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Genomic wide selection (GWS) is one contributions of molecular genetics to breeding. Machine learning
(ML) and artificial neural networks (ANN) methods are non-parameterized and can develop more accu-
rate and parsimonious models for GWS analysis. Multivariate Adaptive Regression Splines (MARS) is con-
sidered one of the most flexible ML methods, automatically modeling nonlinearities and interactions of
the predictor variables. This study aimed to evaluate and compare methods based on ANN, ML, including
MARS, and G-BLUP through GWS. An F2 population formed by 1000 individuals and genotyped for 4010
SNP markers and twelve traits from a model considering epistatic effect, with QTL numbers ranging from
eight to 480 and heritability (h2) of 0.3, 0.5 or 0.8 were simulated. Variation in heritability and number of
QTL impacts the performance of methods. About quantitative traits (40, 80, 120, 240, and 480 QTLs) was
observed highest R2 to Radial Base Network (RBF) and G-BLUP, followed by Random Forest (RF), Bagging
(BA), and Boosting (BO). RF and BA also showed better results for traits to h2 of 0.3 with R2 values 16.51%
and 16.30%, respectively, while MARS methods showed better results for oligogenic traits with R2 values
ranging from 39,12 % to 43,20 % in h2 of 0.5 and from 59.92% to 78,56% in h2 of 0.8. Non-additive MARS
methods also showed high R2 for traits with high heritability and 240 QTLs or more. ANN and ML meth-
ods are powerful tools to predict genetic values in traits with epistatic effect, for different degrees of her-
itability and QTL numbers.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Genomic wide selection (GWS), proposed by [1], has become
one of the main contributions of molecular genetics to breeding.
The GWS approach increased the accuracy in the prediction of
breeding values, making the selection of elite genotypes more effi-
cient and accurate [2]. Furthermore, GWSmade it possible to accel-
erate the improvement process by half the time in relevant crops,
helping to sustain current food demands [3–5].This time reduction
allowed breeders to maximize genetic gains per unit of time, in
addition to early selection [6,7]. All these benefits are due to the
direct use of DNA information in the selection of individuals, asso-
ciating marker information with phenotypic information, reducing
the time and resources allocated to the development of a new cul-
tivar [2,8,9].

Genome-based prediction is influenced by several factors, such
as the predictive ability of the methods, the complexity of the
trait’s genetic architecture due to non-additive effects (dominance
and epistasis), number of phenotypic observations and markers
used [2]. Increasingly, researchers are turning to machine learning
and neural network techniques, which have built-in predictor
selection capabilities and are unparameterized to develop more
accurate and parsimonious models [10]. Furthermore, some of
these methods allow identifying interactions between markers.
This property allows great flexibility to deal with different types
of traits with gene control with additive, dominant and epistatic
effects [5,9,11,12].

Among the various methods based on machine learning, Multi-
variate Adaptive Regression Splines (MARS) is considered one of
the most flexible [13], it proves to be more parsimonious and per-
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forms better than artificial neural networks for genomic prediction
in some studies [10,14]. MARS produces continuous models that
can have multiple partitions, automatically models nonlinearities,
and contemplates interactions of predictor variables using adap-
tively selected spline functions [15–17].

In the genetic context, MARS can be able to adjust the genetic
architecture of the trait and can also detect interactions, such as
epistasis, and can be used to define the type of trait control. Thus,
the inheritance mode of the markers and their interactions can also
be determined automatically, therefore, the number of parameters
in the modeling can be drastically reduced [14]. Although several
studies have proven the high power of MARS in the evaluation of
genomic data in the medical field [14,18–20], it is not known
whether more advanced machine learning, such as MARS, offer
superior performance over traditional statistical methods for
genetic improvement. In this sense, the objectives of this study
were: (i) to evaluate the general accuracy and the variability of
the prediction performance of methods based on machine learning,
including MARS, and neural networks in genomic prediction ana-
lyzes for simulated traits for different numbers of genes in the
presence of dominance and epistasis and with different degrees
of heritability and (ii) to compare the results obtained with G-
BLUP in different scenarios.
2. Material and methods

2.1. Simulation of population genome

To simulate the data, an F2 population of a diploid species
(2n ¼ 2x ¼ 20) with an effective size of 1000 individuals was taken
as reference. The genotypic constitution of each individual was
established considering the information in the genome and the
random union of gametes from the parents, assuming a gametic
pool of 5000 reproductive units, per parent, in each fertilization.
The population was generated using divergent parental lines, i.e.,
contrasting homozygous parents (P1 dominant and P2 recessive),
with a genome established considering 10 linkage groups with a
size of 200 cM each. To provide linkage disequilibrium between
markers, the percentage of recombination was equivalent to a dis-
tance between loci of 0.5 cM. The genome was generated with a
saturation level of 401 equidistantly spaced molecular markers in
each linkage group, resulting in a total of 4010 molecular markers
in the genome. Markers were codominant (SNPs - Single Nucleo-
tide Polymorphism), allowing the identification of heterozygous
individuals.

2.2. Simulation and constitution of phenotypic values

From the simulated genotypic data of the F2 population, 18
traits with numbers of controlling genes ranging from 8 to 480
and heritability of 0.3, 0.5 or 0.8 were simulated (Table 1). The con-
trolling genes (QTL - Quantitative Trait Locus) were distributed
equally among the first 8 linkage groups (Supplementary Fig. 1).

Eight QTL controlled for C1, C7 and C13 traits, defined by the
central markers of the first eight linkage groups. For traits C2 to
C6, C8 to C12, and C14 to C18 the QTL were distributed keeping
Table 1
Number of controlling loci and heritability (h2) of the 12 simulated traits (C1 to C18).

h2 Num

8 40 80

0,3 C1 C2 C3
0,5 C7 C8 C9
0,8 C13 C14 C15
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an approximate distance between them, within the first 8 linkage
groups (Supplementary Fig. 1).

The total phenotypic values expressed by a given individual for
traits C1 to C18 were simulated according with [21–23] consider-
ing the mean equal to 100 and coefficient of variation equal to 12 %,
with a dominance level (di) equal to 0.5 and by a model with epi-
static effect according to the following equation:

Yij ¼ lþ
X

jaji þ
X

jajiajiþ1 þ ei

where Yi is the phenotypic value for observation i; l is the general
mean; aj is the effect of the favorable allele at locus j of individual i,
that is, it assumes the values uþ ai,uþ di and u� ai for the geno-
typic values associated with classes AA, Aa and aa, respectively,
with u being the mean between the dominant homozygote (AA)
and the recessive homozygote (aa). Classes were identified by cod-
ing 1, 0 or � 1, respectively; ajiajiþ1 represents the interaction
between favorable alleles at different loci. The variance structure
of the residues was given by [24] e N 0;Veð Þ, where

Ve ¼ 1� h2
� �

Vg

� �
=h2, where Ve is the residual variance, Vg is the

genotypic variance, and h2 the heritability.

2.3. Prediction of breeding values

The genomic breeding values (GEBVs) were predicted using
methods based on statistical approaches, represented by G-BLUP,
on neural network approaches, represented by the Multilayer Per-
ceptron Network (MLP) and Radial Basis Function Network (RBF)
and on learning approaches from Multivariate machine Adaptive
Regression Splines (MARS), Decision Tree (DT), Boosting (BO), Bag-
ging (BA) and Random Forest (RF).

Neural network approaches are often treated as machine learn-
ing [12,22,25]. However, each approach has its specificity and here
they will be considered as different approaches. As neural net-
works work like the human brain, they are composed of neurons
organized in layers that capture all available information to gener-
ate a decision-making criterion, they differ from machine learning
methods, which model the limitations of data separation with
based on the learning decision rules on the input characteristics
of the model [26].

2.4. Data analysis

For all methods, the input data was a matrix of molecular mark-
ers, represented by the genotypic values encoded in � 1, 0 and 1,
simulated for 4010 markers and 1000 individuals. The methods
returned in the output a vector with the GEBV for each individual.
For comparison, the methods were grouped according to their
respective learning approach: G-BLUP – G-BLUP; MLP and RBF –
NETWORK; DT, BA, BO and RF – TREES; and MARS 1, MARS 2 and
MARS 3 – MARS.

2.4.1. Multivariate Adaptive regression Splines (MARS)
The algorithm proposed by [27] Multivariate Adaptive Regres-

sion Splines (MARS), considers an expansion in piecewise linear
functions, called basis functions (BFs), as follows:
ber of controlling loci

120 240 480

C4 C5 C6
C10 C11 C12
C16 C17 C18
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x� tð Þþ ¼ x� t; sex > t;
0; ifotherwise:

�
; t � xð Þþ ¼ t � x; sex < t;

0; ifotherwise:

�

Each function is a piecewise linear spline, with a node at the
value t. These two BFs are called a reflexive pair. MARS forms
reflexive pairs for each input (marker) Xj, with nodes at each
observed value xij of that input. The model building strategy is like
a progressive linear regression, but instead of using the original
inputs, we used functions from the set

C ¼ Xj � t
� �

þ; t � Xj
� �

þ

n o
t 2 x1j ; x2j ; ...; xNjf g j¼1;2;...; p

and/or its

products. The MARS model, which is a linear combination of the
BFs and/or their interactions, is given by [28]:

f Xð Þ ¼ b0 þ
XM

m¼1
bmhm Xð Þ

where b0 is the regression constant, bm with m = 1, 2, . . ., M, are
the regression coefficients, and hm Xð Þ is a function in C, or a pro-
duct of two or more functions.

The estimation process of the parameters b0 and bm is based on
the minimization of the residual sum of squares. First, the forward
phase is performed on the training data, initially starting to build
the model only with the constant function h0 Xð Þ ¼ 1, and all func-
tions in the C set are candidate functions. At each subsequent step,
the base pair that produces the maximum reduction in training
error is added. Considering a model with basic M functions, the
next pair to be added to the model is [28]:

bbMþ1hl Xð Þ Xj � t
� �

þ þ bbMþ2hl Xð Þ t � Xj
� �

þ;hl 2 M

where bbMþ1 and bbMþ2 are coefficients estimated by the least
square method, together with all other M þ 1 coefficients in the
model. This process of adding BFs continues until the model
reaches a predetermined maximum number, often leading to a
purposefully oversized model [29].

The backward phase improves the model by removing the least
significant terms until finding the best submodel. The model sub-
sets are compared using the generalized cross-validation (GCV)
method. The GCV is the root-mean-square residual error divided
by a penalty that depends on the complexity of the model [29].
The GCV is calculated as [28]:

GCV kð Þ ¼
1
N

PN
i¼1 yi � bf k xið Þ

h i2
1� C Mð Þ

N

h i2
whereM is the effective number of model parameters, C Mð Þ is a

cost function for each basis function included in the developed
submodel, which by default is adopted by default value of 3 [27],

N is the number of datasets used in cross-validation and bf k xið Þ
denotes the predicted MARS values.

To identify the possible interaction between the QTLs, MARS
models with degrees equal to 1, 2, and 3 were used, with the model
with degree 1 considered an additive model and the others non-
additive, which allow interactions between markers. For the stop-
ping criterion of the forward phase, the maximum number of
terms in the adopted model was equal to 200, as the default of
the ‘‘earth” package of R. A preliminary analysis was carried out
for the second stopping criterion [30], in which incrementing a
term in the model would change the coefficient of determination
from less than 0.001 (default) to 0.05, choosing the best model that
presented the highest selective accuracy (R2) for the validation set.

2.4.2. Genomic BLUP (G-BLUP)
An epistatic model, including dominance and additive effects,

for the REML/G-BLUP method was used according to the following
expression:
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y ¼ Xbþ Zua þ Zud þ Zuepi þ e

where y is the vector of phenotypic observations; b is the vector
of fixed effects (in this study, the general mean) with incidence
matrix X; ua, ud e uepi are vectors of genetic values of additive, dom-
inant and epistatic effects, respectively; Z is the incidence matrix
for these vectors; and e is the random error vector. The variance

structure was given by ua N 0;Gar2
ua

�
); ud N 0;Gdr2

ud

�
);

uepi N 0;Gepir2
uepi

�
) and e N 0; Ir2

e
� �

, where Ga, Gd and Gepi are the

genomic relationship matrices for the additive, dominant and epi-
static effects, respectively , and r2

ua , r
2
ud

and r2
uepi

are the additive,

dominance and epistatic variances, respectively.
For the construction of the genomic relationship matrices (W

and S) used in the model, M_ij was considered to be the incidence
of the number of alleles of brand j of individual i and pj the fre-
quency of the dominant allele A in brand j. In this way, the W
and S matrices were given by [31]:

Wij ¼
2� 2pj; ifMij ¼ AA

1� 2pj; ifMij ¼ Aa

0� 2pj; ifMij ¼ aa

8><
>: ; and

Sij ¼
�2 1� pj

� �2
; ifMij ¼ AA

2pj 1� pj

� �
; ifMij ¼ Aa

�2p2
j ; ifMij ¼ aa

8>><
>>:

In this way, we obtain:

Ga ¼ WW0Pn
j¼12pj 1� pj

� � ;Gd ¼ SS0Pn
j¼1 2pj 1� pj

� �� �2 ;Gepi ¼ Ga#Ga

Where # is the Hadamard product operator.
The mixed model equations for the full model were given by

[24]:

X0X X0Z X 0Z X0Z

Z0X Z0Z þ Ga
�1k1 X 0Z X0Z

Z0X

Z0X

Z0Z

Z0Z

Z0Z þ Gd
�1k2 X0Z

X0Z Z0Z þ Gepi
�1k3

2
66664

3
77775

bbbuabudbui

2
6664

3
7775 ¼

X0y

Z0y
Z0y

Z0y

2
6664

3
7775

were k1 ¼ r2
e

r2
ua
, k2 ¼ r2

e
r2
ud

and k3 ¼ r2
e

r2
uepi

and the variances were esti-

mated by the Restricted Maximum Likelihood Method (REML).

2.4.3. Multilayer Perceptron neural Network (MLP)
The Levenberg-Marquardt backpropagation training algorithm

was used for the Multilayer Perceptron Neural Network (MLP). Pre-
liminary tests were performed with different architectures, being
represented by 1 layer and the number of neurons varying from
5 to 15, to choose the best topology to be used. The linear activa-
tion function (purelin) was used.

The linear function for the nth neuron of the output layer of an
MLP was represented by:

yri ¼ p x0w0 þ
Xq

j¼1
f xj xið Þwj

� �
where: p is a linear activation function, x0 is the bias term of the

nth neuron, xi is the i-th input, wj is the synaptic weights to be
adjusted and f xj xið Þ is the value coming from the layer hidden for
each input i, assigned to an activation function. The activation
function used in this work was the linear one (f xj xið Þ ¼ xi).

2.4.4. Neural Network Radial Base function (RBF)
The Radial Base Function Neural Network (RBF) uses a feedfor-

ward architecture. This model also consists of an input layer, a hid-
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den layer, and an output layer. RBF training is hybrid (supervised
and unsupervised) and the input layer information goes through
a linear k-means cluster [11]. The hidden layer applies a non-
linear transformation of the input space to a high-dimensional hid-
den space with a Gaussian function. The output layer applies a
transformation to the hidden space, providing an output vector
for the network. The RBF optimization training included: the
weights between the hidden layer and the output layer, the activa-
tion function, the center of activation functions, the distribution of
the center of activation functions, and the number of hidden neurons
[11]. During the training process, only the weights between the hid-
den layer and the output layer are modified [9]. To select the best
RBF architecture, according to the MLP, preliminary tests were car-
ried out. The number of neurons ranged from 5 to 50 and radius size
from 30 to 50. The mean square error was set to 0.05.

The linear function for the nth neuron of the output layer of an
RBF was represented by:

yri ¼ g x0w0 þ
Xq

j¼1
f xj xið Þwj

� �
where: g is a linear function, x0 is the bias term of the nth neu-

ron, xi is the i-th input, wj is the synaptic weights to be adjusted,
and f xj xið Þ is the value coming from the hidden layer for each input
i, assigned to the Gaussian activation function, which is given by

the equation:e� u�cð Þ
2r2

2
, where c is the center of the Gaussian function,

r2 is the variance of the Gaussian function and i is the value of the
individual’s input, which represents the activation potential of the
clustering phase.

2.4.5. Decision tree
The decision tree structure was based on a regression tree, cre-

ated from the search for the tree that would lead to the data parti-
tion until the formation of homogeneous groups was obtained. To
perform recursive binary division, first is the marker Xj and the
cutoff point s so that the division of the predictor space into the
regions xjxj < s

	 

e xjxj � s
	 


leads to the greatest possible reduc-
tion in RSS. That is, we consider all markers x1; � � � ;Xm and all pos-
sible values of the cutoff s for each of the markers, and then choose
the marker and cutpoint so that the resulting tree has the smallest
RSS. The equation that reflects the binary division is [32]:

R1 j; sð Þ ¼ XjXj < s
	 


eR2 j; sð Þ ¼ XjXj � s
	 


;

and then we look for the value of J and S that minimize the
equation:

X
i:xi2R1 j;sð Þ

yi � byR1

� �2
þ

X
i:xi2R2 j;sð Þ

yi � byR2

� �2

where: byR1 is the average of the response variable of the training

observations belonging to the region R1 j; sð Þ, byR2 is the average of
the response variable of the training observations belonging to
the region R2 j; sð Þ and yi is the true value of the traits of each
individual.

2.4.6. Bagging
The Bagging (BA) method creates several similar datasets by

resampling (bootstrapping) to obtain an average of several regres-
sion trees that are performed without pruning for each dataset
[33,34]. Thus, a number B of models are obtained:bf 1 xð Þ;bf 2 xð Þ; � � � ; bf B xð Þ. These generated models are used to obtain

an average model, given by: bf m�edio xð Þ ¼ 1
B

PB
b¼1

bf b xð Þ. The number
of trees sampled for BA was set at 500 trees.
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2.4.7. Random Forest
Random Forest (RF) [35] is similar to BA in that bootstrap sam-

ples are used to build multiple trees, the difference being that each
tree is established with a random subset of predictors. The number
of predictors used to find the best split at each node is a subset that
was chosen by m ¼ v

3, with v being the total number of predictors.
The number of trees for the RF was set at 500. For the RF, the trees
grow to their maximum size without pruning, and the aggregation
is done by averaging the trees [25].

2.4.8. Boosting
Boosting (BO) creates trees sequentially using information from

previous trees [32]. In this sense, BO is an approach repeatedly
trained on the same sample so that at each iteration, a measure
of prediction error is calculated for each marker, and in the next
iteration, markers with higher errors receive greater weight in
the model training. The prediction is performed by weighting the
results of the set of all regression trees [36]. The number of trees
sampled was 500, with a learning rate of 0.01 and a depth of 2.
The following model was used to adjust the BO [28]:

f xð Þ ¼
XM

m¼1
bmb x; cmð Þ

Where bm, m = 1, 2, . . ., M are the coefficients of base expansion
and b x; cmð Þ are simple functions of the multivariate argument x,
with a set of parameters c ¼ c1; c2; � � � ; cm.

2.5. Efficiency parameters

To evaluate the efficiency of the techniques, the selective accu-
racy was used, which is measured by the square of the correlation
(R2) between the estimated values - GEBVs (by) and the real values
(y), and the root means square error (RMSE), which expresses the
predictive accuracy. The selective and predictive accuracies were

given respectively by the following equations: R2 ¼ cor ŷ; yð Þð Þ2

andRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R y�yð Þ

n

2
q

.

2.6. Training and validation

For the training and validation of the techniques used, cross-
validation (k-fold) was performed with k = 5 partitions [37]. In
each of the five rounds, four of these subsets constituted the train-
ing population (80 % � 800 individuals), and the remaining subset
constituted the validation population (20–200 individuals). The
techniques were compared based on the arithmetic mean of the
five performance estimates of the validation sets.

2.7. Computational aspects

Population simulations were performed using the GENES soft-
ware [38]. The G-BLUP, DT, BA, RF, BO, and MARS methods were
performed with the GENES software integrated with the R software
[39,40]. The MLP and RBF methods were performed by the GENES
software integrated with the MATLAB software [39,41].
3. Results

The phenotypic and genotypes values of the 18 simulated traits
are shown in Fig. 1. The low variations can be explained by the 12%
coefficient assigned in the simulation and the mean was very close
to 100, as defined in the simulation.



Fig. 1. Boxplot of the genetic and phenotypic values of the 18 simulated traits, considering a coefficient of variation equal to 12% and mean to 100. The specification of each
characteristic is represented in Table 1.
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The selective accuracy (R2) of the prediction of breeding values
for all methods was higher in scenarios with higher heritability
(Fig. 1). On the other hand, the variation in the number of QTL
showed that the methods have diversity among the results
obtained, indicating that the number of QTL of the traits directly
influences the prediction of GEBVs according to the method used
and that the increase in the number of QTL is harmful to the MARS
approach and the DT method, while for the other methods the
increase in the number of QTL reflects an improvement in R2.

For both heritability scenarios, the methods based on machine
learning, MARS and Trees, presented higher values of R2 for the
traits with the lowest number of QTL, when compared to the other
methods (Fig. 1). The effect of the interaction between markers
was even more evident for higher heritability (80 %), resulting in
higher R2 values for the non-additive MARS models (MARS 2 and
3).

From the scenarios with 40 QTL, an increase was observed for
the values of R2 as the number of QTL increased, except for MARS
and DT, reaching values close to those of the real genetic variation
when the trait presents 480 QTL. In these scenarios, the G-BLUP
and RBF methods, followed by RF and BA, presented the highest
values for R2 and always above the general average (red line) for
the traits for both heritability scenarios (Fig. 1). For scenarios with
80 % heritability and 40 or more QTL, the MLP and BO methods also
deserve to be highlighted.

Despite presenting lower values for R2 compared to other meth-
ods, the predictive power of MARS methods for traits with many
QTLs cannot be neglected, especially when there is a very high
number of QTLs, such as 240 and 480 genes, the non-additive
MARS methods (MARS 2 and 3) showed high R2 values (above
60 %), and considering the standard error, values lower only than
G-BLUP (Fig. 1). It is worth mentioning that for these scenarios,
MARS had high predictive potential, explaining almost all the
genetic variations of these traits.

Methods based on MARS and regression trees did not obtain a
linear response as a function of increasing the number of QTL. On
the other hand, both methods based on neural networks and G-
BLUP showed a substantial improvement the higher the QTL num-
ber (Fig. 1). With the exception of DT, which presented lower R2

values in almost all scenarios, the tree-based methods presented
R2 values close to the simulated heritability, mainly for scenarios
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with 240 QTL (Fig. 1). In addition, these methods presented values
of R2 greater than the overall mean of R2 in all scenarios (Fig. 1).
The BO method presented the best result when the scenarios were
of greater heritability and 40 or more QTL. BO was also the method
that showed the greatest sensitivity to heritability and showed a
substantial improvement in results in higher heritability scenarios.

The predictive accuracy results (REQM), referring to the error in
the prediction of the GEBVs of the individuals, were always smaller
according to the increase in the number of QTL, that is, the greater
the number of QTL, the lower the error in the prediction of the
GEBVs of the individuals, regardless of the method used (Fig. 2).
In this case, the impact caused by the increase in the number of
QTLs on the prediction error of GEBVs is greater than the change
in heritability and is inversely proportional. This result was possi-
ble due to the fixed number of markers, providing a greater propor-
tion of direct effects of markers on traits in relation to those poorly
correlated with the phenotype and without direct effect.

For scenarios with 8 QTLs, the trees (Fig. 3) showed better
results. It was also observed that the higher the increase in the
number of QTLs, the lower the difference between the methods
for RMSE. In the largest QTLs scenarios, DT had higher RMSE values
in most scenarios.

The RBF method presented very similar RMSE values when
compared to those obtained through G-BLUP for all scenarios
(Fig. 2). From 40 QTL, these methods presented the lowest values
for RMSE. Similar values of these methods were obtained by the
non-additive MARS (MARS 2 and MARS 3) for the scenarios with
240 and 480 QTL and heritability of 80 %.
4. Discussion

The inclusion of a greater number of marker variables in a pre-
dictive model can be useful to obtain a better performance, but it
can lead to the addition of redundant information and make it dif-
ficult to apply in practice [20]. Furthermore, in hybrid populations,
non-additive effects, i.e., dominance, and epistasis, are highly rele-
vant and should also be considered [42]. In this sense, methods
that deal with high dimensionality and take into account possible
interactions between predictor variables have important traits.
Many recent studies have been applied to GWS and have shown
that machine learning and neural network methods can perform



Fig. 2. Average results of selective accuracy (R2) as a function of the number of genes and heritability for the families of the methods: Trees [Bagging (BA), Boosting (BO),
Decision Tree (DT); and Random Forest (RF)]; Network (Multilayer Perceptron Network (MLP) and Radial Base Function Network (RBF) MARS (MARS 1, 2 and 3); and G-BLUP.
The red dashed line refers to the overall mean value of the selective accuracy (R2) between all methods for comparison purposes. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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better or similarly in predicting genotypic data phenotypes com-
pared to statistical methods [9,12,22,43–46].

However, there is still a gap to be filled on which methods may
be preferable to perform the prediction when it comes to different
degrees of heritability and QTL number, including when consider-
ing epistatic effects. The variability in the results for the different
methods suggests that any method is prone to produce a differen-
tiated result under some type of data perturbations. The results
obtained were able to demonstrate the strong effect of heritability
and increase in QTL number on R2 and RMSE values. Several stud-
ies have shown that there is a favorable effect of heritability on
selective accuracy [9,22,36,47,48], as also obtained in this study.
This is justified by the greater genetic variation in higher heritabil-
ity’s and, consequently, less environmental effect, contributing to
more accurate predictions of marker effects [22].

The results showed that there was a reduction in the RMSE in
scenarios with a greater number of QTL, and that, in the same
way, there was also a reduction in the RMSE in the scenarios with
greater heritability, however in a smaller proportion. Results sim-
ilar to those obtained in this study were observed by [36], in sce-
narios with heritability ranging from 0.1 to 0.5 and 100 QTL, and
[22] evaluating scenarios with QTL numbers ranging from 2 to 88
and heritability from 0.3 to 0.8. The reduction in RMSE due to
the increase in the number of QTLs may have occurred due to
the lower influence of the multiplicative effect between the addi-
tive and dominant effects that characterize epistatic effects in
more complex traits [22,36,49].
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As MARS can simultaneously include multiple terms (additive
and epistatic effects) in a model [50] genetic interactions can be
better evaluated. Apparently, this fact could lead to a better predic-
tion for GWS, since, in this way, it would be possible to reduce the
residual variance of the model, by capturing information that
before was isolated only residual component, such as the effects
of the interaction between markers. However, as [14] explain,
some patterns of interaction tend to be less pronounced to be
detected in features with a high number of QTL. Thus, methods
based on recursive partitioning, such as MARS and Trees, benefit
from situations in which the predictor variables can be partitioned
into well-defined regions [12], as is the case with features with
lower QTL numbers (oligogenic). This is because traits controlled
by few genes have well-defined phenotypic classes and suffer little
or no environmental influence [51].

These results show that MARS is an alternative to be used, espe-
cially when it is easier to identify groups of individuals based on
the population genome. Due to the identification of markers and/
or interactions between markers of greater effect, MARS proved
to be more efficient when the multiplicative effects of the control-
ling genes (epistasis) may be more important, since, for traits with
lower QTL numbers, the multiplicative effects control genes (epis-
tasis) may be of greater magnitude in proportional terms, as the
individual effect of each gene is greater than in traits controlled
by a greater number of QTL [22]. This is a direct result of its mod-
eling philosophy, which tries to approximate a (possibly higher-
order) function with a set of basic functions that are locally



Fig. 3. Average results of predictive accuracy (RMSE) as a function of the number of genes and heritability for the families of the methods: Trees [Bagging (BA), Boosting (BO),
Regression Tree (DT); and Random Forest (RF)]; Network (Multilayer Perceptron Network (MLP) and Radial Base Function Network (RBF) MARS (MARS 1, 2 and 3) and G-
BLUP. The red dashed line refers to the overall mean value of predictive accuracy (RMSE)) between all methods for comparison purposes. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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lower-order, so it has more power and flexibility to model relation-
ships that are almost additive or involve interactions in at most a
few variables [27].

The frame is different when there is a large number of predictor
variables with high correlation and response trait has high genetic
(dominance and epistasis effect) and environmental noise. When
the trait involves a greater number of QTL, there is a greater chance
that a marker explains in genetic terms the same variation of
another marker, in addition to providing a greater action of the
environmental effect, thus impairing the prediction efficiency.
The excess of markers associated with a reduced number of geno-
typic observations can also lead to multicollinearity problems [12].
As [27] points out, MARS is not particularly robust against corre-
lated inputs and relies heavily on data to infer the process model,
in these cases, MARS loses explanatory power. Thus, analyses
should use an optimal set of informative SNPs, according to expec-
tations regarding the number of QTLs, to adopt the best analytical
strategy, maximizing predictive accuracy estimates [12,22]. In
addition to MARS, another method susceptible to multicollinearity
vulnerability is DT. If two predictors are highly collinear, MARS or
DT has to make an arbitrary knot or split selection that minimizes
the residual sum of squares, this can profoundly affect all subse-
quent selections and final predictions [52].

Also, more generally, recursive partitioning methods have diffi-
culties when the dominant interactions involve a small fraction of
the total number of variables, so one cannot discern whether the
approximation function approximates a simple one, such as linear
or additive, or if it involves complex interactions between variables
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[27]. This explains why MARS did not perform well in genomic
regions where strong genetic interactions are present, such as for
traits from 40 to 120 QTL. However, for scenarios where these
effects are diluted, high QTL number (250 to 480), MARS has high
predictive potential and lower model variance. Thus, it is notable
that the excellent results obtained for the non-additive MARS show
that this approach should be considered for GWS.

The greater number of genotypic classes in scenarios with a
greater number of QTL reduces the representativeness of each
genotypic combination in the training set and overparameteriza-
tion of the model [22]. In this context, it was these restrictions that
led these algorithms to not present such satisfactory results when
the trait is polygenic, mainly DT. Low DT efficiency was also
observed by [12] to predict the genetic values for rust incidence
in Coffea arabica and by [22] for simulated features with epistatic
effects with 16 or more QTL.

The approaches based on decision trees (BA, BO, and RF)
showed excellent results regarding the accuracy of the GEBVs pre-
diction for traits with many QTL. A differential of the BA and RF
approaches is the resampling of the original data in sub-samples
(bootstrap) to perform the prediction according to a number of
determined trees. This resampling of data brings concrete benefits
for prediction in these cases, allowing for the easy evaluation of
poorly predicted samples and possible discrepancies [53]. BA ana-
lyzes its main effects on variance and can make forecasting more
robust by decreasing the variance lead time and RF not only com-
bines a large number of decision trees to reduce forecast variance
like BA but also decreases dependency between decision trees by
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projecting random features to obtain a much smaller prediction
error [54]. As a result, these methods perform better to maximize
prediction in a target population, suggesting that bootstrapping
can be performed by other methods to achieve better prediction
results. As it is a gradient-enhancing algorithm that has a learning
rate, the BO method combines individually weak predictors to pro-
duce a strong classifier [32], thus allowing a better prediction of
the genetic effects of individuals, as observed in this study.

Neural network approaches, as used in this study, MLP and RBF,
apparently, are not affected by correlated inputs. The MLP and RBF
methods are defended for being efficient in capturing nonlinear
effects, in this case, provided by interallelic interactions [22]. Both
RBF and MLP were harmed by the excess of ineffective markers,
showing lower performance compared to other methods, as also
found by [22] and [55]. However, neural networks were efficient
in predicting traits with many QTL, especially when the phenotypic
value of the trait was mostly due to genetic value.

G-BLUP considers the interaction between marker pairs and
relies on the DL between SNPs and QTL, moreover, when QTL are
in strong LD and the use of an unweighted genomic relationship
matrix in G-BLUP can cause upward bias in the heritability esti-
mate [56–59]. However, if only a few markers are important, the
technique is hampered by this bias, as confirmed in this study.
On the other hand, the G-BLUP was highlighted in the performance
of the prediction of the GEBVs, presenting very similar results to
the Family Network methods for the traits with more QTL. Results
similar to those found in this study were found in [22,60]. How-
ever, some markers are more informative for some traits than
others, this increase in the amount of information using the geno-
mic matrix G (genomic relationship matrix) can sometimes lead to
better and more accurate estimates and predictions [12]. These
results corroborate other studies where the GBLUP precision
increased for characters with a high proportion of non-additive
variation and when with increasing heritability [61–63] and justi-
fied due to G-BLUP principle that genomic predictions are based on
the relatedness derived from all markers [60], so when more mark-
ers have a genetic effect the prediction accuracy increases.

Although MARS performs the selection of SNPs, eliminating a
large number of markers, the performance of this method showed
a greater difference for the RBF, MLP, and G-BLUP methods, which
consider all markers, and BA, RF, and BO in the scenarios between
40 and 280 QTL. This can be explained by the fact that the F2 pop-
ulation has a high rate of linkage disequilibrium (LD), due to the
combination process. This LD can then cause false-positive signals
for some loci, which have no connection with the studied trait in
question [59]. So, the SNPs closest to a QTL are not sampled often
enough and the QTL signal may be captured by more distant SNPs,
consequently, the signal from a QTL to MARS may be blurred com-
pared to other methods. Alternatively, use of hybrid modeling
schemes (combination of two or more methodologies) including
MARS had been previously very effective with initial data cluster-
ing using c-means or principal components [64–66], it could be
more important for diverse population for genomic predictions.
For example, studies such as the one by [43] proposed hybrid
smart modeling schemes for heart disease classification using com-
bined MARS-ANN. This would be a viable alternative to improve
predictability and decrease the effect of multicollinearity using
MARS on genomic data, which is worthy of further investigation
and deserves further research.

The main limitation of the additive MARS is that the model is con-
strained to be additive. With many variables, important interactions
can be missed. On the other hand, as the model is additive, we can
examine the effect of each marker on the prediction of GEBVs indi-
vidually. Furthermore, the model can be represented in a way that
separately identifies additive contributions and those associated with
different multivariate interactions, being useful for future studies
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applied to Genomic Wide Association Studies (GWAS). MARS also
has several ways of improvement that can improve the predictability
of the traits and that must be tested, mainly the change in gamma,
where the model becomes more flexible to detect close variables
for inclusion in the model for the forward phase.

In general, as the number of QTLs increases, the total genetic
variation is expected to be divided among the QTLs, which can
reduce the efficiency of methods to estimate small QTL effects
and lead to a loss of precision [36,67]. This is confirmed only for
traits that present stronger effects between interactions in the
same linkage group, such as for traits with 40 QTL, since, as they
have a smaller number of QTL in a single linkage group, the expres-
sion of interactions between these QTL is stronger. On the other
hand, the increase in efficiency for a greater number of QTL can
be attributed to the excess of markers with null effects, which
can impair the accuracy of the methods [12,22].

Each technique has its specificity and must be evaluated in a
wide set of data so that the decision on which method to base is
correctly made [2]. It is rare that more than one technique is used
when performing GWS analyses, but these results align with the
view that evaluating multiple methods is a useful strategy to
ensure that uncertainty in data is considered from multiple angles.
5. Conclusions

MARS ability to simplify complex relationships is quite perti-
nent to GWS, as most traits of interest in plant breeding are
affected by complex interactions of biological, environmental,
and management conditions.

Non-additive MARS is better for predicting breeding values than
additive MARS in the scenarios evaluated. The additive and non-
additive MARS methods showed superior results in the prediction
of genetic values in characters with dominant and epistatic effects
for scenarios with eight QTL in relation to G-BLUP methods, neural
networks, and other machine learning methods.

The use of different statistical methods, neural networks, and
machine learning, such as MARS, to estimate genetic values
resulted in different consequences influenced by the complexity
and particularity of the analyzed traits. Therefore, it is recom-
mended that when evaluating the prediction of genetic values,
the use of multiple approaches is used, in order to choose the best
method to be used.
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