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The incretin hormone glucagon-like peptide-1 (GLP-1) has received enormous attention
during the past three decades as a therapeutic target for the treatment of obesity and type
2 diabetes. Continuous improvement of the pharmacokinetic profile of GLP-1R agonists,
starting from native hormone with a half-life of ~2–3 min to the development of twice daily,
daily and even once-weekly drugs highlight the pharmaceutical evolution of GLP-1-based
medicines. In contrast to GLP-1, the incretin hormone glucose-dependent insulinotropic
polypeptide (GIP) received little attention as a pharmacological target, because of
conflicting observations that argue activation or inhibition of the GIP receptor (GIPR)
provides beneficial effects on systemic metabolism. Interest in GIPR agonism for the
treatment of obesity and diabetes was recently propelled by the clinical success of
unimolecular dual-agonists targeting the receptors for GIP and GLP-1, with reported
significantly improved body weight and glucose control in patients with obesity and type II
diabetes. Here we review the biology and pharmacology of GLP-1 and GIP and discuss
recent advances in incretin-based pharmacotherapies.
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1 INTRODUCTION

Obesity, diagnosed as a body mass index (BMI) ≥ 30 kg/m2, is a progressive, chronic disease that has
grown to pandemic prevalence over the past decades (1). Obesity substantially increases the risk of
type-2 diabetes (T2D), cardiometabolic diseases, osteoarthritis, neurological and mental disorders as
well as several forms of cancer, resulting in premature disability and demise (Figure 1) (2, 3).
Depending on the severity of the disease and the age at diagnosis, long-term health complications
may last a lifetime and worsen the therapeutic outcome for multiple associated chronic diseases (2).
Unsurprisingly, obesity leads to excess medical costs and imposes a large economic burden on
individuals, families, health care systems, and societies (2, 4).

While traditionally recognized primarily as a disease of the elderly, T2D is currently one of the
most frequently diagnosed preventable chronic diseases in middle age, as well as children and
adolescents (5, 6). Excess body fat along with age constitute the two most important risk factors for
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the premature development of T2D. Some studies report that
>80% of youth and ~50% of adults with T2D are overweight or
obese at point of diagnosis (6, 7). Early onset T2D relative to late-
onset disease is associated with a more rapid deterioration of b-
cell function, emphasizing the importance for early diagnosis
and treatment initiation (8). Obesity-related mechanisms that
are potentially linked to the severity of the disease include
adipocyte lipid spillover, ectopic fat accumulation and tissue
inflammation (9). Sizeable weight loss not only improves
Frontiers in Endocrinology | www.frontiersin.org 2
glucometabolic health, it may also reduce the risk for obesity-
linked co-morbidities, increase life expectancy, and improve
quality of life (10–12). Therapies aiming to decrease body
weight are consequently a valuable strategy to delay the onset
and decrease the risk of T2D, as well as managing established
disease (13).

Lifestyle modifications, such as balanced nutrition, calorie
restriction and physical exercise, remain the cornerstone of any
weight loss intervention. However, lifestyle changes alone are
FIGURE 1 | Complications of obesity. COPD, chronic obstructive pulmonary disease; IBD, inflammatory bowel disease; PCOS, polycystic ovary syndrome; T2D,
type 2 diabetes. Images retrieved from smart.servier.com.
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insufficiently efficacious and sustainable as a stand-alone
therapy, possibly because physiological adaptations conspire to
promote weight regain following diet-induced weight loss (14).
Genetic and environmental factors may further undermined
treatment efficacy (15). Polygenetic gene variants, each
accounting for only a small difference in body weight, may
sum up to sizably affect body mass and may hinder
susceptibility of an individual to respond to a weight loss
intervention (16, 17). There are also less frequent variants with
larger effects leading to early onset of severe obesity in humans.
Several syndromic and monogenic disorders of obesity that have
been identified include Prader–Willi syndrome, Bardet–Biedl
syndrome, and loss-of-function mutations in the genes
encoding for pro-opiomelanocortin (POMC), leptin, leptin
receptor (LEPR) or the melanocortin-4 receptor (MC4R) (17).

Pharmacotherapy as an adjunct to lifestyle adjustments is
often used to enhance weight loss efficacy (18). However, a key
obstacle in the development of anti-obesity medication is that
rodent studies proved largely incapable to predict cardiovascular
safety in humans (13, 19, 20). Also, the heterogeneity of patient
cohorts, with many individuals being of advanced age and at
high risk for development of cardiovascular diseases (CVD),
represents an obstacle that is not easy to address with
pharmacotherapy (19). Consistent with this, a series of
previously employed anti-obesity medications were withdrawn
soon after approval due to unforeseen adverse effects on the
cardiovascular system (19–21). Furthermore, when given at
tolerable doses, pharmacotherapy rarely decreases body
weight >10%. Notable exceptions are semaglutide 2.4 mg
(Wegovy® Novo Nordisk, Copenhagen, Denmark), a long-
acting agonist at the glucagon-like peptide-1 receptor (GLP-
1R) (22), and the experimental drug candidate tirzepatide, a
dual-agonist at the receptors for GLP-1 and the glucose-
dependent insulinotropic polypeptide (GIP) (23). Each of these
peptides decrease body weight with a favorable safety profile in
the majority of patients by >10% (24–28). While the clinical
success of these drugs sets the stage for a new era in anti-obesity
medication, there remains considerable controversy as to how
GIP regulates metabolism and whether GIP receptor agonism or
antagonism is a preferred treatment for obesity and T2D. In this
manuscript, we provide an overview of the mechanistic biology
and in vivo pharmacology of GLP-1 and GIP. We summarize
recent clinical results with molecules that target each receptor
and discuss recurrent questions related to their mode-of-action.
2 GLUCAGON-LIKE PEPTIDE-1 (GLP-1)

2.1 The Physiology of GLP-1
GLP-1 is encoded by proglucagon, a 158 amino acid precursor
protein, that is predominantly expressed in the gut, pancreas,
and distinct neuronal populations of the hindbrain (29). In the
brain and the intestine, proglucagon is cleaved by the action of
the prohormone convertase 1/3 (PC1/3) into GLP-1, GLP-2,
glicentin, glicentin-related polypeptide (GRPP), and
oxyntomodulin (OXM) (29–31). In the pancreatic a-cells,
Frontiers in Endocrinology | www.frontiersin.org 3
proglucagon is cleaved by PC2 into glucagon, GRPP and the
major proglucagon fragment (MPGF). In the intestine, GLP-1 is
secreted from enteroendocrine L-cells located in the gut
epithelium. The density of the L-cells is low in the duodenum
and jejunum and it is high in the ileum and colon (29). Nutrients
stimulating the secretion of GLP-1 in the intestine include
monosaccharides such as glucose, galactose, fructose (32–34),
fatty acids (35, 36), as well as proteins (37) and amino acids,
particularly glutamine and glycine (38, 39). The relevance of
endocrine factors to promote GLP-1 secretion seem to vary
across species and may include acetylcholine, insulin, ghrelin,
GIP, and gastrin-releasing peptide (29). Circulating levels of total
GLP-1 are low during fasting (~5 pmol/l) and rapidly rise up to
40 pmol/l shortly after a meal (40). Consistent with the ability of
GLP-1 to accelerate glucose-stimulation of insulin secretion
(GSIS), the meal-induced rise in plasma GLP-1 is paralleled by
enhanced insulin immunoreactivity (40).

GLP-1 promotes its biological action through binding to the
GLP-1 receptor (GLP-1R), a 7 transmembrane G protein-
coupled receptor of the class B family (41). GLP-1R signals
primarily via the Gas pathway, and hence accelerates
intracellular levels of cAMP (42). GLP-1R can also recruit, and
induce signaling, via the Gaq and b-arrestin pathways and
knockdown of b-arrestin-1 in rat insulinoma (INS1) cells
decreases the ability of GLP-1 to promote GSIS (43).
Immunohistochemical studies in tissues from humans and
non-human primates show widespread distribution of GLP-1R
in the brain and in the periphery (44). These data largely align
with studies in rodents in which the abundance of the GLP-1R
transcript was assessed using mice that express green fluorescent
protein (GFP) under control of the GLP-1R promoter (45).
Consistent with the ability of GLP-1R agonists to decrease
homeostatic and hedonic food intake (29, 29), expression GLP-
1R is found in the rodent hypothalamus (ARC, VMH, DMH,
PVH, LH), hindbrain (AP, NTS, ventrolateral medulla) and
telencephalon (amygdala, olfactory bulb, preoptic area, nucleus
accumbens) (45, 46). In the pancreas, GLP-1R is solidly
expressed in the b- and d-cells but is only found in a small
portion of a-cells (45). No expression of GLP-1R is found in the
liver and the thyroid gland (44).

Albeit best known for its glycemic effects, GLP-1 is a
pleiotropic hormone with a series of metabolic effects beyond
the regulation of glucose metabolism (Figure 2A). Apart from its
ability to act on the pancreas to enhance GSIS and to inhibit the
secretion of glucagon, GLP-1 decreases body weight by
decreasing homeostatic and hedonic food intake (29). GLP-1R
agonism further inhibits gastric emptying (47); has cardio- and
neuroprotective effects (48); lowers inflammation and apoptosis
(49–53); stimulates b-cell proliferation in rodents (54); and
exerts positive effects on learning, memory, and reward
behavior (55, 56). Endogenous GLP-1 is mainly produced as
GLP-1(7-36NH2), with a low proportion produced as GLP-1(7-
37) and an even a lower portion as GLP-1(1-37) or GLP-1(1-
36NH2) (29, 57). Native GLP-1 has a half-life of just ~2–3 min
(58–60), which results mainly from rapid in vivo proteolysis by
the dipeptidylpeptidase-4 (DPP-4) and fast renal elimination.
March 2022 | Volume 13 | Article 838410
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DPP-4 cleaves GLP-1(7-36NH2) and GLP-1(7-37) at the second
N-terminal amino acid (Ala8) position, leading to metabolically
metabolites GLP-1(9-36NH2) and GLP-1(9-37) of much reduced
potency (61). Despite species-related differences, GLP-1 is also
subject to degradation by the neutral endopeptidase (NEP) 24.11,
which cleaves GLP-1 at its central and C-terminal positions
Asp15, Ser18, Tyr19, Glu27, Phe28 and Trp31 (61, 62). The
relevance of NEP 24.11 to cleave GLP-1 varies among species and
while it contributes substantially to GLP-1 degradation in mice
and pigs (63, 64), it’s relevance in humans has long been
questioned. Nonetheless, more recent data show that NEP
24.11 also plays a physiological relevant role for degradation of
GLP-1 in humans (65).

Consequential due to its short half-life, native GLP-1 has only
limited pharmacological potential and only ~10–15% of active
GLP-1 is estimated to reach the general circulation (59, 66–68).
Nonetheless, emphasizing its therapeutic implication, 6-wk
continuous infusion of GLP-1(7-36NH2) at a rate of 4.8 pmol-1

kg-1 min-1 improved glycemic control and insulin sensitivity in
patients with T2D (69). Despite the lack of singular attribution to
enhanced GLP-1 action, similar results have been demonstrated
following administration of a DPP-4 inhibitor (70–73).

Notably, as comprehensively reviewed elsewhere (20, 29, 74),
GLP-1 improves glycemic control via several complementary
mechanisms. In the pancreas, GLP-1 directly acts on the b-cells
to promote GSIS via the action of PKA and Epac2 (29). Both
pathways are equally important for the insulinotropic effect of
GLP-1 and ensure that GLP-1 primarily enhances insulin
secretion under conditions of hyperglycemia (29). Other than
stimulating the secretion of insulin in a glucose-dependent
manner, GLP-1 also promotes the production of insulin via
activation of Pdx1, which binds to the insulin promoter and
activates its expression (29). GLP-1 also lowers blood glucose by
Frontiers in Endocrinology | www.frontiersin.org 4
inhibiting the release of glucagon and thus inhibiting hepatic
glucose production (29). Clamp studies in patients with T2D
indicate that the insulinotropic and glucagonostatic effects of
GLP-1 contribute equally to decreasing blood glucose (75).
While GLP-1 directly acts on the b-cells to stimulate insulin
secretion, GLP-1 inhibition of glucagon secretion seems to be
indirectly triggered via paracrine effects in the islets.
Accordingly, GLP-1 stimulates the secretion of insulin, zinc,
GABA, amylin, and somatostatin, all of which inhibit glucagon
secretion (30). Supporting this notion of a paracrine effect is that
the GLP-1 receptor is only expressed in a small subset of a-cells
(45). However, GLP-1 does not only decrease blood glucose via
its direct effects on the islets, it also inhibits gastric emptying and
thereby slows glucose entry into the circulation (47, 76–78).
Emphasizing the importance of GLP-1-mediated inhibition on
gastric emptying for the regulation of blood glucose,
antagonizing GLP-1’s effect on gastric emptying by co-infusion
of GLP-1 with erythromycin during a liquid meal diminished
GLP-1’s ability to decrease post-prandial hyperglycemia in
patients with T2D (79).

In summary, GLP-1 improves fasting blood glucose through
its direct action on the pancreatic islets and decreases
postprandial hyperglycemia through inhibition of gastric
emptying, and thus reduced glucose entry into circulation (74).
These differences in glucose regulation translate into important
pharmacological differences. Short-acting GLP-1 mimetics (e.g.
exenatide BID, lixisenatide) are self-administered prior to a meal
and, in conjunction with their short half-life of 2–3 h, display
substantial fluctuations in circulation, with highest levels during
the prandial and early post-prandial state, and lowest levels in the
fasting periods between meals. Due to their relatively high
plasma levels at the time of meal intake, the short-acting GLP-
1 mimetics relative to the long-acting GLP-1R agonists display a
A B

FIGURE 2 | Biological actions of (A) GLP-1 and (B) GIP on target tissues. Direct and indirect effects are depicted. Images retrieved from smart.servier.com.
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higher tendency to affect GI motility and to decrease post-
prandial hyperglycemia (74). On the contrary, long-acting
GLP-1R agonists are less prone to affect GI motility and
primarily decrease fasting blood glucose levels via direct action
in the pancreas (74). With stable plasma concentrations and
lower efficacy on GI motility, the long-acting GLP-1 mimetics
are less prone to incur adverse gastrointestinal side effects (80)
and generally have a higher potential to decrease body
weight (74).

2.2 Pharmacological Advances
in GLP-1R Agonism
A variety of structurally and chemically refined GLP-1R analogs
have received extensive attention and have been implemented in
clinical use for the treatment of T2D and obesity (Figure 3) (29).
Clinical success in the treatment of obesity has been established
for liraglutide 3 mg (Saxenda®, Novo Nordisk, Denmark) (81)
and more recently for semaglutide 2.4 mg (Wegovy®, Novo
Nordisk, Denmark) (13, 28). Also, molecules with simultaneous
activity at the receptor for GIP (82–85) or glucagon (86, 87) have
shown promising results for this application. The continuous
improvement of the pharmacokinetic profile of GLP-1R
agonism, starting from a native hormone with a half-life of
~2–3 min to the development of twice daily (exenatide BID),
daily (liraglutide, lixisenatide) and even weekly (exenatide ER,
albiglutide, dulaglutide, semaglutide) formulations, highlight the
pharmaceutical advancement in this arena. Additionally, the
recent development of an orally available preparation of
semaglutide (Rybelsus®, Novo Nordisk), and the recruitment
of GLP-1 into unimolecular pharmacology with GIP, glucagon
(and others) (20, 29, 88) exemplifies how GLP-1-based drug
development and innovation advanced over recent years. It
emphasizes how structural refinements and biochemical
modifications can extend the application of GLP-1R agonists
from the treatment of T2D to obesity (13).

2.3 Methods to Extend GLP-1’s Half-Life
The short action profile of native GLP-1 imposes a major
challenge towards its successful clinical utilization. To
overcome this limitation, various strategies have been applied
to extend the half-life of GLP-1 and to accelerate its in vivo action
Frontiers in Endocrinology | www.frontiersin.org 5
and potency (Figure 4). The efficacy of a drug in a biological
system is influenced by factors that include the stability of the
active molecule and its rate of diffusion into and elimination
from circulation. Methods to improve drug efficacy included
structural and chemical modifications targeted to increase
molecular stability and activity, to improve biodistribution/
bioavailability, and to delay renal elimination (89).

2.3.1 Protection From DPP-IV Cleavage
A commonly used procedure to improve the half-life of active
GLP-1 is a modification at the second N-terminal amino acid
position (Ala8) to protect from degradation by DPP-4. Such
structural modification has been applied to exenatide,
lixisenatide, semaglutide, dulaglutide, and albiglutide.

Exenatide and lixisenatide are synthetic peptides that fully
resemble the sequence of exendin-4, a GLP-1 paralog that is
naturally found in the saliva of the gila monster (heloderma
suspectum). Both exenatide and lixisenatide contain the full
sequence of exendin-4, but lixisenatide is extended on the C-
terminus to possess six additional lysine residues (20). Exendin-4
has a glycine at the second N-terminal position (Gly8), which
prevents the molecule from being fully recognized by DPP-4.
Relative to native GLP-1, exendin-4 (and thus exenatide and
lixisenatide) is further differentiated with amino acid
substitutions in the middle segment of the sequence, which
render the drug less susceptible to degradation by NEP 24.11
(62). The C-terminus of exendin-4 relative to native GLP-1 is
extended by nine amino acids, which enhances its secondary
structure and improves chemical stability (90). Despite being
protected from DPP-4 cleavage, exendin-4 still undergoes rapid
renal elimination, which in humans leads to a half-life of ~2.5 h
(exenatide) and ~3–4 h (lixisenatide), respectively (29).
Consistent with this notion, plasma clearance of exendin-4 is
reduced 4.4-fold in nephrectomized rats (91) and 3.4-fold in
patients with end-stage renal disease (92). With only 53%
sequence homology to native GLP-1, exendin-4 has the
limitation that ~40% of patients treated with exenatide (93–
95), and ~60% of patients treated with lixisenatide (96), develop
antibodies against the molecule, but this does not seem to
negatively affect glucose handling or the prevalence of adverse
effects. While exenatide, lixisenatide, dulaglutide, and albiglutide
FIGURE 3 | Timeline of drug approvals by the U.S. Food and Drug Administration.
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possess a glycine at their second N-terminal amino acid position,
semaglutide bears an aminoisobutyric acid (AIB) at this residue
to protect from DPP-4 inactivation.

2.3.2 Covalent Binding to Albumin
Albiglutide (GlaxoSmithKline, London, UK) is a sixty amino
acid tandem of two DPP-4 protected GLP-1 molecules that are
covalently fused to human albumin (20). The chemical
conjugation to albumin enhances GLP-1’s proteolytic stability
and simultaneously delays renal elimination, which manifests as
a half-life of ~120 h in humans (97). The long half-life of
albumin, and potentially that of albumin-fused drugs, is
derived from albumin’s ability to escape intracellular
degradation by binding to the neonatal Fc receptor (FcRn), in
a pH-dependent fashion (98–100). Upon endocytosis by the
endothelial cells, albumin binds to the Fc receptor (FcRn)
during endosomal acidification, which sorts the intracellular
trafficking of the albumin away from degradative lysosomes
and back to the plasma membrane where it can once again
reenter the general circulation (98–100). Underlining the
relevance of this intracellular mechanism, circulating levels of
albumin are decreased by 40–50% in FcRn-deficient mice (99,
100). Furthermore, as the molecular size of a drug greatly affects
its renal elimination (89, 101), larger molecules exhibit an
inherently greater circulatory half-life due to physical
hindrance in glomerular filtration (89). Thus, the fusion and
binding of GLP-1 to albumin, or the linkage of several GLP-1
molecules with an Fc fragment, naturally promote a delay in
renal clearance due to the increased size of the molecule.

2.3.3 Acylation With a Fatty Acid
The strategic fusion of GLP-1 to a fatty acid has been applied for
liraglutide (Novo Nordisk, Denmark) and semaglutide (Novo
Nordisk, Denmark). Liraglutide is linked to palmitic acid (C16:0)
via a gamma glutamic acid spacer at the lysine residue at position
26 (102). The fatty acid promotes formation of a self-associated
multimolecular complex, which protracts the diffusion of the
Frontiers in Endocrinology | www.frontiersin.org 6
molecule from the site of injection. A delay in renal clearance of
the drug is achieved by the reversible non-covalent binding of the
fatty acid moiety to human serum albumin (HSA). Although
liraglutide carries the native GLP-1 alanine residue at the second
N-terminal position (Ala8), the fatty acid-mediated albumin
binding promotes self-oligomerization and thereby improves
the proteolytic stability of the molecule to further decrease the
drug’s susceptibility to DPP-4 cleavage. This chemical
modification manifests in a half-life of ~12 h in humans (103).
Semaglutide is structurally identical to liraglutide with the
exception that the Ala8 residue is substituted with AIB to
further protect from DPP-IV recognition, and that the palmitic
acid (C16:0) is exchanged with a dicarboxylic-stearic acid
(C18:0). Impressively, these modifications manifest a half-life
of ~160 h upon subcutaneous injection in humans (104). Of
note, both liraglutide and semaglutide show great sequence
homology (>95%) to native GLP-1, which decreases the
likelihood of immunogenicity.

2.3.4 Pegylation
Polyethylene glycol (PEG) is a synthetic water-soluble inert
polymer with the potential to enhance a drug’s half-life by
slowing down its rate of renal clearance. Pegylation of a drug
can also enhance its aqueous solubility, protect against in vivo
proteolysis, and enhance toxicological safety and potentially even
its non-immunogenic resilience (105). The linkage between the
PEG and a conjugated molecule/peptide can either be stable or
degradable, with the latter often being used for prodrugs. Overall,
pegylation does not seem to affect the folding and stability of the
conjugated protein as assessed by circular dichroism, ultraviolet
absorption, or NMR spectroscopy (106–110). This observation
seems particularly important since misfolded proteins might lose
in vivo potency and be subject to enhanced proteolysis and
potential immunogenicity. Various FDA approved pegylated
proteins are currently in therapeutic use. The first FDA
approved pegylated drug was Adagen® (Enzon Pharmaceuticals,
new Jersey, USA) which was approved by the FDA in 1990 for
FIGURE 4 | Methods to enhance GLP- 1R action. DPP- 4, dipeptidylpeptidase-4; GLP- 1, glucagon-like peptide-1.
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adenosine deaminase deficiency associated with severe combined
immunodeficiency disease (SCID). The PEG modification can, in
rare cases, lead to vacuolation or the generation of antibodies
against the PEG. As it pertains to drugs to control body weight
and/or glycemia, preclinically tested pegylated anorectics include
leptin (111), FGF21 (112–117), GIP (118, 119), GLP-1R agonists
(120–122), NPY2 receptor agonists (123) and unimolecular dual-
agonists targeting the receptors for GLP-1 and glucagon (124, 125)
or GLP-1 and GIP (126).

2.3.5 Fc Fusion
Linkage of two GLP-1 molecules via the Fc fragment of a
monoclonal antibody (IgG4) has been applied for dulaglutide.
The sixty amino acid molecule comprises two Gly8-modified
DPP-4 protected GLP-1 molecules in which the C-termini are
fused at a Gly36 residue to IgG4 Fc fragments. Notably, while
dulaglutide carries a glycine at position 8 to protect from DPP-4
cleavage, Fc fusion to native GLP-1 is sufficient to reduce DPP-4
degradation by 4-5-fold relative to native GLP-1 (127). The
Arg36 residue of native GLP-1 was substituted with Gly36 to
serve as an anchor for the IgG4 Fc fragments and to decrease the
possibility of T-cell epitope interaction (128). Furthermore, the
native GLP-1 Gly22 residue is exchanged with glutamic acid,
which stabilizes the secondary structure and enhances potency
(128). The rationale of extending the half-life of GLP-1 via fusion
to an IgG4 Fc fragment is similar to its fusion to albumin. As
with albumin, the Fc complex binds upon endocytosis to the Fc
receptor (FcRn) in the acidic endosomal compartments with the
consequence that the FcRn-bound Fc complex is recycled back to
the plasma membrane and secreted back into general circulation
(101, 129–131). The Fc fragment, and the two GLP-1 motifs
fused via the Fc fragment, also further increase the size of the
molecule, and thereby naturally decrease its renal elimination
(89, 101).

2.3.6 Sustained-Release Formulations
Bydureon® (AstraZeneca, Wilmington, USA) is an extended-
release (ER) formulation of exenatide. The drug is self-applied
on a weekly basis independent of meal patterns. The extended
release is achieved through incorporation of exenatide (exendin-4)
into 0.06 mm-diameter biodegradable microspheres, which
comprise a 50:50 poly(D,L-lactide-co-glycolide) (PLG) polymer
along with sucrose (132). Exenatide ER contains encapsulated
exenatide at a concentration of 5 mg per 100 mg of microspheres
(132). In the human body, the PLG polymers slowly degrade
through the non-catalyzed hydrolysis of the ester linkages into
lactic acid and glycolic acid, which are finally eliminated as carbon
dioxide and water (132).

During the protracted degradation of PLG, exendin-4 is
sustainably released into the general circulation for a period of
several (~7) weeks, yielding therapeutic levels after two weeks and
a steady state after 6–7 weeks (132). The release of exenatide into
the general circulation occurs in three stages. During the initial
phase, the freshly injected microspheres hydrate and immediately
release loose and cell-surface-bound exenatide (< 1%) into the
circulation (132). In the second phase, the polymer hydrolyzes into
smaller fragments and, upon reaching a size of ~20 kDa, promotes
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the constant diffusion of exenatide into the circulation. In the
erosion phase, the PLG polymers fully hydrolyze and eventually
release all remaining exenatide (132). Reflecting this 3-phase
diffusion, a first peak of exenatide release (1–2% of the total area
under the plasma concentration curve) is observed in the first 48 h
after the injection, followed by two peaks after approximately two
and seven weeks, respectively (132).

The prolonged rise to achieve steady state plasma
concentrations seems to have beneficial effects on tolerability
since the frequency of nausea and vomiting is reduced in patients
treated with exenatide ER relative to treatment with exenatide
BID (80, 133). Exenatide ER is also superior over exenatide BID
in preventing episodes of hyperglycemia, as indicated by a
greater decrease in HbA1c (80). Weight loss, however, does
not seem to be overtly different between patients treated with
exenatide ER and exenatide BID (80). The continuous steady-
state plasma concentration of exenatide (which is structurally
identical in both formulations) nonetheless seems to be
associated with a greater immunogenic liability for exenatide
ER. In line with this notion, anti-exenatide antibodies are
detected in ~70% of patients treated with exenatide ER relative
to >40% of patients treated with exenatide BID (80).

2.3.7 Oral Semaglutide
A general limitation to oral administration of GLP-1 mimetics is
poor absorption via the GI-tract and quick degradation by
proteolytic enzymes and the acidic environment of the
stomach. For this reason, peptide GLP-1R agonists are not
available as oral preparations and rather have to be
subcutaneously self-injected by the patient. Difficulties and
discomfort with self-injected medication is a factor that
negatively affects patient compliance and quality of life (134–
136). A milestone in GLP-1-based pharmacotherapies is the
recent development of an oral available formulation of
semaglutide (Rybelsus® , Novo Nordisk, Copenhagen,
Denmark). In Rybelsus®, semaglutide is co-formulated with
sodium N-[8-(2-hydroxybenzoyl)aminocaprylate] (SNAC),
which shields the molecule from enzymatic and acidic
degradation and accelerates its site-directed release and
absorption in the stomach (137). As demonstrated in humans,
the SNAC-linked semaglutide tablet undergoes surface erosion
in the stomach with the result that the non-covalent linkage
between semaglutide and SNAC dissolves and releases free
semaglutide into the circulation (137). Another possibility to
orally engage GLP-1R activity is through administration of
smaller molecule mimetics. Two conventional small molecule
agonist with agonism at GLP-1R have recently been disclosed
and are in clinical evaluation for the oral treatment of diabetes
(138–140).

2.4 Recent Clinical Advances of GLP-1R
Agonists for the Treatment of
Obesity and Diabetes
Liraglutide 3 mg (Saxenda®, Novo Nordisk, Copenhagen,
Denmark) was approved in 2014 for the treatment of obesity
in adults and in 2020 for the treatment of obesity in children aged
12 and older (Figure 3) (141). Between 50 and 70% of the
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patients treated with liraglutide 3mg achieve a body weight
reduction > 5% while between 6 and 35% achieve weight
loss > 10% (142). Of appreciable note, in contrast to a vast
majority of previously employed anti-obesity medications (13,
20), GLP-1R agonism improves cardiovascular (CV) health in
patients with T2D (48, 143). Consistent with this, a recent meta-
analysis assessing CV outcome of different GLP-1R agonists
across eight CV outcome trials comprising 60,080 patients with
T2D. It demonstrated that GLP-1R agonists reduce the risk of a
major adverse cardiovascular event (MACE) by 14%, death by
13%, non-fatal stroke by 12%, and broad composite kidney
outcome by 17% (144).

In June 2021, the FDA approved semaglutide 2.4 mg
(Wegovy®) in adjunct to lifestyle programs for the treatment
of obesity in adults (145). In non-diabetic individuals overweight
or obese, 68 weeks of treatment with semaglutide (2.4 mg QW),
decreased body weight by 14.9% relative to 2.4% in placebo
treated controls (28). Impressively, 86.4% of patients treated with
semaglutide showed weight loss >5% (vs. 31.5% in placebo
controls), while 69.1% (vs. 12.0% in placebo controls)
lost >10%, 50.5% (vs. 4.9% in placebo controls) >15% and 32%
(vs. 1.7% in placebo controls) >20% (28). Similar to the
observation in patients with T2D (48, 143), participants with
obesity receiving semaglutide 2.4 mg had greater improvement of
markers indicative of cardiometabolic health (28). Like with
other GLP-1R agonists, adverse effects of semaglutide are
predominantly of gastrointestinal nature, with the most
common being nausea, diarrhea, vomiting, and constipation
(28). Notably, while a series of clinical studies confirms the
ability of semaglutide 2.4 mg to lower body weight >10% in most
patients, the magnitude of weight loss is considerably lower in
diabetic relative to non-diabetic patients with obesity (28,
146–148).
3 GLUCOSE-DEPENDENT
INSULINOTROPIC POLYPEPTIDE (GIP)

3.1 The Physiology of GIP
GIP is derived from posttranslational cleavage of proGIP, a 153
amino acid preprohormone that is expressed in the
enteroendocrine K-cells of the upper intestine, the pancreatic
a-cells and potentially the CNS (149). The majority of circulating
GIP refers to GIP(1-42), which gets cleaved from proGIP in the
intestine by the action of PC1/3, but also a shorter form, GIP(1-
30NH2), is produced in the intestine and the pancreatic a-cells
by cleavage of proGIP by PC2 (149). Both forms are of equal
insulinotropic potency in mice (150) and both carry an alanine at
their second N-terminal residue, which render the molecules
susceptible for DPP-4 degradation (151). Similar to GLP-1, GIP
undergoes rapid renal elimination and consistent with this, intact
GIP is quickly cleared from the circulation with a half-life of four
minutes and without major difference between healthy subjects
and individuals with T2D (151). Primarily secreted in response
to the ingestion of fat, GIP promotes its biological action through
binding to the GIP receptor (GIPR), a class B GPCR that, similar
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to GLP-1R and belonging to the glucagon receptor family (149).
In mice, Gipr is ubiquitously expressed in the endocrine pancreas
with comparable mRNA quantities in the a- b- and d-cells (152).
GIPR is further expressed in adipocytes (153), myeloid cells
(154), the endothelium of the heart and blood vessels, the
pituitary and the inner layers of the adrenal cortex (155). In
the brain, Gipr is found in the cerebral cortex, hippocampus,
olfactory bulb as well as in the hypothalamus and the hindbrain
(155–157).

3.2 GIP Regulation of Lipid Metabolism
GIP is best known for its ability to act on the pancreatic islets
where depending on blood glucose concentration it stimulates
the secretion of insulin or glucagon (Figure 2B) (158). The
insulinotropic effect of GIP is diminished in patients with type-2
diabetes (159) but is restored upon near normalization of
glycemia upon 4-week administration of insulin (160).

Beyond its glycemic effects, GIP decreases bone resorption
(161), has neuroprotective effects in animal models of
Alzheimer’s disease (162), and regulates lipid metabolism
(163). As comprehensively reviewed previously (149, 163–165)
GIP regulation of energy and lipid metabolism is partially
conflicting, since activation and inhibition of GIPR signaling
can both decrease body weight and fat mass in rodents
(149, 164).

As demonstrated in vitro in cultured adipocytes (166, 167) and
in vivo in Zucker rats (167), GIP enhances the activity of
lipoprotein lipase (LPL), which promotes adipose tissue lipid
disposal by enhancing hydrolytic cleavage of circulating
triglycerides (TAG) into fatty acids (FA) and monoacylglycerol,
which gets re-esterified and stored in adipose tissue. Consistent
with this, GIP promotes clearance of circulating TAGs in dogs
(168) and enhances adipose tissue TAG accumulation in rats (169)
and humans (170). Under conditions of hyperglycemia and
hyperinsulinemia, GIP increases adipose tissue blood flow and
TAG clearance in healthy lean subjects (171). It further enhances
FA synthesis in adipose tissue explants (172) and potentiates
insulin-stimulated uptake of FA into the adipocytes (173).
Collectively, GIP can act on the adipose tissue to increase
adipose tissue blood flow, to enhance LPL-induced TAG
clearance from the circulation and to stimulate adipocyte lipid
storage. Recently, it was hypothesized that GIP may also facilitate
healthy white adipose tissue expansion and thereby protect from
adipocyte lipid spill-over and ectopic accumulation of lipids (163).
This hypothesis is anchored on the observations that GIP is a
target of PPARg, a master regulator of adipogenesis (174), the
expression of GIP increases during adipocyte differentiation (175,
176), and that knockdown of GIPR impairs adipocyte
development (175).

3.3 Regulation of Energy Metabolism by
GIPR Agonism and Antagonism
Consistent with the proposed role of GIP in lipid storage, mice
with global loss of Gipr are lean and exhibit decreased body
weight gain when fed a high-fat diet (HFD) (177). Body weight is
also decreased in Gipr deficient ob/ob mice relative to ob/ob
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controls (177) and is decreased in mice with deletion of Gipr in
the adipose tissue (178) and the CNS (179). However, the body
weight difference between wt mice and CNS- or adipose-specific
Gipr ko mice is only mild in comparison to the global loss of Gipr
(177–179), indicating that lack of GIPR signaling in these tissues
does not fully explain the phenotype of the global Gipr ko mice.
No difference in body weight is seen between wt mice and mice
that lack Gipr in the brown adipose tissue (BAT) (180) or the
pancreatic b-cells (181).

The observation that global loss of Gipr protects from diet-
induced obesity (177) and that GIP can promote adipocyte lipid
storage (163) has inspired the development of GIPR antagonists
for the treatment of obesity (182). Among the most prominent
GIPR antagonists are natural (183) and biochemically modified
(fatty-acylated) (184) forms of N-terminally truncated GIP as
well as GIPR neutralizing antibodies (181, 185, 186). When
administered peripherally, particularly antibody-based GIPR
antagonists demonstrate some potential to prevent the
development of HFD-induced obesity in rodents (181, 186),
but GIPR antagonists show only modest, if any ability to
decrease body weight once obesity is already established (181,
183–186). However, one study demonstrated that central
administration of an antibody-based GIPR antagonist
remarkably decreased body weight in DIO mice, potentially
through mechanisms that include restoration of leptin
sensitivity (185). Enhanced leptin action can however not be
the sole mechanism by which centrally applied GIPR antagonists
decrease body weight, since loss of GIPR in leptin deficient ob/ob
mice still decreases body weight relative to ob/ob controls (177).

While GIPR antagonism has only little effects to decrease
body weight in DIO mice (181, 183–186), its combination with
GLP-1R agonism decreases body weight beyond what is possible
with either monotherapy alone (181). Interestingly, this
observation is surprisingly similar to long-acting (acylated)
GIPR agonists when co-injected with fatty-acyl GLP-1 (126).
When given at a dose of 3 nmol/kg/day, fatty-acyl GIP fails to
affect body weight in DIO mice, but when given as an adjunct to
fatty-acyl GLP-1 (3 nmol/kg/day), weight loss in the co-therapy
is synergistically greater than treatment with GIP or GLP-1 alone
(126). The mechanism of how GIPR and GLP-1R agonism
synergizes to enhance body weight loss are not known, but a
series of experimental results indicates that GIP acts on the GIP
receptor in the brain to decrease body weight via inhibition of
food intake (156, 179, 187). Consistent with this, GIPR is
expressed in the hypothalamus (156) and the hindbrain (157,
188) and DREADD-mediated activation of GIPR neurons/cells
in the hypothalamus decreases food intake in rodents (156).
Central and peripheral administration of a long-acting (fatty-
acylated) GIP increases cFOS neuronal activation in key feeding
areas of the hypothalamus (179) and several long-acting GIPR
agonists have been shown to decreases body weight and food
intake in DIO mice without affecting energy expenditure (179,
184). How pharmacological activation and inhibition of GIPR
both improve energy and lipid metabolism is subject of intense
scientific investigation. Relevant hypotheses include that GIPR
agonists may desensitize GIP receptor signaling (189), or that
GIPR agonists and antagonists improve metabolism through
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independent mechanisms (187). Arguing against a role of
GIPR agonists as functional antagonists is the observation that
single central administration of acylated GIP is sufficient to
rapidly lower food intake within hours after its administration
(179) and that even DREADD-mediated (non-GIPR ligand-
induced) activation of GIPR neurons decreases food intake in
mice (156). Also, expression of GIPR is not decreased upon
chronic treatment of DIO mice with acyl-GIP in either the
hypothalamus or the adipose tissue (179) and dual-agonists
targeting the receptors for GLP-1 and GIP do not show
enhanced internalization of the GIP receptor (42, 190).

The ability of GIPR agonists to decrease body weight and food
intake vanishes in global Gipr ko mice but is preserved in GLP-
1R ko mice (179, 184), indicating that GIPR agonists lower body
weight and food intake independent of GLP-1R signaling via the
GIP receptor. When administered centrally (icv), fatty-acyl GIP
decreases body weight and food intake in HFD-fed wildtype mice
but not in mice with CNS deletion of Gipr (179). When
administered peripherally, fatty-acyl GIP fails to affect food
intake in CNS Gipr ko mice but shows partially preserved
ability to decrease body weight (179). These data indicate that
fatty-acyl GIP acts in the brain to decrease body weight via
inhibition of food intake but also decreases body weight
independent of GIPR in the CNS (179). Although GIPR
agonists do not require GLP-1R to decrease body weight (179,
184), GIPR agonism was recently shown to attenuate the emetic
effects of GLP-1R agonism in mice, rats and musk shrews (188).
Given the role of the caudal hindbrain in emetic/aversive
behavior (191) and in mediating GLP-1 effects on food intake
(56, 192, 193), these data collectively suggest that GIP potentially
acts on the hindbrain-hypothalamus axis to decrease food intake
and to improve tolerability of GLP-1R agonism.

3.4 GIPR/GLP-1R Dual-Agonists
The observation that weight loss in DIO mice is enhanced by co-
therapy with GIPR and GLP-1R agonists (126) has resulted in
the development of unimolecular GLP-1R/GIPR dual-agonist
peptides (82, 126). The first of such dual-agonist, MAR709,
shows nearly balanced activity at both target receptors and
improves body weight and glycemia with greater potency
relative to pharmacokinetically-matched GLP-1 in rodents with
diet- and genetically induced obesity (126). In a 12-wk phase II
study, MAR709 (a.k.a. NNC0090-2746) reduced body weight
and blood glucose in patients with T2D, but the drug candidate
at the single tested dose was not superior to dose titrated
treatment with liraglutide (83). In 2020, Novo Nordisk
announced discontinuation of MAR709 due to success of
semaglutide 2.4 mg in clinical trials and in favor of other
potentially more effective drugs in their clinical pipeline (13).

Another GIPR/GLP-1R co-agonist, Tirzepatide (a.k.a.
LY3298176) has been developed by Eli Lilly (82). The molecule
is based on the human GIP sequence, in which GLP-1R residues
were introduced to yield a fivefold greater potency at the human
GIPR relative to GLP-1R (82). Fatty-acylation of the lysine 20
residue with a C20 diacid allows covalent binding to albumin,
which results in a half-life of ~160 hrs in humans (82). When
given at equimolar concentrations, tirzepatide shows greater
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weight loss but equal improvement in glucose metabolism
relative to treatment with semaglutide in DIO mice (82).
Interestingly, when given at a daily dose of 10 nmol/kg,
tirzepatide improves glucose metabolism but fails to affect
body weight in GLP-1R ko mice (194). These data are
seemingly in contrast to previous reports showing preserved
ability of long-acting GIPR agonists to decrease body weight in
GLP-1R ko mice (179, 184). Importantly, human GIP is only a
weak and partial agonist at the mouse relative to the human GIP
receptor (195), and all currently available data on the
pharmacokinetics of tirzepatide are based on human GIPR
(82). It warrants clarification whether tirzepatide shows
preserved potency at the mouse GIPR.

In recent phase III clinical trials, tirzepatide showed profound
ability to improve body weight and glycemia in patients with
obesity and T2D. Depending on the dose (5, 10, or 15 mg QW),
40-52 weeks of treatment with tirzepatide, decreased HbA1c
between -1.87 and – 2.59%, with 81 – 97% of patients achieving a
HbA1c <7%, and 23 – 62% of patients achieving HbA1c <5.7%
(24–27, 196). Serum levels of fasting glucose decreased between
43.6 – 67.9 mg/dl while body weight decreased relative baseline
between 6.2 – 12.9% (24–27, 196). After 40 weeks of treatment,
47 – 57% of patients treated with tirzepatide 15mg QW
decreased body weight >10%, relative to 1% in patients treated
with placebo, while 27 – 32% of patients decreased body
weight >15% (0% in placebo controls) (25, 27, 196). Treatment
with tirzepatide was at all tested doses (5, 10, 15 mg QW)
superior to treatment with semaglutide 1mg QW to decrease
HbA1c, fasting levels of blood glucose and body weight (25). It
warrants to be determined how tirzepatide compares to the
recently approved semaglutide 2.4 mg. Interestingly, while
tirzepatide shows comparable ability to decrease body weight
in obese type-2 diabetic vs non-diabetic individuals (24–27),
Semaglutide 2.4 mg is considerably less efficacious in obese
diabetic relative to obese non-diabetic individuals (28, 146–148).
4 OUTLOOK

The results of completed tirzepatide trials are quite exciting.
However, some effort is still required to ensure such therapeutic
advance will be applicable to all populations for whom it is
intended. Racial and ethnic minorities carry a disproportionate
burden of obesity and T2D in the general population, but their
enrolment in the completed tirzepatide trials was lower than
expected, which raises concerns regarding the generalizability of
these trials. Female participants were reasonably represented in
the completed trials, but no assessment of biological sex
differences in drug efficacy and safety profiles was made (24–
27, 196). T2D is increasingly diagnosed in children, adolescents,
and young adults; there is a need for more efficacious, reliable
therapies approved for younger patients. The heterogeneous and
multifactorial etiology of T2D and obesity combined with the
physiologic complexity of human metabolic system contributes
to wide variations in clinical phenotypes and individual response
to treatment. Adequate demographic representation across races
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and ethnic groups, geographic areas, sexes and genders, and age
groups may lead to more robust and complete data that broaden
the understanding of inter-individual response variability, which
may in turn help expand the population of patients responsive to
new medications such as tirzepatide.

It is well recognized that T2D and obesity treatments may be
best suited for precision medicine approaches rather than a “one
size fits all” paradigm. While considerable effort continues to be
invested into developing more pharmacotherapies for T2D and
diabetes, it is of paramount importance that use of the currently
available medications is optimized—that is, to provide the right
treatment to the right patient, at the right time. The completed
trials of tirzepatide demonstrate meaningful improvement of
glycemic and weight control with this drug. However, as with
any medical therapy, there are large inter-individual differences in
response among participants, including the possibility of less than
5% weight loss to 20% or greater weight loss (24–27, 196),
suggesting that individualization and precision treatment might
be necessary to achieve greater disease modification. Thus, the
challenge for scientists and physicians is to identify and validate
biomarkers for drug selection. In future trials, accurate and timely
detection of individual response to investigational drugs and
reporting individual response data will be helpful in
differentiating treatment responders from non-responders. The
overall goal is to utilize specific genetic, clinical, and biochemical
characteristics of individual patients to tailor treatment to achieve
optimal outcomes. Moreover, from a clinical perspective, it will be
equally important to decipher mechanisms by which GIP acts on
the brain to decrease body weight and to determine which brain
areas are involved. Much further work is also needed to establish
how GIPR antagonism decreases body weight (centrally or
peripherally mediated) and how GIPR and GLP-1R agonism
synergizes to decrease body weight.
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