vari-
ables were further selected for the multivariate regression 
model. Finally, variables with p value < 0.05 were adopted. 
The radiomics-based ML model was constructed using 
a support vector machine (SVM). To obtain the top of 
prediction performance, different feature selection algo-
rithms such as least absolute shrinkage and selection 
operator (LASSO), recursive feature elimination (RFE), 
and ReliefF were employed to select suitable radiomics 
features, and those features from different feature selec-
tion algorithms were fed into SVM for the prediction 
performance comparison, respectively. The combined 
model was constructed and analyzed using the SVM by 
gathering the selected radiological and clinical charac-
teristics as well as radiomics features. All of these proce-
dures were implemented using the scikit-learn library in 
Python (version 3.6).

Model evaluation
Performance metrics, including sensitivity, specificity, 
accuracy, positive predictive value (PPV), negative pre-
dictive value (NPV), and area under the receiver oper-
ating characteristic (ROC) curve (AUC), were used to 
evaluate the performance of the three prediction mod-
els. The DeLong test was performed as a nonparamet-
ric approach for the comparison of ROC curves in AUC 
values. In the testing cohort, calibration curve analysis 
was used to assess the similarity between the predicted 
and observed outcomes of the model, accompanied by 
the Hosmer–Lemeshow test. Furthermore, decision 
curve analysis (DCA) was conducted to demonstrate the 
clinical net benefit of the model. The net reclassification 
index (NRI) was used to evaluate the prediction ability 
of the model in clinical utility. To minimize perturba-
tion problems in feature selection and to examine the 

reproducibility of experimental results [32], we randomly 
assigned the patients to a training or testing cohort 10 
times. Categorizing the original dataset into different 
cohorts was stratified and shuffled to ensure a similar 
CCRCC nuclear grade distribution across the datasets. 
Overall, 30% of the data were taken as an independent 
testing cohort, whereas the rest were taken as the train-
ing and validation cohorts for the model via fivefold 
cross-validation. Stratification into the training cohort 
was automatically performed without user interven-
tion to avoid selection bias. Subsequently, the model was 
reconstructed and verified repeatedly.

Statistical analysis
Categorical variables are expressed as counts (n) and per-
centages (%), whereas continuous variables are presented 
as mean values ± standard deviations or as medians with 
interquartile ranges. Differences in characteristics across 
the three datasets were analyzed using one-way analysis 
of variance or the Kruskal–Wallis test for normally or 
non-normally distributed continuous variables, followed 
by a post hoc test, as appropriate. Student’s t test or the 
Wilcoxon test was used for the comparison of continu-
ous variables between groups. Categorical variables were 
subjected to the Chi-square test or Fisher’s exact test. The 
inter-observer agreement of CT findings for low- and 
high-grade CCRCCs between two radiologists was evalu-
ated using kappa statistics. A forward stepwise regres-
sion was used to refine the regression model according 
to the Akaike information criterion. To correct for mul-
tiple comparisons, we adjusted the p values by false dis-
covery rate correction using the Benjamini–Hochberg 
method [33]. All statistical analyses were performed 
using R software version 3.5.2 (http:// www. rproj ect. org) 
with “pROC”, “rms”, and  “DecisionCurve” packages. A 
two-tailed p value of < 0.05 was considered statistically 
significant.

Results
Clinicoradiological characteristics between the low‑ 
and high‑grade groups
Out of 406 patients enrolled in this study, 240 were 
male and 166 were female, with an average age of 
57.48 ± 12.10  years (range 16–83  years). The baseline 
clinical characteristics of patients are summarized in 
Table  1. In the patient cohort, 330 patients were diag-
nosed with low-grade CCRCC, whereas the rest were 
diagnosed with high-grade CCRCC. The majority of 
patients with high-grade tumors (n = 56, 73.7%) under-
went radical nephrectomy, whereas most patients 
with low-grade tumors preferred partial nephrectomy 
(n = 192, 58.2%, p < 0.001). High-grade and low-grade 
cohorts significantly differed with respect to tumor size 

http://www.rproject.org
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(5.82 ± 2.85  cm vs. 4.21 ± 2.02  cm; range: 0.8–14.6  cm, 
p < 0.001), hematuria symptoms (p = 0.023), distant 
metastasis (p = 0.035), intratumoral necrosis (p < 0.001), 
calcification (p < 0.001), violation of the renal capsule 
(p < 0.001), angiogenesis (p < 0.001), venous invasion 
(p < 0.001), and perinephric metastasis (p < 0.001).

Clinicoradiological characteristics among the training, 
validation, and testing cohorts
Table  2 shows the differences in clinicoradiological 
features between patients with low- and high-grade 
CCRCCs in the training, validation, and testing cohorts. 
Clinicoradiological characteristics of those are summa-
rized in Table 3. Except for violation of the renal capsule 
(P < 0.001), no significant differences in either clinical or 
radiological features were identified between the differ-
ent cohorts.

Clinicoradiological model construction
Kappa analysis indicated that the inter-observer agree-
ment of CT findings for low- and high-grade CCRCCs 
between the two radiologists were highly consistent, 

yielding kappa values of 0.779–0.923 (Table  4). Based 
on the results of univariate analysis, indicators such as 
tumor size, hematuria symptoms, intratumoral necro-
sis, calcification, violation of the renal capsule, angio-
genesis, venous invasion, and perinephric metastasis 
showed significantly different between high- and low-
grade groups were included in the multivariate analy-
sis (Table  4). As a result, tumor necrosis (odds ratio 
[OR] = 2.745, 95% confidence interval [CI] 1.424–5.292, 
p = 0.003), tumor calcification (OR = 4.293, 95% CI 
1.629–11.314, p = 0.003), and angiogenesis (OR = 3.805, 
95% CI 1.741–8.313, p = 0.001) were presumed to be 
independent factors of high-grade level and thus acted 
as clinical features in the clinicoradiological model 
construction.

Radiomics feature extraction and radiomics model 
construction
A total of 972 features of NP CT images were extracted 
from the ROIs using the PyRadiomics package, and those 
with ICC values > 0.8 on both intra- and inter-observer 
agreement analyses were retained. A dimensionality 

Table 1 Clinical and radiological characteristics of patients involved in this research

n number, BMI body mass index

Characteristics Full cohort (n = 406) Low grade (n = 330) High grade (n = 76) t value or χ2‑value p value

Age (years) 57.48 ± 12.10 57.12 ± 11.94 59.07 ± 12.73 1.268 0.205

Gender, n (%)

Male 240 (59.1%) 189 (57.3%) 51 (67.1%) 2.471 0.116

Female 166 (40.9%) 141 (42.7%) 25 (32.9%)

BMI (kg/m2) 24.30 ± 4.07 24.45 ± 4.04 23.69 ± 4.17 1.469 0.143

Smoking history, n (%) 135 (33.3%) 105 (31.8%) 30 (39.5%) 1.631 0.202

Hypertension,  n (%) 147 (36.2%) 125 (37.9%) 22 (28.9%) 2.133 0.144

Diabetes, n (%) 62 (15.3%) 49 (14.8%) 13 (17.1%) 0.243 0.622

Tumor size (cm) 4.51 ± 2.29 4.21 ± 2.02 5.82 ± 2.85 4.674 < 0.001

Tumor bearing, n (%)

Left 214 (52.7%) 178 (53.9%) 36 (47.4%) 1.070 0.301

Right 192 (47.3%) 152 (46.1%) 40 (52.6%)

Operative method, n (%)

Partial 213 (52.3%): 192 (58.2%): 20 (26.3%): 25.140 < 0.001

Radical 194 (47.7%) 138 (41.8%) 56 (73.7%)

Hematuria, n (%) 49 (12.1%) 34 (10.3%) 15 (19.7%) 5.180 0.023

Flank pain, n (%) 63 (15.5%) 48 (14.5%) 15 (19.7%) 1.270 0.260

Distant Metastasis, n (%) 2 (0.5%) 0 (0.0%) 2 (2.6%) – 0.035

Intratumoral necrosis, n (%) 192 (47.3%) 135 (40.9%) 57 (75.0%) 28.802 < 0.001

Cystic Degeneration, n (%) 39 (9.6%) 34 (10.3%) 5 (6.6%) 1.001 0.317

Calcification, n (%) 24 (5.9%) 12 (3.6%) 12 (15.8%) 14.292 < 0.001

Violation of the Renal Capsule, n (%) 64 (15.8%) 35 (10.6%) 29 (38.2%) 35.314 < 0.001

Angiogenesis, n (%) 250 (61.6%) 184 (55.8%) 66 (86.8%) 25.228  < 0.001

Venous invasion, n (%) 9 (2.2%) 2 (0.6%) 7 (9.2%) 17.316 < 0.001

Perinephric metastasis, n (%) 42 (10.3%) 18 (5.5%) 24 (31.6%) 45.456 < 0.001
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Table 3 Clinical and radiological characteristics between three cohorts

*  p < 0.05 for the comparison with patients in the training set

Characteristics Training cohort Validation cohort Testing cohort t value or χ2‑
value

p value

Full cohort, n (%)

406 (100%) 227 (55.9%) 57 (14.1%) 122 (30.0%) – –

Clinical characteristics

Age (years) 57.52 ± 11.97 56.40 ± 10.84 57.90 ± 12.93 0.30 0.72

Gender, n (%)

 Male 136 (59.9%) 32 (56.1%) 72 (59.0%) 0.27 0.87

 Female 91 (40.1%) 25 (43.9%) 50 (41.0%)

BMI (kg/m2) 24.21 ± 3.75 24.12 ± 3.35 24.56 ± 4.87 0.35 0.71

Smoking history, n (%) 75 (33.0%) 15 (26.3%) 45 (36.9%) 1.97 0.37

Hypertension, n (%) 79 (34.8%) 20 (35.1%) 48 (39.3%) 0.75 0.69

Diabetes, n (%) 30 (13.2%) 9 (15.8%) 23 (18.9%) 1.96 0.38

Tumor location, n (%)

 Left 123 (54.2%) 24 (42.1%) 68 (55.7%) 3.69 0.16

 Right 104 (45.8%) 33 (57.9%) 54 (44.3%)

Operative method, n (%)

 Partial 120 (52.9%) 34 (59.6%) 58 (47.5%) 2.37 0.31

 Radical 107 (47.1%) 23 (40.4%) 64 (52.5%)

Hematuria, n (%) 22 (9.7%) 10 (17.5%) 17 (13.9%) 3.22 0.20

Flank pain, n (%) 32 (14.1%) 7 (12.3%) 24 (19.7%) 2.41 0.30

Distant Metastasis, n (%) 1 (0.4%) 0 (0.0%) 1 (0.8%) 0.56 0.76

Imaging characteristics

Tumor size (cm) 4.48 ± 2.24 4.48 ± 2.40 4.58 ± 2.35 0.083 0.92

Necrosis, n (%) 107 (47.1%) 30 (52.6%) 55 (45.1%) 0.89 0.64

Cystic Degeneration, n (%) 23 (10.2%) 6 (10.5%) 10 (8.2%) 0.42 0.81

Calcification, n (%) 15 (6.6%) 3 (5.3%) 6 (4.9%) 0.46 0.80

Violation of the Renal Capsule, n (%) 44 (19.4%) 3 (5.3%) * 17 (13.9%) 7.28 0.026

Angiogenesis, n (%) 137 (60.4%) 33 (57.9%) 80 (65.6%) 1.29 0.52

Venous invasion, n (%) 7 (3.1%) 0 (0.0%) 2 (1.6%) 2.27 0.32

Perinephric Metastasis, n (%) 27 (11.9%) 4 (7.0%) 11 (9.0%) 1.50 0.47

Table 4 Risk factors for WHO/ISUP nuclear grade of CCRCC according to univariate and multivariate analysis

Characteristics Kappa value Univariate analysis Multivariate analysis

OR 95% CI p value OR 95% CI p value

Tumor size 0.875 7.845 3.652–12.355  < 0.001 0.992 0.852–1.155 0.918

Hematuria 0.867 2.106 11.082–4.101 0.026 1.145 0.482–2.720 0.758

Distant metastasis 0.831 – – - – – 0.999

Intratumoral necrosis 0.854 4.465 2.543–7.838  < 0.001 2.745 1.424–5.292 0.003

Calcification 0.905 4.502 1.965–10.311  < 0.001 4.293 1.629–11.314 0.003

Violation of renal capsule 0.814 5.092 2.854–9.086  < 0.001 1.642 1.642–3.446 0.190

Angiogenesis 0.779 11.486 5.766–22.879  < 0.001 3.805 1.741–8.313 0.001

Venous invasion 0.923 16.400 3.336–80.624  < 0.001 4.037 0.663–24.583 0.130

Perinephric metastasis 0.867 7.849 3.989–15.446  < 0.001 3.032 1.283–7.168 0.011
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reduction was conducted, and 16 features were finally 
selected to build the radiomics model. The selected fea-
tures are shown in Fig.  3. The classifiers such as  SVM-
LASSO, SVM-RFE, and SVM-ReliefF were utilized   for 
model construction.  Their ability to distinguish low- 
from high-grade CCRCCs is summarized in Table  5. In 

testing cohort, SVM-ReliefF yielded an AUC value of 
0.787 (95% CI 0.710–0.892), whereas the AUC values of 
SVM-RFE and SVM-LASSO were 0.761 (95% CI 0.648–
0.893) and 0.754 (95% CI 0.652–0.889). With an accu-
racy of 0.734 (95% CI 0.616–0.827), a sensitivity of 0.822 
(95% CI 0.737–0.919), and a specificity of 0.765 (95% CI 

Fig. 3 Diagram of the feature selection result. The bar plot represents the weight of each feature in the support vector machine

Table 5 Predictive performance of three classifiers: SVM-LASSO, SVM-RFE, and SVM-ReliefF

Data in parentheses are 95% confidence intervals

PPV positive predictive value, NPV negative predictive value

Classifier SVM‑LASSO SVM‑RFE SVM‑ReliefF

Training 
cohort

Validation 
cohort

Testing 
cohort

Training 
cohort

Validation 
cohort

Testing 
cohort

Training 
cohort

Validation 
cohort

Testing 
cohort

AUC 0.838 
[0.721–0.934]

0.795 
[0.674–0.899]

0.754 
[0.652–0.889]

0.842 
[0.747–0.945]

0.803 
[0.687–0.904]

0.761 
[0.648–0.893]

0.860 
[0.759–0.963]

0.824 
[0.736–0.915]

0.787 
[0.710–0.892]

Accuracy (%) 76.70 
[68.05–85.26]

73.94 
[73.49–89.75]

68.78 
[55.67–82.89]

77.36 
[65.35–86.25]

74.11 
[62.98–87.19]

71.58 
[59.87–83.74]

83.61 
[75.85–92.65]

77.14 
[69.38–86.05]

73.42 
[61.63–82.66]

Sensitivity 
(%)

77.57 
[64.45–87.31]

73.48 
[60.67–86.48]

70.07 
[61.71–82.99]

80.33 
[69.35–89.79]

75.47 
[63.78–89.36]

71.25 
[61.36–80.74]

84.78 
[74.36–93.74]

78.72 
[64.35–91.48]

82.15 
[73.74–91.92]

Specificity 
(%)

81.22 
[72.19–89.24]

79.63 
[61.34–70.49]

80.30 
[71.58–89.43]

84.31 
[73.74–92.18]

83.04 
[71.39–95.46]

79.22 
[66.57–88.34]

82.67 
[74.35–93.14]

80.33 
[69.74–92.26]

76.48 
[63.36–89.17]

PPV (%) 76.88 
[62.38–85.69]

73.86 
[59.67–88.74]

69.71 
[60.98–78.35]

79.46 
[64.38–91.59]

74.78 
[62.88–86.74]

72.98 
[67.64–83.35]

77.79 
[69.16–85.97]

75.98 
[68.30–83.57]

74.82 
[65.87–83.64]

NPV (%) 84.12 
[76.41–95.37]

80.48 
[71.70–92.26]

79.25 
[66.28–91.33]

85.34 
[75.65–96.43]

83.92 
[74.54–91.35]

80.25 
[72.36–92.17]

83.90 
[72.74–95.46]

80.43 
[71.32–89.91]

82.62 
[71.64–92.35]
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0.634–892), SVM-ReliefF turned into the best performer 
among the three classifiers. A comparison of the AUCs of 
the three algorithms in each data set is displayed in Fig. 4.

Comparison of the performance among clinicoradiological, 
radiomics, and combined models
As the optimum algorithm of the three classifiers, SVM-
ReliefF was chosen to predict WHO/ISUP nuclear grade 
of CCRCC by analyzing features contained in clinicora-
diological, radiomics, and combined models. AUC, sen-
sitivity, specificity, PPV, and NPV were calculated to 
assess the prediction performance of models. As exhib-
ited in Fig.  5a–c, compared with the clinicoradiological 
and radiomics models, the combined model showed the 
best predictive efficacy in distinguishing low- from high-
grade CCRCCs with the highest AUC values in training, 
validation, and testing cohorts (p < 0.05, DeLong test). 
The AUC values of the combined model were 0.887 (95% 
CI 0.798–0.952) and 0.859 (95% CI 0.748–0.935) in the 
training and validation cohorts, which were higher than 
those of the radiomics model with AUC values of 0.860 
(95% CI 0.759–0.963) and 0.824 (95% CI 0.736–0.915), 
while the clinicoradiological model demonstrated the 
worst performance with AUC values of 0.752 (95% CI 

0.649–0.870)  and 0.703 (95% CI 0.592–0.844) respec-
tively. In the testing cohort, the combined model yielded 
an AUC value of 0.828 (95% CI 0.731–0.929) (radiomics 
model: 0.787 [95% CI 0.710–0.892]; clinicoradiological 
model: 0.637 [95% CI 0.511–0.769]), with an accuracy 
of 0.816 (95% CI 0.742–0.925), a sensitivity of 0.856 
(95% CI 0.778–0.916) and a specificity of 0.780 (95% CI 
0.695–0.857), which showed the best prediction perfor-
mance in differentiating the WHO/ISUP nuclear grade. 
The detailed predictive performance of the three models 
are summarized in Table 6, and the confusion matrices of 
the combined model in the testing cohort for the random 
splitting process of 10-times runs are shown in Addi-
tional file 1: Figure S2.

Clinical usefulness
The calibration curves of these three models for predict-
ing low- and high-nuclear grade in CCRCC are shown 
in Fig. 6a. The calibration curve for the combined model 
demonstrated good agreement between observations 
and predictions in the testing cohort, accompanied by 
the Hosmer–Lemeshow test (p = 0.487, Fig. 6a) and fol-
lowed by the radiomics model (p = 0.321, Fig. 6a). How-
ever, there were differences between observations and 

Fig. 4 Predictive performance of three machine learning algorithms: SVM-LASSO, SVM-RFE, and SVM-ReliefF. a Receiver operating characteristic 
(ROC) curve analysis for the training cohort. b ROC curve analysis for the validation cohort. c ROC curve analysis for the testing cohort

Fig. 5 Predictive performance of SVM-ReliefF classifier in clinicoradiological, radiomics, and combined models. a Receiver operating characteristic 
(ROC) curve analysis for the training cohort. b ROC curve analysis for the validation cohort. c ROC curve analysis for the testing cohort
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predictions for the clinicoradiological model in the test-
ing cohort (p = 0.04, Fig.  6a). DCA indicated a higher 
net benefit for the combined model in distinguishing 
low- from high-grade CCRCCs than the other mod-
els (Fig.  6b). The threshold probability was within the 
range of 0.15–0.98. In the testing cohort, both the com-
bined and radiomics models achieved better discrimi-
nation performance than the clinicoradiological model 
(p = 0.010 and 0.021, NRI test). Additionally, the discrim-
ination ability of the combined model was also superior 
to that of the radiomics model (p = 0.038, NRI test).

Discussion
In this study, we utilized NP CT  based radiomics fea-
tures combined with clinicoradiological characteristics to 
build three models such as the clinicoradiological, radi-
omics and combined models for distinguishing between 
low-and high-grade  CCRCCs. The results demonstrated 
that NP CT based  radiomics was valuable in predicting 
the WHO/ISUP nuclear grade of CCRCC, and associat-
ing the radiomics features with clinicoradiological char-
acteristics could improve the predictive performance, 
compared with clinicoradiological and radiomics models 
alone. The combined model exhibited the best predictive 

Table 6 Predictive performance of combined model, radiomics model, and clinicoradiological model

Data in parentheses are 95% CIs

Model Combined model Radiomics model Clinicoradiological model

Training 
cohort

Validation 
cohort

Testing 
cohort

Training 
cohort

Validation 
cohort

Testing 
cohort

Training 
cohort

Validation 
cohort

Testing 
cohort

AUC 0.887 
[0.798–0.952]

0.859 
[0.748–0.935]

0.828 
[0.731–0.929]

0.860 
[0.759–0.963]

0.824 
[0.736–0.915]

0.787 
[0.710–0.892]

0.752 
[0.649–0.870]

0.703 
[0.592–0.844]

0.637 
[0.511–0.769]

Accuracy (%) 85.24 
[76.75–90.14]

82.76 
[75.99–91.36]

81.62 
[74.18–92.45]

83.61 
[75.85–92.65]

77.14 
[69.38–86.05]

73.42 
[61.63–82.66]

69.33 
[56.54–83.76]

62.87 
[51.74–75.36]

56.35 
[42.48–69.49]

Sensitivity 
(%)

89.77 
[80.63–96.98]

84.94 
[76.72–92.49]

85.56 
[77.82–91.58]

84.78 
[74.36–93.74]

78.72 
[64.35–91.48]

82.15 
[73.74–91.92]

71.86 
[59.43–83.82]

73.89 
[65.95–83.47]

65.78 
[46.89–80.87]

Specificity 
(%)

84.47 
[72.60–91.65]

83.42 
[74.32–92.18]

78.01 
[69.45–85.74]

82.67 
[74.35–93.14]

80.33 
[69.74–92.26]

76.48 
[63.36–89.17]

70.42 
[61.36–83.47]

66.86 
[56.63–78.10]

64.23 
[52.36–80.62]

PPV (%) 82.34 
[73.87–91.59]

81.52 
[73.67–87.59]

78.36 
[70.16–86.47]

77.79 
[69.16–85.97]

75.98 
[68.30–83.57]

74.82 
[65.87–83.64]

68.24 
[56.25–81.39]

65.71 
[52.63–78.78]

60.99 
[48.34–73.76]

NPV (%) 87.65 
[79.48–97.86]

86.77 
[78.43–91.17]

85.60 
[79.98–90.35]

83.90 
[72.74–95.46]

80.43 
[71.32–89.91]

82.62 
[71.64–92.35]

74.22 
[65.61–86.34]

70.98 
[61.05–82.77]

73.17 
[60.05–87.47]

Fig. 6 a Calibration curve and (b) decision curve analysis of the combined model, radiomics model, and clinicoradiological model in the testing 
cohort
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performance and clinical usefulness with satisfactory 
reproducibility and reliability.

Although percutaneous biopsy is the routine way to 
identify the preoperative pathology grade, it is an invasive 
approach, and patients may suffer from sampling bias 
and the risk of complications [12, 13]. Some emerging 
imaging technologies such as  dual-energy spectral CT, 
intravoxel incoherent motion imaging and diffusion kur-
tosis imaging could provide valuable information on the 
assessment of pathological grading of CCRCC [34, 35]. 
As a recommended noninvasive detection technology 
for CCRCC, CT may provide to improve the accuracy 
of percutaneous biopsy. CT radiomics as a burgeoning 
technique, is able to quantify tumor heterogeneity by the 
spatial arrangement of imaging voxels with signal inten-
sity variations and detect the imperceptible differences 
of the intensity distribution in medical images, thus non-
invasively predicting pathological grade of tumor with 
outstanding performance [36–38]. Recently, the WHO/
ISUP grading system has taken the place of the former 
Fuhrman grading system and received acceptance in cur-
rent clinical practice [39]. There are only a few published 
papers that have studied the application of CT radiomics 
to predicting the WHO/ISUP nuclear grade of CCRCC 
[40–43]. However, no previous studies used radiomics 
features extracted from NP CT images combined with 
clinicoradiological characteristics to develop the predic-
tion model.

Most previous studies constructed ML models only 
based on CT radiomics features, which ignored the 
importance of traditional clinical and radiological infor-
mation [26, 41, 44]. In our study, some parameters with 
clinical and radiological information that have the poten-
tial to be risk factors in the WHO/ISUP nuclear grade of 
CCRCC determined by multivariate regression model 
were fed into ML model, and the radiomics features com-
bined with the clinicoradiological characteristics showed 
a better performance for the discrimination of CCRCC 
grades. Our result is in concordance with the results 
of previous studies [22, 40, 42, 45–47], and this is rein-
forced by the results of previous studies on the associa-
tion between clinicoradiological characteristics and the 
nuclear grade of CCRCC [22, 48]. Xu et al. [49] observed 
that coagulative necrosis often occurs in the CT images 
of patients with high-grade CCRCC. In addition, our 
study also found intratumoral necrosis, calcification, 
angiogenesis, and perinephric metastasis could be risk 
factors of the pathological grading of CCRCC. The pre-
viously mentioned studies have shown the potential of 
quantitative CT features in preoperatively predicting the 
WHO/ISUP nuclear grade of CCRCC, but their sample 
sizes were relatively small. Our study with a larger sam-
ple size would provide support for verification of the 

reproducibility of CT radiomics in the application of pre-
dicting WHO/ISUP nuclear grade of CCRCC using an 
independent testing cohort. Furthermore, we firstly dem-
onstrated that the radiomics features from only NP CT 
images could obtain a preferable predictive performance 
in distinguishing low- from high-grade CCRCCs.

The preoperative noninvasive knowledge of CCRCC 
grades may contribute the clinical managements and 
impact clinical decisions. The new WHO/ISUP grading 
system is a prognostic factor for CCRCC whose grades 
were strongly related to patient outcomes and tumor 
biological behavior [50]. If low-grade CCRCC can be 
identified preoperatively, the treatment may be differ-
ent, and the patients with low-grade CCRCC may be 
candidates for less invasive procedures, such as radiof-
requency ablation and nephron-saving surgery, whereas 
radical interventions are strongly recommended in 
patients with high-grade CCRCC [11]. Moreover, par-
tial nephrectomy can preserve partial renal function, 
thus reducing rates of infection, overall mortality and 
the incidence of cardiovascular disease [51]. In the 
clinical management, patients with low-grade CCRCC 
are less likely to suffer from paraneoplastic syndrome 
and distant metastasis, so accurately preoperative pre-
diction of CCRCC grades may reduce unnecessary 
examinations, such as positron emission tomography-
computed tomography and radionuclide imaging, 
decreasing the economic burden and incidence of com-
plications resulting from the usage of contrast agent. 
Considering the latest update of the European Asso-
ciation of Urology Guidelines on renal cell carcinoma 
[7], patients with suspicious CCRCC are strongly rec-
ommended to use multiphasic contrast-enhanced CT 
imaging of the abdomen for diagnostic assessment and 
staging of renal tumors. Therefore, medical images can 
become a valuable source of information, and radi-
omics may be used as a noninvasive method for char-
acterizing and classifying lesions. Compared with 
percutaneous biopsy, the radiomics has the advantages 
of noninvasion, easy-to-repeat operation and no com-
plications. Our result indicates that combining NP CT 
based radiomics and clinicoradiological characteristics 
would provide good predictive performance in distin-
guishing between patients with low- and high-grade 
CCRCCs. This could provide a reference for clinicians 
to choose a  suitable treatment strategy. However, fur-
ther larger prospective or prospective studies with 
multi-centric data are necessary to validate the perfor-
mance of our proposed combined model in the future. 
A good performance does not always imply a clinically 
applicable and reliable model [52], and  however, we 
found that most previous studies did not evaluate the 
clinical utility of their models [21, 22]. In our study, we 
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used calibration curve and decision curve analyses to 
evaluate the discrimination performance of the three 
predictive models, which showed the combined model 
has higher clinical usefulness with a good agreement 
between observations and predictions and a preferable 
discrimination performance, thus indicating practical 
value.

This study has several limitations. First, although 
406 subjects with all-sided data were included, this 
retrospective study was conducted in a single institu-
tion, which may inevitably result in selection bias and 
make it less generalizable to other institutions. There-
fore, further studies should enroll the larger simple 
sizes from different centers and scanners to improve 
the generalization of the prediction model. Moreover, 
only single-phase CT images were used in this study, 
and comparison with other phases should be consid-
ered. Second, an  automatic segmentation algorithm 
should be developed to replace the manually sketch-
ing of ROI to increase the stability of prediction model. 
Third, although we have performed calibration statis-
tics and decision curve analyses on the prediction mod-
els and revealed that the combined model had the best 
discrimination ability, the clinical application should be 
further validated using larger prospective or prospec-
tive studies with multi-centric data. Fourth, CCRCC 
is a subtype of malignant renal tumor. Despite its high 
occurrence, other renal cancer subtypes could have 
similar radiological features, and therefore, should be 
evaluated in future studies.

In conclusion, we demonstrated that NP CT images 
could become a valuable source of information, and 
radiomics analysis of those may be used as a potentially 
noninvasive method for distinguishing low- from high-
grade CCRCCs. The ML model associating the radi-
omics features with clinicoradiological characteristics 
could improve the predictive performance for WHO/
ISUP nuclear grade of CCRCC, which may be a prom-
ising and feasible way to assist in the clinical manage-
ments and therapeutic decisions.
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