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resonance imaging
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Purpose: In clinical work, accurately measuring the volume and the size of

breast cancer is significant to develop a treatment plan. However, it is time-

consuming, and inter- and intra-observer variations among radiologists exist.

The purpose of this study was to assess the performance of a Res-UNet

convolutional neural network based on automatic segmentation for size and

volumetric measurement of mass enhancement breast cancer on magnetic

resonance imaging (MRI).

Materials and methods: A total of 1,000 female breast cancer patients who

underwent preoperative 1.5-T dynamic contrast-enhanced MRI prior to

treatment were selected from January 2015 to October 2021 and randomly

divided into a training cohort (n = 800) and a testing cohort (n = 200).

Compared with the masks named ground truth delineated manually by

radiologists, the model performance on segmentation was evaluated with

dice similarity coefficient (DSC) and intraclass correlation coefficient (ICC).

The performance of tumor (T) stage classification was evaluated with accuracy,

sensitivity, and specificity.

Results: In the test cohort, the DSC of automatic segmentation reached 0.89.

Excellent concordance (ICC > 0.95) of the maximal and minimal diameter and

good concordance (ICC > 0.80) of volumetric measurement were shown

between the model and the radiologists. The trained model took

approximately 10–15 s to provide automatic segmentation and classified the

T stage with an overall accuracy of 0.93, sensitivity of 0.94, 0.94, and 0.75, and

specificity of 0.95, 0.92, and 0.99, respectively, in T1, T2, and T3.
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Conclusions: Our model demonstrated good performance and reliability for

automatic segmentation for size and volumetric measurement of breast

cancer, which can be time-saving and effective in clinical decision-making.
KEYWORDS

deep learning, breast cancer, magnetic resonance imaging, volumetric measurement,
automatic segmentation
Introduction

Breast cancer is one of the most common malignancies

afflicting women worldwide (1). Tumor size has been thought

as an indispensable prognostic factor. An accurate preoperative

measurement of breast cancer size is essential for surgical

resection and the formulation of a chemotherapy regimen

(2–4). Furthermore, monitoring the change of tumor volume

during treatment is an important reference for response

evaluation criteria in solid tumors (5). Thus, it is crucial to

measure size and volume accurately in the clinical course.

Medical imaging, which is superior in measuring tumor size

and volume, might be used to obtain anatomic information

accurately and non-invasively (6–10). Among the imaging

methods, magnetic resonance imaging (MRI) is a better

diagnostic technique with the highest resolution and

quantitative information for preoperative prediction and

prognosis evaluation (11–14). However, it takes considerable

time and a great deal of expertise to process images by trained

radiologists. In addition, due to differences in diagnostic skills,

there are inter- and intra-observer variations among radiologists

and problems with decision fatigue (15, 16).

Artificial intelligence (AI) aiding medical imaging

technologies exceeded the detection capabilities of radiologists

in some applications, complemented clinical decision-making,

and streamlined preoperative image evaluation. Automated

processing by AI computational tools is a more efficient

detection approach to measure the volume and the size of a

tumor within a reasonable amount of time. It has great reference

significance for guiding the clinical development of follow-up

treatment plans and avoiding inaccurate measurement incurred

by some inexperienced radiologists (17). In addition, some studies

indicated that the presence of tumor necrosis correlated with

tumor grade, aggressiveness, unfavorable long-term outcomes,

and improved response to neoadjuvant chemotherapy (18–20).

Measuring the necrosis and the cystic components manually is

labor-consuming, but using AI technology improves the efficiency

and provides more intuitive parameters for radiologists.

Segmentation plays a significant role in image analysis,

including detection, feature extraction, classification,
02
and treatment (21, 22). Automatic and semiautomatic

segmentation can alleviate the labor-intensive problems and

eliminate the high variability between intra- and inter-observers

(23). Moreover, deep learning, as a subset of AI, is a promising

method to make a tremendous progress in automatic

segmentation by which more reproducible and effective texture

features in different fields of image analysis are extracted (24–26).

The convolutional neural network (CNN) is a sophisticated deep

learning architecture, and it has been successfully applied in

various areas of knowledge for digital image segmentation. The

U-Net network is a fully CNN with high-performance in graphics

processing unit (GPU) computing, requiring fewer training sets,

and has higher segmentation accuracy compared with other

CNNs (27). Among the U-Net network, Res-UNet is a semantic

segmentation model which integrates residual module and U-Net

network capable of effectively overcoming excessive parameters

and gradient dispersion caused by the deepened network

layer (28).

In this study, we developed a deep learning automatic

segmentation model based on Res-UNet of preoperative MRI

for breast cancer patients and assessed its reliability for size and

volumetric measurement. To our knowledge, no reported

research has applied deep learning to automatically segment

breast cancer and quantify the volume as well as the size

on MRI.
Materials and methods

The institutional review board approved this retrospective

study and waived the need for written informed consent.
Study design

The workflow of the process is illustrated in Figure 1,

including the following three steps: (1) acquisition of MRI,

data annotation, automatic segmentation, image pre-

processing, augmentation, and post-processing, (2) designing

and building the algorithm, and (3) training and inference.
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Patient selection and data annotation

All selected female patients were diagnosed with breast cancer

who underwent preoperative breast MRI prior to treatment from

January 2015 to October 2021. The inclusion criteria were as

follows: (1) diagnosed with breast carcinoma pathologically, (2)

underwent MRI prior to treatment, (3) with complete clinical and

pathological data, and (4) whose digital imaging and

communications in medicine pixel data had no corruption and

which were scanned under the same MR protocol. The exclusion

criteria were as follows: (1) received any therapy before MRI and

(2) non-mass enhancement breast cancer or normal in MRI.

According to the Cancer Staging Manual of the American

Joint Committee on Cancer, the system clarified that the tumor

(T) stage is based on the size of the invasive components of the

longest tumor dimension (in the setting of multiple masses). Our

study classified the tumor into three T categories: the size of T1 is

not greater than or equal to 20 mm, the size of T2 is larger than

20 mm and not greater than 50 mm, and the size of T3 is equal or

greater than 50 mm. A total of 1,000 patients were randomly

divided into group 1 (n = 230), group 2 (n = 720), and group 3

(n = 50). The following ratios were used: 80% training cohort

and 20% testing cohort to balance the test samples. Thus, we

selected 45, 143, and 12 cases relatively for three T categories as

testing cohort. In addition, 31 cases with cystic or necrotic

changes were enrolled in our study.
1 https://monai.io/
MRI acquisition

All patients were scanned using a 1.5-T system (Magnetom

Espree Pink; Siemens, Erlangen, Germany), which is equipped

with an eight-channel phased-array surface coil for the breast.

The patients were examined in the prone position with both

breasts positioned in the coil cavity. Axial T1WI [repetition
Frontiers in Oncology 03
time/echo time (TR/TE), 8.7/4.7 ms; slice thickness, 1.1 mm].

Dynamic contrast-enhanced MRI (DCE-MRI) used a fast, small-

angle excitation, three-dimensional imaging (3D-FLASH)

sequence and fat-saturated axial T1WI: TR/TE, 4.53/1.66 ms;

slice thickness, 1.1 mm. Before the contrast agent was injected, it

needed to be scanned one time. After that, the contrast agent,

gadopentetate dimeglumine, was injected with a high-pressure

syringe at a speed of 2.0 ml/s, and then 30 ml normal saline was

injected at the same speed to flush the catheter. Images of each

phase were subtracted automatically at the same time.
Delineation of ROIs by iterative workflow

A radiologist used the ITK-SNAP software (www.itksnap.

org) to review the first DCE-MRI subtraction images, this being

the most critical and the clearest phase of breast cancer

evaluation for further analysis. An iterative-label workflow was

used to delineate the regions of interest (ROIs) in the early stage

to get the ideal labels. It included an initial network model which

was trained on our in-house dataset from 100 patients’ ROIs and

the pre-trained model which was applied to the remaining

patients’ ROIs and achieved coarse labels. After that, two

radiologists checked and refined the manual revision. The

iterative workflow is shown in Figure 2.
Image processing

We designed a fully automatic CNN-based segmentation

network and built an end-to-end workflow based on Medical

Open Network for AI1 platform, including pre-processing, data
FIGURE 1

Workflow diagram.
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loader, augmentation, network building, post-processing,

and quantification.
Pre-processing

Three steps including intensity normalization, respacing,

and crop patches were performed before the training model.

Z-score normalization was suitable for variable intensity ranges.

We calculated the intensity ranges, clamped the voxels from 0.5

to 99.5%, calculated the mean and standard deviation (SD) of

each case, and used the equation to normalize the images. It is

defined as shown in Equation (1):

images =
images  −  mean

SD
(1)

To automatically adapt to any new dataset, we calculated the

mean spacing of all training cohorts to define the standard

target. Any data needed to be resized to the target before training

and inference. Most cases had the dimension of the width and

the height as 384 and the depth from 128 to 320. Due to the

limitation of the GPU memory size, it was challenging to send

the whole image to the network. In this situation, we first

calculated the average area of the lesions and set a minimum

cropping patch size which can include the central regions. The

cropping patch size must also be a multiple of 2 to be suitable for

most regular models. According to the statistics, a patch with a

96*96*96 size was the best choice for our algorithm.

To ensure the balance of positive and negative samples for

network training, we randomly selected the cropping patches

with the center point at the foreground or background area with
Frontiers in Oncology 04
half-to-half probability. According to our experiments, crop

patches with the likelihood of 2:1 between positive and

negative areas can also get a similar performance.
Augmentation

Our algorithm implemented data augmentation to make

the model more robust during training steps: random

zoom, random scale intensity value, random shift

intensity range, random Gaussian noise, random crop fore/

background, random rotation with 90°, and random elastic

transformation (Figure 3).
Res-UNet network building

U-Net is an overall architecture for 2D and 3D images in

medical image processing. Our study designed a robust U-Net-

based network called Res-UNet with the residual blocks in the

encoder part. Figure 4 shows the architecture of our designed

model. In the encoder part, we used residual blocks to extract

features. Skip connection was a classical operation from U-Net

and might focus on the extracted features from different layer

levels. It was well suited for medical images since lesion targets

from different scale levels included different features. Figure 5

illustrates the residual blocks. The solid line carrying the layer

input to the addition operator was a residual connection. The

residual connection might effectively avoid gradient

disappearance, especially in deeper layers. We combined the

residual connection blocks with the U-Net skip connection to
FIGURE 2

Iterative labeling workflow.
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design an efficient network, which might help us obtain the

accurate prediction results of lesion segmentation.
Optimizer and loss function

In our algorithm, we used Adam optimizer, dice similarity

coefficient (DSC), and cross-entropy loss. The equations are
Frontiers in Oncology 05
shown in Equations (2)–(4):

loss = DSC _ loss * 0:5 +  cross _ entropy _ loss * 0:5 (2)

DSC_ loss = 1  −  
2* X ∩ Yj j
Xj j  +   Yj j (3)

cross _ entropy _ loss =   −oN
m=0ym ln s xið Þð Þ (4)
FIGURE 4

Res-UNet architecture.
FIGURE 3

Workflow of data augmentation.
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Post-processing

Usually, the tumor is an agglomerate region. We removed

the outliers with less than 30 voxels in a connected region to

avoid the noise of predicted results for the accuracy. Testing time

augmentation is an effective way to improve accuracy in the

inference step. We only applied rotation with 90°, 180°, and 270°

to repeat the inference in one case to save time. It might improve

the DSC of the testing cohort with 1 to 2%.We also tried a multi-

model ensemble and trained the same Res-UNet network with

different epochs. The ensemble also improved the accuracy by

around 1%.
Measurement of pixel level

DSC and intersection over union (IOU) are commonly used

metrics in segmentation algorithms. We use these two

coefficients to evaluate our segmentation performance. These

coefficients are spatial overlap indexes utilizing segmentation in

MRI as reproducibility validation metrics. The definition of DSC
Frontiers in Oncology 06
and IOU are shown as Equation (5) and Equation (6). Figures 6,

7 show the DSC and IOU performance of our segmentation.

DSC =  
2* X ∩ Yj j
Xj j  +   Yj j (5)

IOU =  
X ∩ Yj j
X U Yj j (6)

Figure 8 shows the ground truth and our predicted results.

The comparison indicated that case 01 to case 05 get the accurate

results with DSC of around 0.9 and IOU of around 0.85. In case

06, a small lesion region was not segmented by the model; thus,

the DSC and IOU are 0.0. We thought that the lesion was too

small and quite similar to fat. This will be solved with the more

various training cohorts.
Measurement of size and volume

We used quantification indexes to calculate shape-based

features such as “maximum 3D diameter, 3D mesh volume,
FIGURE 5

Residual blocks.
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minimal diameter, maximal diameter, volume”. The method

firstly extracted the largest tumor area, found the maximum

connected components, cropped a 3D region with its solid

components fitting as an ellipsoid, and then calculated the

factors which might influence shape information. These were

all based on the pyradiomics library (Figure 9). We also used the

Otsu’s method, which is a classical intensity-based method, to

divide the cystic degeneration or necrosis region manifested as

hypointense in the central or paracentral area on DCE-MRI

(Figure 10). It iteratively searched for the threshold that

minimizes the within-class variance from the histogram.

Figure 11 shows the histogram of the tumor areas calculated

by Otsu’s method. Moreover, the maximum value is the

threshold to find the interclass variance. After that, we used

the threshold as pixel intensity value to segment cystic or

necrotic change areas. So far, the central part of the cystic or

necrotic areas could be extracted. The outliers, a number of

voxels less than 30, were removed in each connected

component area.
Frontiers in Oncology 07
Statistical analysis

The automatic segmentation performance was evaluated

with DSC. The method performance of classifying the size

according to T stage was assessed with accuracy, sensitivity,

and specificity. Intraclass correlation coefficient (ICC) was

adopted to measure the agreement between the size and the

volumetric parameters of the predicted results and the GT

results. All statistical analyses were conducted using Python

version 3.8 (www.python.org) and SPSS 25.0 software package.
Results

Our improved Res-UNet got the best DSC of 0.89 among

different networks. The DSCs of different networks are shown in

Table 1. The details of DSC and IOU are presented in Table 2.

The final metrics of the predicted outcomes in the standard-

alone test cohort were accuracy = 0.93, sensitivity (T1, T2, and
FIGURE 7

Dice similarity coefficient and intersection over union performance.
FIGURE 6

Dice similarity coefficient and intersection over union performance.
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T3 = 0.94, 0.94, and 0.75, respectively), and specificity (T1, T2,

and T3 = 0.95, 0.92, and 0.99, respectively. The detailed metrics

are shown in Tables 3–5, while Figures 12–14 show the details of

maximal diameter, minimal diameter, and volume. Table 6

shows the metrics of cystic or necrotic components including

volume and mean intensity. A high concordance of size and

volumetric parameters was shown between the deep learning

segmentation-based prediction results and the GT segmentation

results. For the minimal and maximal diameters, the ICC was

greater than 0.95, and for volumetric measurement of mass

enhancement breast cancer, the ICC was greater than 0.80
Frontiers in Oncology 08
(Table 7). The trained model took approximately 10–15 s to

provide automatic segmentation and volume analysis for each

patient, while the average manual segmentation time was at least

15 min.
Discussion

Our study established a deep learning model based on the

Res-UNet network architecture with DSC of 0.89 for the

automatic segmentation to improve recognition efficiency
FIGURE 8

Six cases showing comparisons between the ground truth and our predicted results.
FIGURE 9

Workflow of measurement.
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and productivity with the speed of 10–15 s for one patient,

eliminate inter- and intra-observer variations among breast

radiologists as much as possible, and reduce information

overload. Our model achieved a good performance with an
Frontiers in Oncology 09
overall accuracy of 0.93, sensitivity of 0.94, 0.94, and 0.75, and

specificity of 0.95, 0.92, and 0.99, respectively, for three T

categories in classifying the size of mass enhancement breast

cancer. In addition, the model corresponded well with the GT
TABLE 1 Different networks’ dice similarity coefficient (DSC).

Metrics UNet nnUNet Res-UNet

DSC 0.82 0.887 0.894

GPU memory usage in training 6 GB (batch = 8) 8 GB for normal model
32 GB for very big model

11 GB (batch = 8)
GPU, graphics processing unit.
TABLE 3 Summary of geometric parameters between the prediction results and GT results.

Geometric parameters Predict GT

Maximum 3D diameter(mm) 33.25 34.02

3D mesh volume (mm3) 9,335.38 10,370.29

Minimal diameter (mm) 21.17 21.57

Maximal diameter (mm) 27.41 27.77

Volume (mm3) 9333.08 10416.14
fronti
GT, ground truth.
TABLE 2 Details of dice similarity coefficient (DSC) and intersection over union (IOU).

Metrics DSC IOU

Average 0.88 0.80

Standard deviation 0.13 0.15
ers
FIGURE 10

Regions of interest of the areas with cystic or necrotic changes. The green part shows the classification from the Otsu’s method.
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TABLE 5 Final predicted results of the classification.

Metrics Small Medium Large

Macro average 0.91 0.88 0.89

Weighted average 0.93 0.93 0.93

Accuracy 0.93
Frontiers in Oncology
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 frontier
TABLE 4 Final predicted metrics of the classification.

Classification Precision Recall F1-score support

Small (<20 mm) 0.85 0.94 0.90 50

Medium (20–50 mm) 0.96 0.94 0.95 138

Large (>50 mm) 0.90 0.75 0.82 12
TABLE 7 Agreement of size and volumetric parameters between deep learning segmentation-based prediction results and GT segmentation results.

Prediction GT Intraclass correlation coefficient

Volume (mm3) 9,333.08 ± 13,409.19 10,416.14 ± 21,928.01 0.840

Maximal diameter (mm) 27.41 ± 13.47 27.77 ± 12.55 0.952

Minimal diameter (mm) 21.17 ± 8.63 21.57 ± 9.06 0.964
GT, ground truth.
TABLE 6 Comparison of the volume and mean intensity between cystic or necrotic components and lesions.

Quantitative
parameters

Mean of
lesion

Mean of cystic
component

Minimum of
lesion

Minimum of cystic
component

Maximum of
lesion

Maximum of cystic
component

Volume (mm3) 23,858.41 7,816.06 2,625.14 12.92 253,526.11 128,501.66

Mean intensity 362.29 198.70 204.31 105.69 582.45 321.625
FIGURE 11

Histogram of the lesion areas.
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results derived manually by radiologists in terms of size and

volumetric parameters. These results implied that our

framework might automate certain procedures of the

preoperative evaluation for breast cancer. Although the

classification capability of our model is powerful and

significant, future advances which will be considered through

external validation in other institutions or with larger data sets

will make it more persuasive for clinical application.

Preoperative breast MRI, for its highest resolution and

abundant information, becomes the most promising imaging

modality for different AI applications, mainly for lesion

detection and classification (12, 29). Automatically detecting
Frontiers in Oncology 11
and classifying (limited to benign versus malignant) breast

lesions on MRI are relatively well-established techniques (30–

33). Nevertheless, measuring the volume and the size of mass

enhancement breast cancer accurately has important guidance

for follow-up therapeutic decisions. In previous studies, some

researchers have compared the accuracy of computer-aided

detection (CAD) systems and radiologists in measuring the

tumor size. The results are mostly reported such that the

manual measurement of MRI is better than MRI with CAD (3,

16). However, CAD systems have limited capabilities; they also

enable radiologists to process large images efficiently. Therefore,

using large sample image data and more intelligent deep learning
FIGURE 12

Final metrics of the predicted results.
FIGURE 13

Final metrics of the predicted results.
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models based on neural network structures to measure the

maximum diameter and solid component volume of tumors

can undoubtedly improve the efficiency.

We reported an excellent performance of the model in

segmentation, which is in accordance with the previous studies

on breast cancer segmentation (34–37). This observation can not

only provide precise segmentation and quantitative assessments

of breast cancer but also assist in image analysis including

detection, feature extraction, classification, and treatment. In

most previous studies, tumors were segmented manually, which

are prone to inter- and intra-observer variabilities (34, 38, 39).

Furthermore, for the 3D medical imaging process, it is difficult

and time-consuming for radiologists to measure lesions

manually. Automatic segmentation and semi-automatic

segmentation will reduce the time as well as improve the

reliability. We used automatic segmentation which produced

results consistently and reproducibly. What is more,

automatically extracting an entire 3D lesion with an irregular

shape only takes a few minutes, and the region in the 3D

dimension by manual drawing may be discontinuous or not

smooth and time-consuming.

Although several prior studies used deep learning to segment

breast cancer, they did not measure the volume and the size. To

the best of our knowledge, this is the first deep learning study to

automatically segment mass enhancement breast cancer and

measure the volume and the size on MRI. Our model also

analyzed the areas with cystic or necrotic changes. Tumor

necrosis has been proposed as a negative prognostic factor in

some studies and could be evaluated on MRI comprehensively

(40, 41). Differing from prior studies of necrosis as a predictive

reference in TNBC, our study aims to automatically delineate

and measure the volume of cystic and necrosis areas through our

algorithm so that radiologists can intuitively find the changes in

tumor components, and this would help them predict the

patients’ prognosis (19, 42).

Our study had several limitations. Firstly, although this is a

unicentric study with a relatively large sample size, external

validation datasets from multiple centers should be set up to test
Frontiers in Oncology 12
the rationality of the model. Secondly, we did not simultaneously

count multifocal or multicentric cancers. Non-mass

enhancement breast cancer should also be tried to be divided

into regions. Further research is possible in the future to expand

the application scope of this model for improvement. Thirdly,

from the perspective of methods, the performance of our model

can still be improved. Some cases still contain false-positive

regions similar to lesions with hyperintensity. We think

that a false-positive-remove algorithm may suppress these

error regions.
Conclusions

Utilizing a deep learning-based algorithm based on

automatic segmentation to measure the volume and the size of

mass enhancement breast cancer on MRI is feasible with high

accuracy and reliability, thereby reducing the effort and

variabilities. Further development will be added in our

study for such to be implemented into future clinical

practice efficiently.
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