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Background: Axial spondyloarthritis (axSpA) is frequently diagnosed late, particularly in human leukocyte 
antigen (HLA)-B27-negative patients, resulting in a missed opportunity for optimal treatment. This study 
aimed to develop an artificial intelligence (AI) tool, termed NegSpA-AI, using sacroiliac joint (SIJ) magnetic 
resonance imaging (MRI) and clinical SpA features to improve the diagnosis of axSpA in HLA-B27-negative 
patients.
Methods: We retrospectively included 454 HLA-B27-negative patients with rheumatologist-diagnosed 
axSpA or other diseases (non-axSpA) from the Third Affiliated Hospital of Southern Medical University 
and Nanhai Hospital between January 2010 and August 2021. They were divided into a training set (n=328) 
for 5-fold cross-validation, an internal test set (n=72), and an independent external test set (n=54). To 
construct a prospective test set, we further enrolled 87 patients between September 2021 and August 2023 
from the Third Affiliated Hospital of Southern Medical University. MRI techniques employed included T1-
weighted (T1W), T2-weighted (T2W), and fat-suppressed (FS) sequences. We developed NegSpA-AI using 
a deep learning (DL) network to differentiate between axSpA and non-axSpA at admission. Furthermore, 
we conducted a reader study involving 4 radiologists and 2 rheumatologists to evaluate and compare the 
performance of independent and AI-assisted clinicians.
Results: NegSpA-AI demonstrated superior performance compared to the independent junior 
rheumatologist (≤5 years of experience), achieving areas under the curve (AUCs) of 0.878 [95% confidence 
interval (CI): 0.786–0.971], 0.870 (95% CI: 0.771–0.970), and 0.815 (95% CI: 0.714–0.915) on the internal, 
external, and prospective test sets, respectively. The assistance of NegSpA-AI promoted discriminating 
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Introduction

Axial spondyloarthritis (axSpA) is a chronic inflammatory 
disease that primarily affects the sacroiliac joint (SIJ) and 
spine, with a prevalence ranging from 0.3% to 1.4% (1,2). 
Human leukocyte antigen-B27 (HLA-B27) serves as a 
significant genetic marker strongly associated with axSpA. 
The presence of HLA-B27 provides important evidence for 
rheumatologists in diagnosis (3). However, previous studies 
have shown that a notable proportion, ranging from 42% to 
57%, of suspected axSpA cases lack HLA-B27 (4). Patients 
with HLA-B27-negative axSpA often experience prolonged 
diagnostic delays, and the pathogenesis and symptoms 
of their condition remain inadequately understood (5). 
Delayed diagnosis hampers early intervention, leading 
to suboptimal treatment outcomes and unnecessary side 
effects (6). Persistent disease activity exacerbates symptoms, 
contributing to pain, irreversible structural damage, 
functional impairment, and heightened cardiovascular risks 
(7,8). Therefore, it is imperative to increase the focus on 
HLA-B27-negative axSpA to address the issues of delayed 
diagnosis, thereby improving treatment response and 
prognosis.

Detection of sacroiliitis on imaging modalities plays a 
pivotal role in diagnosing HLA-B27-negative axSpA (9). 
However, conventional radiographs, as defined by the 1984 
modified New York (mNY) criteria (10), may not adequately 
capture early structural damage and inflammatory lesions, 
leading to delayed axSpA diagnosis (11). In contrast, 
magnetic resonance imaging (MRI) is highly sensitive 
in detecting early changes in SIJs, such as bone marrow 
edema, bone erosion, ankyloses, and so on (12). Hence, 
the Assessment of SpondyloArthritis International Society 
(ASAS) classification criteria [2009] incorporated a positive 

SIJ MRI scan, in addition to 11 clinical features, to classify 
axSpA (13). However, it is worth noting that positive MRI 
findings can also occur in other conditions, such as infection, 
degenerative arthritis, and osteitis condensans, potentially 
leading to misdiagnosis of axSpA (14,15). Moreover, HLA-
B27-negative axSpA often exhibits atypical manifestations, 
including less involvement of the SIJs and less symmetric 
and marginal syndesmophytes (16). These variations pose 
challenges in distinguishing axSpA from its mimic diseases. 
In addition, the interpretations of SIJ MRI depend on 
radiologists’ personal experiences, which may introduce 
subjective bias, especially in basic-level hospitals (17).  
Given these challenges, new and effective methods 
are urgently required to assist clinicians in accurately 
interpreting SIJ MRI and improve the diagnosis of HLA-
B27-negative axSpA. 

Recently, artificial intelligence (AI) with deep learning 
(DL) has emerged as a great power for uncovering disease 
characteristics on MRI that may not be captured by the 
naked eye (18). DL techniques have been successfully 
applied to classify various types of arthritis and detect 
changes in SIJs indicative of axSpA (19-21). These 
studies have demonstrated the remarkable capability of 
AI in automatically analyzing SIJ MRI. However, the 
development of AI models for diagnosing HLA-B27-
negative axSpA faces inevitable challenges: (I) small datasets: 
the MRI dataset for suspected HLA-B27-negative axSpA 
is small-size due to factors including the low incidence of 
the condition, delayed diagnosis, and challenges in data 
collection, which may not guarantee a robust population-
level model training; (II) data differences: variations in 
image artifacts and unusual imaging appearances can reduce 
the generalization ability of AI models on unseen datasets. 
Further investigations are still needed to solve these issues.

accuracy, sensitivity, and specificity of independent junior radiologists by 7.4–11.5%, 1.0–13.3%, and 
7.4–20.6% across the 3 test sets (all P<0.05). On the prospective test set, AI assistance also improved the 
diagnostic accuracy, sensitivity, and specificity of independent junior rheumatologists by 7.7%, 7.7%, and 
6.9%, respectively (all P<0.01).
Conclusions: The proposed NegSpA-AI effectively improves radiologists’ interpretations of SIJ MRI and 
rheumatologists’ diagnoses of HLA-B27-negative axSpA.
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In this study, we aimed to develop an AI model, named 
NegSpA-AI, which integrates SIJ MRI with clinical SpA 
features to provide more accurate diagnoses of axSpA in 
HLA-B27-negative patients, thereby improving clinical 
decision-making and patient outcomes. We present this 
article in accordance with the TRIPOD-AI reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-24-729/rc). 

Methods

Study samples

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Regional Institutional Review Board of the 
Third Affiliated Hospital of Southern Medical University 
and followed by Nanhai Hospital (No. 201501003). The 
requirement to obtain informed consent from patients 
in the retrospective cohorts was waived. Patients in the 
prospective cohort provided written informed consent that 
clearly stated that all the collected information would be 
used for publication by the investigator. Patients’ protected 
health information was removed from Digital Imaging and 
Communications in Medicine (DICOM) data in accordance 
with US (HIPAA), European (GDPR), or other relevant 
legal requirements (22). The data related to patients used in 
this study can be obtained from the corresponding author 
upon reasonable request. 

We consecutively and retrospectively enrolled HLA-
B27-negative patients with low back pain and axSpA 
from the Third Affiliated Hospital of Southern Medical 
University and Nanhai Hospital between January 2010 and 
August 2021. Following previous studies (23,24), HLA-
B27-negative patients with low back pain but without 
axSpA (non-axSpA) were also recruited as a control 
group. Detailed disease subtypes of non-axSpA patients 
are described in Table S1. Figure 1 outlines the overall 
inclusion and exclusion criteria. The inclusion criteria 
for both groups were as follows: (I) HLA-B27 negative; 
(II) chronic low back pain (duration over 3 months); (III) 
available SIJ MRI and clinical data within 2 weeks after the 
initial examination and before any treatment. The exclusion 
criteria were as follows: (I) less than 2 clinical data; (II) 
incomplete MRI data; (III) poor MRI quality severely 
impeding observation of SIJs. The collected clinical data 
included age, sex, disease duration, and 11 SpA features as 
per the ASAS criteria (2009) (13). The clinical SpA features 

comprised inflammatory back pain, arthritis, heel enthesitis, 
uveitis, dactylitis, psoriasis, Crohn’s disease or ulcerative 
colitis, good response to nonsteroidal anti-inflammatory 
drugs (NSAIDs), family history of axSpA, HLA-B27 
status, and C-reactive protein (CRP) levels. Clinical data 
were gathered from the electronic medical record system. 
Structural damage status was assessed by 2 musculoskeletal 
radiologists (Caolin Liu and Yangyang Shao) with 11 
and 3 years of experience in SIJ MRI interpretation. The 
structural damage status was reported as positive if erosions, 
sclerosis, joint space narrowing/widening, or ankyloses were 
observed; it was otherwise reported as negative (3). Patients 
from center 1 recruited before April 2020 were allocated 
as the training set for model development using a 5-fold 
cross-validation, and patients recruited after April 2020 
constituted an internal test set. Patients from center 2 were 
used as an independent external test set.

Next, we consecutively enrolled 87 HLA-B27-negative 
patients with low back pain and clinically suspected axSpA 
from center 1 between September 2021 and August 2023 
to constitute a prospective test set for testing the developed 
model. These patients underwent SIJ MRI examinations 
including T1-weighted (T1W), T2-weighted (T2W), and 
fat suppression (FS) sequences, and their clinical data were 
collected. Patients were excluded from the prospective test 
set if they met any of the above exclusion criteria.

Diagnosis and labeling of patients

Each patient underwent a standardized diagnostic flowchart 
(see Figure S1) to be diagnosed and labeled as axSpA 
or non-axSpA. Firstly, 2 experienced musculoskeletal 
radiologists (Shisi Li and Rui Zhang), each with over 10 
years of experience, independently interpreted the SIJ MRI 
following the criteria in the ASAS MRI working group (25)  
to report whether the MRI was suggestive of axSpA. 
The 2 radiologists discussed cases that had controversial 
reports to reach a consensus. Subsequently, 2 seasoned 
rheumatologists (X.H. and X.S.), each possessing over 
10 years of experience, independently conducted a 
thorough analysis of all available information to provide 
a differential diagnosis between axSpA and non-axSpA. 
Rheumatologists analyzed the imaging findings on SIJ 
MRI from the radiologists, status of clinical SpA features, 
laboratory determinations, physician measurements, 
infection indicators, rheumatoid factors, pregnancy status, 
and the incidence of axSpA in the local area (26,27). 
Rheumatologists referred to both the ASAS classification 
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criteria [2009] and the mNY criteria [1984] during the 
diagnostic process. In cases where there were controversial 
diagnoses or uncertainties, the 2 rheumatologists, along 
with another experienced rheumatologist (Y.H.) with over 
15 years of experience, discussed them together to reach a 
consensus diagnosis. The final diagnoses were used as the 
ground-truth diagnoses to evaluate the performance of 
AI models and clinicians in the reader study. All clinicians 
participating in making the ground-truth diagnoses were 
isolated from the reader study. 

Acquisition and annotation of MR images

MRI examinations of patients were conducted at 2 centers 
utilizing MRI scanners with field strengths of 1.5-T 
(Achieva; Philips Healthcare, Amsterdam, Netherlands) and 
3.0-T (Ingenia; Philips Healthcare) employing both body 
coils and bed spine coil. The MRI protocol included T1W, 
T2W, and FS sequences. For T1W and T2W sequences, 
the axial plane images were primarily used if they were 
available, otherwise the coronal plane images were used. 
The FS sequences encompassed various sequences, such 
as spectral attenuated inversion recovery (SPAIR) T2W, 
proton density-weighted (PDW) SPAIR, and short tau 
inversion recovery (STIR), owing to differences in sequence 
acquisition protocols. Specifically, axial SPAIR sequences 
were preferred when they were available, otherwise the 
coronal SPAIR or STIR sequences were used. Further 
parameters of the MRI sequences are detailed in Table S2. 
All MRIs were downloaded from the Picture Archiving and 
Communications Systems (PACS) of participating centers 
and stored as DICOM format files at their original sizes and 
resolutions.

We introduce a 6-step annotation method for clinicians 
to annotate rectangular volumes of interest (RVOIs) 
containing bilateral SIJs on MRI (Appendix 1 and  
Figure S2). Firstly, 2 musculoskeletal radiologists 
(Xiaqing Chen and Rui Zhang) with 3 and 15 years of 
experience performed the 6-step annotation method to 
annotate RVOIs for each MRI. Both the radiologists were 
blinded to the actual diagnoses of the patients during the 
annotation. The intersection over union (IoU) between 
the annotated RVOIs was calculated to measure the inter-
reader reliability. Then, RVOIs from the 2 radiologists 
were merged using the union function under the 
MATLAB (MathWorks, Natick, MA, USA) environment 
to generate a final RVOI for each MRI. The final RVOIs 
were used to develop the AI model.

Development and validation of NegSpA-AI 

To avoid the potential impact of image differences on the 
model performance, we performed standard preprocessing 
procedures  on a l l  the MRIs,  including intensi ty 
normalization, slice selection, and data augmentation. The 
detailed image preprocessing procedures are described 
in Appendix 2 and Figure S3. After preprocessing, each 
MRI was divided into 2 sub-images containing the left-
side and right-side SIJs, which were used as input for the 
DL models. Then, 5 basic convolutional neural networks, 
including VGG16_bn (28) and various members of the 
ResNet family (29) (ResNet18, ResNet34, ResNet50, and 
Resnet101), were established and adapted into tri-input 
frameworks. These tri-input frameworks simultaneously 
take images from T1W, T2W, and FS sequences as 
inputs and predict the patients as axSpA or non-axSpA. 
Following validation and comparison, the tri-input 
framework exhibiting the best performance was chosen 
as the MRI-based DL model. Next, the clinical SpA 
features were integrated into the MRI-based DL model to 
develop NegSpA-AI (Figure 2). During model training, a 
data augmentation method named MixCut was proposed 
and a 2-stage transfer learning approach was employed. 
Moreover, visualization analysis using the gradient-
weighted class activation mapping (Grad-CAM) method 
and clinical stratification analysis based on age, sex, 
disease duration, and structural damage were conducted 
for NegSpA-AI. Detailed development, validation, and 
analysis of NegSpA-AI are outlined in Appendix 2. All 
models were implemented using PyTorch (version 1.6) 
with Python (version 3.6) under a Linux system (Ubuntu, 
version 18.0; Canonical, London, UK) on NVIDIA GPUs 
(GeForce RTX 2080 Ti; NVIDIA, Santa Clara, CA, USA) 
with the CUDA platform (version 11.0). The source code 
can be found online at https://github.com/MedImgPro/
ASMixCut. This code can be deployed in regular PACS 
systems and personal computers with GPU hardware to 
enable the accessibility of NegSpA-AI.

Reader study

On the internal and external test sets, 4 musculoskeletal 
radiologists (Rad1, Rad2, Rad3, and Rad4 with 4, 5, 16, 
and 31 years of experience, respectively) independently 
interpreted SIJ MRI following the ASAS MRI Working 
group guidelines (25) to report whether the MRI was 
suggestive of axSpA or not. On the prospective test set, 

https://cdn.amegroups.cn/static/public/QIMS-24-729-Supplementary.pdf
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Nine SpA features following the ASAS classification criteria (2009) 
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magnetic resonance imaging; HLA-B27, human leukocyte antigen-B27.  

Rad2, Rad3, and 2 rheumatologists (Rheu1 and Rheu2 with 
4 and 12 years of experience, respectively) participated. 
Rad2 and Rad3 were tasked with interpreting MRIs similar 
to the process on the internal and external test sets. The 
rheumatologists were tasked with providing a differential 
diagnosis between axSpA and non-axSpA by thoroughly 
evaluating all available information, adhering to the ASAS 
classification criteria (2009) (13) and modified New York 
criteria (1984) (10). All clinicians participating in the reader 
study were blinded to the diagnostic outcomes and had no 
prior involvement in patient labelling, image assessment, or 
annotation. Clinicians with over 10 years of experience were 
categorized as seniors, whereas those with less than 5 years 
of experience were categorized as juniors. After a 3-month 
washout period since the first evaluation, all clinicians 
repeated their assessments with AI assistance following 
the same criteria and process in the first assessment. The 
AI assistance comprised prediction scores generated by 
NegSpA-AI and activation heatmaps on MR images 
from T1W, T2W, and FS sequences. The performance 
of NegSpA-AI was compared with that of both junior 
and senior clinicians to verify the clinical interpretation 
and diagnostic ability of AI. In addition, the performance 
of independent and AI-assisted clinicians was compared 
to investigate the contribution value of AI in clinical  

decision-making.

Statistical analysis

The normal distribution of all the clinical features was 
tested. We found that all the clinical features were not 
normally distributed. The statistical distribution of skewed 
variable, namely, disease duration, was present using 
median (Q1, Q3). Then, we applied the non-parametric 
Kruskal-Wallis H test for continuous variables and the 
non-parametric chi-square test for categorical variables to 
evaluate their statistical differences among different data 
sets. The inter-reader reliability of image annotations was 
evaluated using IoU, where IoU >0.5 indicated reliability. 
The distinguishing performance was evaluated using F1-
score, area under the curve (AUC), accuracy, sensitivity, 
and specificity with 95% confidence intervals (CIs). The 
Delong test was performed to compare AUC differences 
between different MRI-based DL models. The Wilcoxon 
rank sum test was employed to compare model performance 
in the stratification analysis. The exact Fisher-Yates test was 
used to compare the performance of clinicians with and 
without AI assistance. Two-sided P values <0.05 statistically 
significant. All statistical analyses were implemented using 
the Python Scikit-learn library (Python version 3.6; Python 
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Table 1 Clinical characteristics of patients on the training, internal test, external test, and prospective test sets 

Characteristics All sets (n=541)
Training set 

(n=328)
Internal test set 

(n=72)
External test set 

(n=54)
Prospective test 

set (n=87)
P value

Age (years) 37.0±16.0 36.9±17.0 36.7±15.1 36.6±12.7 38.2±14.4 0.732

Sex 0.007

Female 241 (44.5) 144 (44.0) 30 (41.7) 16 (29.6) 51 (58.6)

Male 300 (55.5) 184 (56.0) 42 (58.3) 38 (70.4) 36 (41.4)

Disease duration# 12.0 (5.0, 48.0) 18.5 (6.0, 60.0) 12.0 (4.5, 60.0) 7.0 (1.5, 36.0) 12.0 (4.2, 48.0) 0.136

Structural damage 0.336

Positive 303 (56.0) 177 (53.9) 39 (54.2) 36 (66.7) 51 (58.6)

Negative 238 (44.0) 151 (46.1) 33 (45.8) 18 (33.3) 36 (41.4)

SpA features 

Arthritis 179 (33.1) 95 (28.9) 17 (23.6) 41 (75.9) 26 (29.9) <0.001

Heel enthesitis 31 (5.7) 0 0 31 (57.4) 0 <0.001

Uveitis 1 (0.1) 0 0 1 (1.9) 0 0.029

Dactylitis 14 (2.6) 0 0 12 (22.2) 2 (2.3) <0.001

Psoriasis 3 (0.6) 1 (0.3) 1 (1.4) 0 1 (1.1) 0.544

Crohn’s disease or UC 4 (0.7) 2 (0.6) 0 1 (1.9) 1 (1.1) 0.632

Good response to NSAIDs 334 (61.7) 234 (71.3) 58 (80.5) 14 (25.9) 28 (32.2) <0.001

Family history of axSpA 58 (10.7) 27 (8.2) 18 (25.0) 8 (14.8) 5 (5.7) <0.001

Elevated CRP concentration 181 (33.5) 114 (34.8) 22 (30.6) 32 (59.3) 13 (14.9) <0.001

Classification 

AxSpA 261 (48.2) 138 (42.1) 45 (62.5) 25 (46.3) 53 (60.9)

Non-axSpA 280 (51.8) 190 (57.9) 27 (37.5) 29 (53.7) 34 (39.1)

Data are presented as median (Q1, Q3), mean ± standard deviation or number (%). P values represent the statistical differences among 
the training, internal, external, and prospective test sets. In the SpA features, data are numbers of positive patients with percentages 
in parentheses. M, months; UC, ulcerative colitis; NSAIDs, nonsteroidal anti-inflammatory drugs; axSpA, axial spondyloarthritis; CRP, 
C-reactive protein. 

Software Foundation, Wilmington, DE, USA).

Results

Patient characteristics 

Overall, we analyzed 541 patients from the Third Affiliated 
Hospital of Southern Medical University and Nanhai 
Hospital, including 261 (48.2%) axSpA and 280 (51.8%) 
non-axSpA. The training set contained 328 patients 
(144 females; mean age: 36.9 years), among whom 138 
(42.1%) were diagnosed with axSpA. The internal test set 

included 72 patients (30 females; mean age: 36.7 years) 
with 45 (62.5%) diagnosed with axSpA. The external 
test set comprised 54 patients (16 females; mean age:  
36.6 years), where 25 (46.3%) were diagnosed with axSpA. 
The prospective test set consisted of 87 patients (51 females;  
mean age: 38.2 years) with 53 (60.9%) diagnosed with 
axSpA. Patient characteristics are listed in Table 1 and  
Tables S3,S4. The inter-reader reliability of the RVOI 
annotations reached an average IoU of 0.906±0.090 in the 
retrospective cohorts and 0.867±0.105 in the prospective 
cohort, which was deemed reliable and thus had a low risk 
of introducing bias in the model training.

https://cdn.amegroups.cn/static/public/QIMS-24-729-Supplementary.pdf
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Performance of various MRI-based DL models

When using common data augmentations, Tri-ResNet50 
demonstrated the most superior performance among all the 
MRI-based single-input, dual-input, and tri-input networks. 
On the internal test set, Tri-ResNet50 attained an AUC 
of 0.779 (95% CI: 0.663–0.895), F1 score of 0.778, and 
accuracy of 72.2% (95% CI: 60.4–82.1%). On the external 
test set, Tri-ResNet50 achieved the highest AUC of 0.778 
(95% CI: 0.648–0.908) with P values <0.05, F1 score of 0.731 
with accuracy of 74.1% (95% CI: 60.3–85.0%) (Table 2,  
Tables S5,S6, and Figures S4,S5). The implementation 
of MixCut further improved the performance of Tri-
ResNet50. Specifically, on the internal test set, MixCut 
increased the AUC, F1 score, accuracy, sensitivity, and 
specificity of Tri-ResNet50 by 0.091 (P=0.004), 0.092, 
11.1%, 11.1%, and 11.1%, respectively. On the external 
test set, MixCut led to enhancements of 0.062 in AUC 
(P=0.037), 0.084 in F1 score, 7.4% in accuracy, 12.0% in 
sensitivity, and 3.5% in specificity (Table 2). Additionally, 
Figure S6 visually illustrates that MixCut can create MRI 
samples with more diverse lesions for model training. 
Consequently, the Tri-ResNet50 with MixCut was selected 
for the subsequently development of NegSpA-AI.

Performance of NegSpA-AI

On the internal and external test sets, NegSpA-AI exhibited 
robust performance, achieving AUCs of 0.878 (95% CI: 
0.786–0.971) and 0.870 (95% CI: 0.771–0.970), along with 
F1 scores of 0.891 and 0.830, respectively (Table 3). On the 
prospective test set, NegSpA-AI continued to demonstrate 
commendable performance, with an F1 score of 0.819, an 
AUC of 0.815 (95% CI: 0.714–0.915), and a sensitivity of 
81.1% (95% CI: 68.0–90.6%). Moreover, our stratification 
analysis revealed that NegSpA-AI achieved more accurate 
diagnoses for patients in specific subgroups such as those 
younger than 28 years, with disease durations longer than  
24 months, or exhibiting positive structural damage, 
compared to their respective comparative subgroups (refer 
to Figure 3A-3C). Interestingly, NegSpA-AI demonstrated 
higher accuracy in diagnosing females than males  
(Figure 3D).

AI assistance for radiologists and rheumatologists 

NegSpA-AI demonstrated superior performance compared 
to the junior rheumatologist (Figure 4), and most of 
the patients with accurate AI predictions but inaccurate 

Table 2 Performance of various MRI-based deep learning models on the internal and external test sets 

Framework Aug.
Internal test set External test set

AUC P value Accuracy Sensitivity Specificity F1 AUC P value Accuracy Sensitivity Specificity F1

Tri-

ResNet18

Com. 0.750  

(0.635–0.863) 

0.374 69.4  

(57.5–79.8)

71.1  

(55.7–83.6)

66.7  

(46.0–83.5)

0.744 0.754  

(0.616–0.893)

0.056 66.7  

(52.5,78.9)

80.0  

(59.3–93.2)

55.2  

(35.7– 73.6)

0.690

Tri-

ResNet34

Com. 0.757  

(0.636–.879)

0.269 72.2  

(60.4–82.1)

68.9  

(53.4–81.8)

77.8  

(57.7–91.4)

0.756 0.755  

(0.616–0.896)

0.041 66.7  

(52.5,78.9)

72.0  

(50.6–87.9)

62.1  

(42.3–79.3)

0.667

Tri-

ResNet50

Com. 0.779  

(0.663–0.895)†
NA 72.2  

(60.4–82.1)†
77.8  

(62.9–88.8)†
63.0  

(42.4,80.6)

0.778† 0.778  

(0.648–0.908)†
NA 74.1  

(60.3–85.0)†
76.0  

(54.9–90.6)†
72.4  

(52.8–87.3)†
0.731†

Tri-

ResNet101

Com. 0.755  

(0.638–0.871)

0.352 69.4  

(57.5–79.8)

62.2  

(46.5–76.2)

81.5  

(61.9–93.7)

0.718 0.748  

(0.600–0.894)

0.080 68.5  

(46.5–85.1)

68.0  

(46.5–85.1)

69.0  

(49.2–84.7)

0.667

Tri-VGG16 Com. 0.759  

(0.647–0.871)

0.028 65.3  

(53.1–76.1)

64.4  

(48.8–78.1)

66.7  

(46.0–84.5)

0.699 0.706  

(0.551–0.861)

0.010 63.0  

(48.7–75.7)

60.0  

(38.7–78.9)

65.5  

(45.7–82.1)

0.600

Tri-

ResNet50

Mixup 0.835  

(0.720–0.933)

0.015 79.2  

(68.0–87.8)

77.8  

(62.9–88.8)

81.5  

(61.9–93.7)

0.824 0.825  

(0.712–0.938)

0.149 77.8  

(64.4–88.0)

84.0  

(63.9–95.5)

72.4  

(52.8–87.3)

0.778

Tri-

ResNet50

MixCut* 0.870  

(0.742–0.952)*

0.004* 83.3  

(72.7–91.1)*

88.9  

(76.0–96.3)*

74.1  

(53.7–8.9)

0.870* 0.840  

(0.730–0.950)*

0.037* 81.5  

(68.6–90.8)*

88.0  

(68.8–97.5)*

75.9  

(56.5–89.7)*

0.815*

Accuracy, sensitivity, and specificity are expressed as percentages. Data in brackets are 95% confidence intervals. P values represent statistical AUC 

differences between Tri-ResNet50 model using the common data augmentations and other models. When fixing common data augmentations, the unique 

best performance of the optimal framework was shown in ‘†’; when fixing the optimal framework, the unique best performance of MixCut was shown in ‘*’. 

MRI, magnetic resonance imaging; Aug., data augmentation method; AUC, the area under the curve; F1, F1 score; Com., common; NA, not available.

https://cdn.amegroups.cn/static/public/QIMS-24-729-Supplementary.pdf
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Figure 3 Diagnostic accuracy of NegSpA-AI in the clinical stratification analysis. (A-D) Histograms for accuracy of NegSpA-AI in different 
subgroups stratified by age, disease duration, structural damage, and sex, respectively. Units for: (A) age is year; (B) disease duration is month. *, 
P<0.05; **, P<0.01; ***, P<0.001. ns, not significant; NegSpA-AI, an artificial intelligence tool to improve the diagnosis of axSpA in HLA-
B27-negative patients; axSpA, axial spondyloarthritis; HLA-B27, human leukocyte antigen-B27. 

Table 3 Performance of NegSpA-AI on the internal, external, and prospective test sets 

Data sets AUC Accuracy Sensitivity Specificity F1-score

Internal test set 0.878 (0.786–0.971) 86.1 (75.9–93.1) 91.1 (78.8–97.5) 81.8 (57.7–91.4) 0.891

External test set 0.870 (0.771–0.970) 83.3 (70.7–92.1) 88.0 (68.8–97.5) 80.3 (60.3–92.0) 0.830

Prospective test set 0.815 (0.714–0.915) 79.2 (68.0–86.3) 81.1 (68.0–90.6) 79.5 (55.6–87.1) 0.819

Accuracy, sensitivity, and specificity are expressed as percentages. Data in brackets are 95% confidence intervals. NegSpA-AI, an artificial 
intelligence tool to improve the diagnosis of axSpA in HLA-B27-negative patients; AUC, area under the curve. 

clinician classifications were female and ≥28 years of age (see 
Table S7 for details). With AI assistance, the discriminating 
accuracy, sensitivity, and specificity of independent junior 
radiologists were respectively increased by 9.7–11.1%, 
11.1–13.3%, and 7.4–7.4%, respectively, on the internal test 

set, and 7.4–7.5%, 1.0–4.0%, and 10.3–14.5%, respectively, 
on the external test set (all P<0.05; as depicted in Table 4 
and Figure 4). AI assistance also enhanced the accuracy of 
independent senior radiologists by 5.5–5.6% and 7.4–11.1% 
on the internal and external test sets, respectively (all 
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Figure 4 Performance of NegSpA-AI and clinicians. (A,B) ROC curves of NegSpA-AI, independent and AI-assisted radiologists on the 
internal and external test sets, respectively; (C) ROC curves of NegSpA-AI, independent and AI-assisted clinicians on the prospective test 
set. Rad1 and Rad2 are junior radiologists. Rad3 and Rad4 are senior radiologists. Rheu1 is a junior rheumatologist. Rheu2 is a senior 
rheumatologist. NegSpA-AI, an artificial intelligence tool to improve the diagnosis of axSpA in HLA-B27-negative patients; AUC, area 
under the curve; CI, confidence interval; AI, artificial intelligence; ROC, receiver operating characteristic; HLA-B27, human leukocyte 
antigen-B27. 

Table 4 Performance of independent and AI-assisted clinicians on the internal, external, and prospective test sets 

Data sets Clinician 
Accuracy Sensitivity Specificity

Independent AI-assisted P value Independent AI-assisted P value Independent AI-assisted P value

Internal test 
set

Rad1 72.2 (60.4–82.1) 81.9 (71.1–90.0) 0.0003 66.7 (51.0–80.0) 77.8 (62.9–88.8) 0.0007 81.5 (62.0–93.7) 88.9 (70.8–97.6) 0.007

Rad2 75.0 (63.4–84.5) 86.1 (75.9–93.1) 0.0002 68.9 (53.4–81.8) 82.2 (68.0–92.0) 0.0006 85.2 (66.3–95.8) 92.6 (75.7–99.1) 0.042

Rad3 83.3 (70.0–90.1) 88.9 (79.3–95.1) 0.008 80.0 (65.4–90.4) 86.7 (73.2–95.0) 0.032 85.0 (62.1–96.8) 92.6 (75.7–99.1) 0.008

Rad4 88.9 (79.3–95.1) 94.4 (86.4–98.5) 0.033 86.7 (73.2–94.9) 93.3 (81.7–98.6) 0.047 92.6 (75.7–99.1) 96.3 (81.0–99.9) 0.17

External test 
set

Rad1 66.7 (52.5–78.9) 74.1 (60.3–85.0) 0.0004 68.0 (46.5–85.1) 69.0 (49.2–84.7) 0.008 65.5 (45.7–82.1) 80.0 (59.3–93.2) 0.0006

Rad2 70.3 (56.4–82.0) 77.8 (64.4–88.0) 0.0002 80.0 (59.3–93.2) 84.0 (63.9–95.5) 0.01 62.1 (42.3–79.3) 72.4 (52.7–87.3) 0.009

Rad3 77.8 (64.4–88.0) 85.2 (72.9–93.4) 0.008 84.0 (63.9–95.5) 92.0 (74.0–99.0) 0.023 72.4 (52.8–87.3) 79.3 (60.3–92.0) 0.027

Rad4 79.6 (66.5–89.4) 90.7 (79.7–96.9) 0.039 84.0 (63.9–95.5) 96.0 (79.6–99.9) 0.28 75.9 (56.5–89.7) 86.2 (68.3–96.1) 0.041

Prospective 
test set

Rad2 67.8 (56.9–77.4) 79.3 (69.3–87.3) 0.016 75.5 (61.7–86.2) 81.1 (68.0–90.6) 0.022 55.9 (37.9–72.8) 76.5 (58.8–89.3) 0.031

Rad3 75.9 (65.5–84.4) 82.8 (73.2–90.0) 0.007 84.9 (72.4–93.3) 84.9 (72.4–93.3) 0.040 61.8 (43.6–77.8) 79.4 (62.1–91.3) 0.19

Rheu1 76.2 (68.0–86.3) 83.9 (74.5–91.0) 0.006 77.2 (65.9–89.2) 84.9 (72.4–93.3) 0.006 76.5 (58.8–89.3) 83.4 (65.5–93.2) 0.005

Rheu2 86.2 (77.1–92.7) 88.5 (79.9–96.9) 0.044 88.7 (77.0–95.7) 90.6 (79.3–96.9) 0.53 82.4 (65.5–93.2) 85.3 (68.9–95.0) 0.36

Accuracy, sensitivity, and specificity are expressed as percentages. Data in brackets are 95% confidence intervals. P<0.05 was considered significant. Rad1 
and Rad2 are junior radiologists. Rad3 and Rad4 are senior radiologists. Rheu1 and Rheu2 are junior and senior rheumatologists, respectively. AI, artificial 
intelligence.

P<0.05). On the prospective test set, NegSpA-AI helped to 
significantly improve the diagnostic accuracy, sensitivity, 
and specificity of the junior rheumatologist by 7.7%, 
7.7%, and 6.9%, respectively (independent vs. AI-assisted: 
accuracy 76.2% vs. 83.9%; sensitivity 77.2% vs. 84.9%; 
specificity 76.5% vs. 83.4%; all P<0.01).

Visualization of NegSpA-AI

Grad-CAM heatmaps on representative MRI demonstrated 

that NegSpA-AI effectively focused on analyzing critical 

lesions, such as bone marrow edema, fat deposition, 

sclerosis, and bone erosion, thereby making accurate 



Quantitative Imaging in Medicine and Surgery, Vol 14, No 8 August 2024 5855

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(8):5845-5860 | https://dx.doi.org/10.21037/qims-24-729

Diagnostic label 0 (non-axSpA)
Predictions AI Rad1 Rad2 Rad3 Rad4

Independent 0 1 0 0 0
AI-assisted / 0 0 0 0

Diagnostic label 0 (non-axSpA)
Predictions AI Rad1 Rad2 Rad3 Rad4

Independent 1 1 0 0 0
AI-assisted / 1 0 0 0

Diagnostic label 1 (axSpA)
Predictions AI Rad2 Rad3 Rheu1 Rheu2

Independent 1 0 1 0 1
AI-assisted / 1 1 1 1

Diagnostic label 1 (axSpA)
Predictions AI Rad2 Rad3 Rheu1 Rheu2

Independent 0 0 0 0 0
AI-assisted / 0 0 0 1

T1W

T1W

O
rig

in
al

 im
ag

e

O
rig

in
al

 im
ag

e

O
rig

in
al

 im
ag

e

O
rig

in
al

 im
ag

e

H
ea

tm
ap

s

H
ea

tm
ap

s

H
ea

tm
ap

s

H
ea

tm
ap

s

T1W

T1W

T2W

T2W

T2W

T2W

FS

FS

FS

60

50

40

30

20

10

0

60

50

40

30

20

10

0

FSC D

BA

Figure 5 Visualization and interpretations on SIJ MRI for representative patients. Lesion areas that radiologists focused on interpreting 
were indicated as: sclerosis (thin arrows), bone marrow edema (bold arrows), bone erosion (double-lined flat-headed arrows), and fat 
depositions (stars). High values in heatmaps represent areas that NegSpA-AI focused on analyzing. The diagnostic labels and predictions 
represent 1 for axSpA and 0 for non-axSpA. (A,B) Cases correctly predicted by NegSpA-AI: (A) a 30-year-old pregnant woman with non-
axSpA (osteitis condensans ilii) on the external test set; (B) a 25-year-old man with axSpA on the prospective test set. (C,D) Cases incorrectly 
predicted by NegSpA-AI: (C) a 31-year-old man with non-axSpA (lumbar muscle strain) on the external test set; (D) a 28-year-old man with 
axSpA on the prospective test set. T1W, T1-weighted; T2, T2-weighted; FS, fat suppression; axSpA, axial spondyloarthritis; AI, artificial 
intelligence; SIJ, sacroiliac joint; MRI, magnetic resonance imaging; NegSpA-AI, an artificial intelligence tool to improve the diagnosis of 
axSpA in HLA-B27-negative patients; HLA-B27, human leukocyte antigen-B27. 

predictions (Figure 5A,5B). Nevertheless, despite its efficacy, 
NegSpA-AI misidentified locations on SIJ MRI and 
consequently made incorrect predictions for certain patients 
(Figure 5C,5D).

Discussion

In this multicenter study, we developed NegSpA-AI, an 

advanced semi-automatic AI model that integrates SIJ MRI 
and clinical SpA features to diagnose axSpA in HLA-B27-
negative patients. NegSpA-AI concordantly demonstrated 
favorable diagnostic performance on the internal, external, and 
prospective test sets. The reader study highlighted NegSpA-
AI’s significant contribution in offering valuable assistance 
to radiologists in interpreting SIJ MRI and rheumatologists 
in diagnosing axSpA in HLA-B27-negative patients. The 
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promising outcomes suggest that NegSpA-AI has the potential 
to enhance clinical decision-making and facilitate appropriate 
treatment strategies in real-world clinical practice.

Accurate interpretation of SIJ MRI is crucial for 
diagnosing HLA-B27-negative axSpA. However, even 
experienced radiologists encounter challenges in precisely 
interpreting the atypical and confusing presentations 
of these MRIs (30). Previous studies have shown that 
interpretations of SIJ MRIs by well-trained musculoskeletal 
radiologists achieved only modest diagnostic performance, 
with the highest AUC reported at 0.736 for the diagnosis of 
non-radiographic HLA-B27 negative axSpA (31). With the 
rapid development of AI techniques, several investigations 
have applied machine learning to objectively analyze SIJ 
MRI in rheumatic diseases (21). For instance, Ye et al. 
constructed a clinical-radiomics nomogram model to 
differentiate axSpA from non-axSpA in patients with low 
back pain, achieving a validation AUC of 0.90 (23). Others 
have developed DL models to detect specific lesions on 
MRI of axSpA patients, for example, bone marrow edema, 
bone erosion, and active inflammatory sacroiliitis (32-34). 
Nevertheless, most existing models were designed using 
MRI to identify axSpA in general populations, without 
specifically addressing the diagnostic challenges associated 
with HLA-B27-negative axSpA. Furthermore, many of 
these models have not undergone real-world prospective 
testing to validate their performance. Therefore, their 
findings may have limited values in accurately interpreting 
SIJ MRI to enable the timely interpretation of HLA-B27-
negative axSpA.

Rheumatologists have been reported to exhibit 
uncertainty of approximately 30% in the baseline diagnosis 
of axSpA among all suspected patients (24). The diagnostic 
uncertainty is further compounded in HLA-B27-negative 
populations (5). Therefore, this study focused specifically 
on HLA-B27-negative populations to distinguish axSpA 
from non-axSpA. Our NegSpA-AI model surpassed 
the current diagnostic performance of rheumatologists, 
demonstrating good robustness and generalization on the 
internal (AUC: 0.878; accuracy: 86.1%), external (AUC: 
0.870; accuracy: 83.3%), and prospective test sets (AUC: 
0.815; accuracy: 79.2%). Specifically, we found that the 
demographic diversities have an impact on the performance 
of NegSpA-AI. In the stratification analysis, NegSpA-AI 
obtained a higher diagnostic accuracy in the young, long-
disease-duration, or positive-structural-damage patient 
subgroups compared to older, shorter-disease-duration, 
or negative-structural-damage subgroups (Figure 3A-3C), 

consistent with findings from previous studies (35). Notably, 
although previous studies have highlighted the diagnostics 
challenges in female patients due to their higher rates of 
negative SIJ MRI findings (36), our results revealed that 
NegSpA-AI achieved more accurate diagnosis of HLA-
B27-negative axSpA in females than in males (Figure 3D). 
This discrepancy can be attributed to variations in patients’ 
HLA-B27 status (37). Previous studies have included over 
half of HLA-B27-positive patients with active disease 
courses, which were more prevalent in males. In contrast, 
our analysis focused solely on HLA-B27-negative patients, 
who typically have milder disease courses and a higher 
proportion of females (16). As a result, the developed 
NegSpA-AI effectively improves the diagnoses of previously 
difficult-to-diagnose HLA-B27-negative axSpA, which can 
be used to guide the timely intervention and ultimately 
benefit patients’ health-related quality of life and outcomes.

The main technical strengths of NegSpA-AI lie in its 
2-stage transfer learning strategy and the MixCut method, 
which address challenges related to small training datasets 
and data differences and ensure fairness of the model. The 
tri-input structure enables NegSpA-AI to simultaneously 
learn different axSpA lesions from the T1W, T2W, and 
FS sequences. However, this architecture may encounter 
convergence difficulties and unstable performance. 
Previous studies have utilized transfer learning with pre-
trained models to mitigate these issues (38,39). Building 
upon this, we implemented an improved 2-stage transfer 
learning strategy introduced by Howard (40) to fine-
tune our tri-input framework. Ablation analysis showed 
that images from the T1W sequence were critical for 
distinguishing axSpA from non-axSpA in HLA-B27-
negative patients, whereas our tri-input framework robustly 
fused complementary information of images from the T1W 
and the other 2 sequences to achieve superior performance 
(Tables S5,S6). Furthermore, we proposed a novel data 
augmentation method called MixCut to alleviate the 
potential bias in model training with limited training data. 
Although common data augmentations have been widely 
used to increase training sample size, they often struggle 
with out-of-distribution images (41). To enhance model 
generalization, Mixup (42) and Cutmix (43) were proposed 
to create new training samples by globally mixing 2 images, 
albeit without considering local contextual information. In 
contrast, MixCut considers the saliency of both input and 
mixed samples to create virtual MRI samples with diverse 
local lesions (as illustrated in Figure S6), thereby improving 
AUCs of common data augmentations by 0.062–0.091 

https://cdn.amegroups.cn/static/public/QIMS-24-729-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-24-729-Supplementary.pdf


Quantitative Imaging in Medicine and Surgery, Vol 14, No 8 August 2024 5857

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(8):5845-5860 | https://dx.doi.org/10.21037/qims-24-729

(P<0.05) and Mixup by 0.015–0.035 on the test sets (Table 2).  
Finally, these advantages enhanced the performance of 
NegSpA-AI to surpass that of junior rheumatologists. 

The issue of whether AI techniques can provide support 
for clinical decision-making remains a crucial concern (44).  
Several studies have demonstrated the reliability of 
interactive AI systems in aiding clinical diagnosis, 
particularly in the context of cancer (45,46). In this study, 
AI was more accurate than clinicians in classifying cases 
who were female and are older than 28 years (Table S7).  
Our reader study confirmed that the heatmaps and 
prediction scores generated from NegSpA-AI helped 
clinicians make decisions more accurately and confidently 
in the above cases. Junior radiologists are prone to confuse 
axSpA with its mimickers; the heatmaps can indicate small 
lesions (e.g., bone erosion and osteosclerosis) for them. For 
example, a 30-year-old woman with non-axSpA (osteitis 
condensans ilii) who was initially misclassified as having 
axSpA by junior Radiologist 1 (Rad1) was corrected to 
non-axSpA upon observing highlighted sclerosis areas 
on the heatmaps and a low prediction score of axSpA  
(Figure 5A). Senior radiologists have usually consolidated 
their routine MRI assessment procedures (47), and NegSpA-
AI primarily assisted them in identifying symptomatic 
lesions on SIJ MRI to exclude non-axSpA in ambiguous 
cases. Our rheumatologists achieved accuracies ranging from 
76.2% to 86.2% in their independent diagnoses of HLA-
B27-negative axSpA on the prospective test set, surpassing 
those reported in previous studies (24). This improvement 
may be attributed to the clear instruction provided to our 
rheumatologists to perform a differential diagnosis between 
axSpA and non-axSpA, giving them favorable hints in the 
diagnoses. In this context, AI assistance still significantly 
increased the diagnostic accuracy, sensitivity, and specificity 
of the junior rheumatologist by 7.7%, 7.7%, and 6.9%, 
respectively (all P<0.01). Taken together, NegSpA-AI 
facilitated a more accurate interpretation of SIJ MRI and 
diagnosis of axSpA in HLA-B27-negative patients, which is 
expected to alleviate the current clinical problem of delayed 
diagnosis of HLA-B27-negative axSpA, especially in females 
and those older than 28 years.

This study has several limitations. First, all enrolled 
patients are of the same race, and patients with several non-
axSpA diseases (e.g., bone tuberculosis and chondrosarcoma) 
were not included, which may have introduced selection 
bias and affected the model’s widespread applicability. 
Second, we did not analyze patients with a positive spine 

MRI, which may have hindered the diagnosis of axSpA 
affecting only the spine. Since the spine is one of the 
blind spots in the diagnosis of axSpA, further training and 
implementation of NegSpA-AI will be needed on spine 
MRI to pave the way for a better diagnosis of those cases. 
Third, structural changes assessed by radiologists on 
computed tomography (CT) scans are usually accepted as 
the gold standard. However, due to the limited number of 
patients with low back pain who underwent CT, we only 
evaluated structural damages on MRI, which may have led 
to biased assessments of structural damages. Fourth, there is 
no standard sequence for FS, whereas several FS sequences 
on different MRI devices constituted the FS sequences. 
Fifth, the number of patients from the external general 
hospital was smaller than that of those from the internal 
orthopedic hospital, which also resulted in different male-
to-female ratios. Further work will include larger external 
datasets for validation. Sixth, NegSpA-AI was developed as 
a semi-automatic model as it requires manual annotations 
by clinicians. We will work on adding a RVOI detection 
task to extend NegSpA-AI to a fully automatic model. 

Conclusions 

This study successfully constructed a semi-automatic 
AI model that integrates SIJ MRI and clinical SpA 
features to enhance the diagnosis of axSpA in HLA-B27-
negative patients. Using a 2-stage transfer learning and 
the novel MixCut method, the constructed NegSpA-AI 
demonstrated good robustness and generalization across 
both retrospective and prospective test sets. By assisting 
both radiologists and rheumatologists in the more accurate 
interpretation and diagnosis of HLA-B27-negative axSpA, 
NegSpA-AI holds the potential to facilitate timely diagnosis 
and improve treatment outcomes for patients with axSpA.

Acknowledgments

We thank Caolin Liu, MS from Nanhai Hospital, and Shisi 
Li, MD from the Third Affiliated Hospital of Southern 
Medical University, for their help in collection and quality 
control of data. Professional English language editing 
support was provided by AsiaEdit (asiaedit.com).
Funding: This work was supported by the National Natural 
Science Foundation of China (Nos. 81871510, 8217070172, 
and 82203200), and the Natural Science Foundation of 
Guangdong Province (No. 2023A1515011318).

https://cdn.amegroups.cn/static/public/QIMS-24-729-Supplementary.pdf
http://asiaedit.com


Lu et al. AI improves the diagnosis of HLA-B27-negative axSpA5858

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(8):5845-5860 | https://dx.doi.org/10.21037/qims-24-729

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD-AI reporting checklist. Available at https://qims.
amegroups.com/article/view/10.21037/qims-24-729/rc

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://qims.
amegroups.com/article/view/10.21037/qims-24-729/coif). 
The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). The study was approved by the Regional 
Institutional Review Board of the Third Affiliated Hospital 
of Southern Medical University and followed by Nanhai 
Hospital (No. 201501003). The requirement for the 
informed consent of patients in the retrospective cohorts 
was waived. Patients in the prospective cohort provided 
written informed consent that clearly stated that all the 
collected information would be used for publication by the 
investigator.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Poddubnyy D, Sieper J, Akar S, Muñoz-Fernández S, 
Haibel H, Hojnik M, Ganz F, Inman RD. Characteristics of 
patients with axial spondyloarthritis by geographic regions: 
PROOF multicountry observational study baseline results. 
Rheumatology (Oxford) 2022;61:3299-308.

2. Bakland G, Alsing R, Singh K, Nossent JC. Assessment of 
SpondyloArthritis International Society criteria for axial 
spondyloarthritis in chronic back pain patients with a high 
prevalence of HLA-B27. Arthritis Care Res (Hoboken) 
2013;65:448-53.

3. Navarro-Compán V, Sepriano A, El-Zorkany B, van 
der Heijde D. Axial spondyloarthritis. Ann Rheum Dis 
2021;80:1511-21.

4. van Lunteren M, van der Heijde D, Sepriano A, Berg 
IJ, Dougados M, Gossec L, Jacobsson L, Ramonda R, 
Rudwaleit M, Sieper J, Landewé R, van Gaalen FA. Is a 
positive family history of spondyloarthritis relevant for 
diagnosing axial spondyloarthritis once HLA-B27 status is 
known? Rheumatology (Oxford) 2019;58:1649-54.

5. Coates LC, Baraliakos X, Blanco FJ, Blanco-Morales EA, 
Braun J, Chandran V, Fernandez-Sueiro JL, FitzGerald 
O, Gallagher P, Gladman DD, Gubar E, Korotaeva T, 
Loginova E, Lubrano E, Mulero J, Pinto-Tasende J, 
Queiro R, Sanz Sanz J, Szentpetery A, Helliwell PS. The 
Phenotype of Axial Spondyloarthritis: Is It Dependent 
on HLA-B27 Status? Arthritis Care Res (Hoboken) 
2021;73:856-60.

6. Mauro D, Forte G, Poddubnyy D, Ciccia F. The 
Role of Early Treatment in the Management of Axial 
Spondyloarthritis: Challenges and Opportunities. 
Rheumatol Ther 2024;11:19-34.

7. Ferraz-Amaro I, Rueda-Gotor J, Genre F, Corrales 
A, Blanco R, Portilla V, et al. Potential relation of 
cardiovascular risk factors to disease activity in patients 
with axial spondyloarthritis. Ther Adv Musculoskelet Dis 
2021;13:1759720X211033755.

8. Inman RD, Garrido-Cumbrera M, Chan J, Cohen M, 
de Brum-Fernandes AJ, Gerhart W, Haroon N, Jovaisas 
AV, Major G, Mallinson MG, Rohekar S, Leclerc P, 
Rahman P. Work-Related Issues and Physical and 
Psychological Burden in Canadian Patients With Axial 
Spondyloarthritis: Results From the International Map of 
Axial Spondyloarthritis. J Rheumatol 2023;50:625-33.

9. Ye L, Liu Y, Xiao Q, Dong L, Wen C, Zhang Z, Jin M, 
Brown MA, Chen D. MRI compared with low-dose CT 
scanning in the diagnosis of axial spondyloarthritis. Clin 
Rheumatol 2020;39:1295-303.

10. van der Linden S, Valkenburg HA, Cats A. Evaluation of 
diagnostic criteria for ankylosing spondylitis. A proposal 
for modification of the New York criteria. Arthritis Rheum 
1984;27:361-8.

11. Protopopov M, Proft F, Wichuk S, Machado PM, 
Lambert RG, Weber U, Juhl Pedersen S, Østergaard 
M, Sieper J, Rudwaleit M, Baraliakos X, Maksymowych 
WP, Poddubnyy D. Comparing MRI and conventional 
radiography for the detection of structural changes 
indicative of axial spondyloarthritis in the ASAS cohort. 
Rheumatology (Oxford) 2023;62:1631-5.

https://qims.amegroups.com/article/view/10.21037/qims-24-729/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-729/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-729/coif
https://qims.amegroups.com/article/view/10.21037/qims-24-729/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Quantitative Imaging in Medicine and Surgery, Vol 14, No 8 August 2024 5859

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(8):5845-5860 | https://dx.doi.org/10.21037/qims-24-729

12. Robinson PC, van der Linden S, Khan MA, Taylor WJ. 
Axial spondyloarthritis: concept, construct, classification 
and implications for therapy. Nat Rev Rheumatol 
2021;17:109-18.

13. Rudwaleit M, van der Heijde D, Landewé R, Listing J, 
Akkoc N, Brandt J, et al. The development of Assessment 
of SpondyloArthritis international Society classification 
criteria for axial spondyloarthritis (part II): validation and 
final selection. Ann Rheum Dis 2009;68:777-83.

14. Maksymowych WP. The role of imaging in the diagnosis 
and management of axial spondyloarthritis. Nat Rev 
Rheumatol 2019;15:657-72.

15. Pohlner T, Deppe D, Ziegeler K, Proft F, Protopopov M, 
Rademacher J, Rios Rodriguez V, Torgutalp M, Braun J, 
Diekhoff T, Poddubnyy D. Diagnostic accuracy in axial 
spondyloarthritis: a systematic evaluation of the role of 
clinical information in the interpretation of sacroiliac joint 
imaging. RMD Open 2024;10:e004044.

16. Deodhar A, Gill T, Magrey M. Human Leukocyte Antigen 
B27-Negative Axial Spondyloarthritis: What Do We 
Know? ACR Open Rheumatol 2023;5:333-44.

17. Ulas ST, Radny F, Ziegeler K, Eshed I, Greese J, Deppe 
D, Stelbrink C, Biesen R, Haibel H, Rios Rodriguez V, 
Rademacher J, Protopopov M, Proft F, Poddubnyy D, 
Diekhoff T. Self-reported diagnostic confidence predicts 
diagnostic accuracy in axial spondyloarthritis imaging. 
Rheumatology (Oxford) 2023. [Epub ahead of print]. doi: 
10.1093/rheumatology/kead564.

18. Wei L, Niraula D, Gates EDH, Fu J, Luo Y, Nyflot MJ, 
Bowen SR, El Naqa IM, Cui S. Artificial intelligence 
(AI) and machine learning (ML) in precision oncology: a 
review on enhancing discoverability through multiomics 
integration. Br J Radiol 2023;96:20230211.

19. Folle L, Bayat S, Kleyer A, Fagni F, Kapsner LA, Schlereth 
M, Meinderink T, Breininger K, Tascilar K, Krönke G, 
Uder M, Sticherling M, Bickelhaupt S, Schett G, Maier 
A, Roemer F, Simon D. Advanced neural networks for 
classification of MRI in psoriatic arthritis, seronegative, 
and seropositive rheumatoid arthritis. Rheumatology 
(Oxford) 2022;61:4945-51.

20. Bressem KK, Adams LC, Proft F, Hermann KGA, 
Diekhoff T, Spiller L, Niehues SM, Makowski MR, 
Hamm B, Protopopov M, Rios Rodriguez V, Haibel H, 
Rademacher J, Torgutalp M, Lambert RG, Baraliakos 
X, Maksymowych WP, Vahldiek JL, Poddubnyy D. 
Deep Learning Detects Changes Indicative of Axial 
Spondyloarthritis at MRI of Sacroiliac Joints. Radiology 
2022;305:655-65.

21. Adams LC, Bressem KK, Ziegeler K, Vahldiek JL, 
Poddubnyy D. Artificial intelligence to analyze magnetic 
resonance imaging in rheumatology. Joint Bone Spine 
2024;91:105651.

22. Harvey H, Glocker B. A standardised approach for 
preparing imaging data for machine learning tasks in 
radiology. Artificial intelligence in medical imaging: 
opportunities, applications and risks. Artificial Intelligence 
in Medical Imaging 2019:61-72.

23. Ye L, Miao S, Xiao Q, Liu Y, Tang H, Li B, Liu J, Chen D. 
A predictive clinical-radiomics nomogram for diagnosing 
of axial spondyloarthritis using MRI and clinical risk 
factors. Rheumatology (Oxford) 2022;61:1440-7.

24. Marques ML, Ramiro S, van Lunteren M, Stal RA, 
Landewé RB, van de Sande M, Fagerli KM, Berg IJ, van 
Oosterhout M, Exarchou S, Ramonda R, van der Heijde 
D, van Gaalen FA. Can rheumatologists unequivocally 
diagnose axial spondyloarthritis in patients with chronic 
back pain of less than 2 years duration? Primary outcome 
of the 2-year SPondyloArthritis Caught Early (SPACE) 
cohort. Ann Rheum Dis 2024;83:589-98.

25. Maksymowych WP, Lambert RG, Østergaard M, 
Pedersen SJ, Machado PM, Weber U, et al. MRI 
lesions in the sacroiliac joints of patients with 
spondyloarthritis: an update of definitions and 
validation by the ASAS MRI working group. Ann 
Rheum Dis 2019;78:1550-8.

26. Ziade N, Maroof A, Elzorkany B, Abdullateef N, Adnan 
A, Abogamal A, Saad S, El Kibbi L, Alemadi S, Ansari A, 
Abi Najm A, Younan T, Kharrat K, Sebaaly A, Rachkidi R, 
Witte T, Baraliakos X. What is the best referral strategy 
for axial spondyloarthritis? A prospective multicenter study 
in patients with suspicious chronic low back pain. Joint 
Bone Spine 2023;90:105579.

27. Jamal M, van Delft ETAM, den Braanker H, Kuijper TM, 
Hazes JMW, Lopes Barreto D, Weel AEAM. Increase in 
axial spondyloarthritis diagnoses after the introduction 
of the ASAS criteria: a systematic review. Rheumatol Int 
2023;43:639-49.

28. Simonyan K, Zisserman A. Very deep convolutional 
networks for large-scale image recognition. arXiv: 
14091556, 2014. 

29. He K, Zhang X, Ren S, Sun J. Deep residual learning for 
image recognition. 2016 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), Las Vegas, NV, 
USA, 2016:770-8.

30. van den Berg R, Lenczner G, Thévenin F, Claudepierre P, 
Feydy A, Reijnierse M, Saraux A, Rahmouni A, Dougados 



Lu et al. AI improves the diagnosis of HLA-B27-negative axSpA5860

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(8):5845-5860 | https://dx.doi.org/10.21037/qims-24-729

M, van der Heijde D. Classification of axial SpA based on 
positive imaging (radiographs and/or MRI of the sacroiliac 
joints) by local rheumatologists or radiologists versus 
central trained readers in the DESIR cohort. Ann Rheum 
Dis 2015;74:2016-21.

31. Lu CC, Huang GS, Lee TS, Chao E, Chen HC, Guo 
YS, Chu SJ, Liu FC, Kao SY, Hou TY, Chen CH, Chang 
DM, Lyu SY. MRI contributes to accurate and early 
diagnosis of non-radiographic HLA-B27 negative axial 
spondyloarthritis. J Transl Med 2021;19:298.

32. Castro-Zunti R, Park EH, Choi Y, Jin GY, Ko SB. Early 
detection of ankylosing spondylitis using texture features 
and statistical machine learning, and deep learning, with 
some patient age analysis. Comput Med Imaging Graph 
2020;82:101718.

33. Lee KH, Choi ST, Lee GY, Ha YJ, Choi SI. Method for 
Diagnosing the Bone Marrow Edema of Sacroiliac Joint 
in Patients with Axial Spondyloarthritis Using Magnetic 
Resonance Image Analysis Based on Deep Learning. 
Diagnostics (Basel) 2021;11:1156.  

34. Lin KYY, Peng C, Lee KH, Chan SCW, Chung HY. 
Deep learning algorithms for magnetic resonance imaging 
of inflammatory sacroiliitis in axial spondyloarthritis. 
Rheumatology (Oxford) 2022;61:4198-206.

35. Marzo-Ortega H, Navarro-Compán V, Akar S, Kiltz U, 
Clark Z, Nikiphorou E. The impact of gender and sex 
on diagnosis, treatment outcomes and health-related 
quality of life in patients with axial spondyloarthritis. Clin 
Rheumatol 2022;41:3573-81.

36. Lorenzin M, Cozzi G, Scagnellato L, Ortolan A, Vio S, 
Striani G, Scapin V, De Conti G, Doria A, Ramonda R. 
Relationship between sex and clinical and imaging features 
of early axial spondyloarthritis: results from a 48 month 
follow-up (Italian arm of the SPondyloArthritis Caught 
Early (SPACE) study). Scand J Rheumatol 2023;52:519-29.

37. Mariani FM, Alunno A, Di Ruscio E, Altieri P, Ferri C, 
Carubbi F. Human Leukocyte Antigen B*27-Negative 
Spondyloarthritis: Clinical, Serological, and Radiological 
Features of a Single-Center Cohort. Diagnostics (Basel) 
2023;13:3550.

38. Tas NP, Kaya O, Macin G, Tasci B, Dogan S, Tuncer T. 
ASNET: A Novel AI Framework for Accurate Ankylosing 
Spondylitis Diagnosis from MRI. Biomedicines 
2023;11:2441.

39. Anaya-Isaza A, Mera-Jiménez L, Verdugo-Alejo L, Sarasti 
L. Optimizing MRI-based brain tumor classification 
and detection using AI: A comparative analysis of neural 

networks, transfer learning, data augmentation, and 
the cross-transformer network. Eur J Radiol Open 
2023;10:100484.

40. Howard J, Thomas R, Gugger S. fast. ai. GitHub. 2018.
41. Panfilov E, Tiulpin A, Klein S, Nieminen MT, 

Saarakkala S. Improving Robustness of Deep Learning 
Based Knee MRI Segmentation: Mixup and Adversarial 
Domain Adaptation. 2019 IEEE/CVF International 
Conference on Computer Vision Workshops (ICCVW), 
2019:450-9.

42. Zhang H, Cisse M, Dauphin YN, Lopez-Paz D. mixup: 
Beyond Empirical Risk Minimization. 2018 International 
Conference on Learning Representations (Proceedings 
of Machine Learning Research, Stockholmsmässan, 
Stockholm, Sweden), 2018.

43. Yun S, Han D, Chun S, Oh SJ, Yoo Y, Choe J. CutMix: 
Regularization Strategy to Train Strong Classifiers With 
Localizable Features. Proceedings of the IEEE/CVF 
International Conference on Computer Vision (ICCV), 
2019:6023-32.

44. Hamon R, Junklewitz H, Sanchez I, Malgieri G, De Hert 
P. Bridging the gap between AI and explainability in the 
GDPR: towards trustworthiness-by-design in automated 
decision-making. IEEE Computational Intelligence 
Magazine 2022;17:72-85.

45. Schaffter T, Buist DSM, Lee CI, Nikulin Y, Ribli D, Guan 
Y, et al. Evaluation of Combined Artificial Intelligence 
and Radiologist Assessment to Interpret Screening 
Mammograms. JAMA Netw Open 2020;3:e200265.

46. Hamm CA, Baumgärtner GL, Biessmann F, Beetz 
NL, Hartenstein A, Savic LJ, Froböse K, Dräger F, 
Schallenberg S, Rudolph M, Baur ADJ, Hamm B, Haas M, 
Hofbauer S, Cash H, Penzkofer T. Interactive Explainable 
Deep Learning Model Informs Prostate Cancer Diagnosis 
at MRI. Radiology 2023;307:e222276.

47. Yoon SY, Lee KS, Bezuidenhout AF, Kruskal JB. 
Spectrum of Cognitive Biases in Diagnostic Radiology. 
Radiographics 2024;44:e230059.

Cite this article as: Lu Z, Zou Q, Wang M, Han X, Shi X, 
Wu S, Xie Z, Ye Q, Song L, He Y, Feng Q, Zhao Y. Artificial 
intelligence improves the diagnosis of human leukocyte antigen 
(HLA)-B27-negative axial spondyloarthritis based on multi-
sequence magnetic resonance imaging and clinical features. 
Quant Imaging Med Surg 2024;14(8):5845-5860. doi: 10.21037/qims-
24-729


