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Here, the propagation of vector-borne diseases is modeled by using a probabilistic cellular automaton. Numerical simulations
considering distinct spatial distributions and time variations of the vector abundance are performed, in order to investigate
their impacts on the number of infected individuals of the host population. The main conclusion is as follows: in the clustered
distributions, the prevalence is lower, but the eradication is more difficult to be achieved, as compared to homogeneous
distributions. This result can be relevant in the implementation of preventive surveillance measures.

1. Introduction

Contagious diseases transmitted by insects remain a serious
public-health problem inmany countries. For instance, in the
past few years, the Brazilian people have been infected by
Chagas disease [1], chikungunya, dengue, zika [2], leishma-
niasis [3], malaria [4], and yellow fever [5].

The vector-borne pathogen transmission began to be
mathematically analyzed in 1908 by Ross [6], who formulated
the so-called “mosquito theorem.” According to this theo-
rem, malaria would be naturally eradicated from a region
if the mosquito abundance was reduced below a critical
value in such a region. In this seminal work, however, the
spatial dimension of this region was not explicitly taken into
account.

Theoretical investigations on the spread of vector-borne
diseases based on cellular automaton (CA) have been carried
out [7–14]. In CA models, the spatial features of the host
and vector populations, such as mobility patterns and hetero-
geneities, can be naturally taken into consideration in the CA
lattice and in the rules of state transition.

Here, in our CA model, each cell of the CA lattice is
occupied by one individual of the host population and in each
cell there may be an amount of vectors. At each time step
𝑡, each individual is in one of three states: susceptible (𝑆),

infected (𝐼), or recovered (𝑅). The state transitions between
the time steps 𝑡 and 𝑡 + 1 of this SIR-type epidemic model
are driven by probabilistic rules. The goal is to examine
the influence on the infected host group of distinct spatial
distributions and time variations of the vector abundance, by
running computer simulations.

This paper is organized as follows. In Section 2, the
CA model is described. In Section 3, the results obtained
from numerical simulations are presented. In Section 4, the
relevance of the results for disease-prevention campaigns is
discussed.

2. The CA Model

In our CAmodel, the host population lives in a square lattice
with 𝑛 × 𝑛 = 𝑛2 = 𝑁 cells. To eliminate edge effects, the
top edge of the lattice contacts the bottom edge and the left
edge contacts the right edge (thus, a three-dimensional torus
is formed from this two-dimensional lattice). Each cell is
occupied by one individual and each individual is in contact
with its eight surrounding neighbors, which is usually known
as Moore neighborhood of unit radius [15]. Note that, due
to the boundary conditions chosen for the CA lattice, all
individuals have the same number of neighbors. In addition,
suppose that the amount of vectors associatedwith the 𝑗th cell
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is V𝑗. Therefore, the total amount of vectors in the CA lattice
is 𝑉 = ∑𝑁𝑗=1 V𝑗.

The time evolution of the proposed SIR model is ruled
by the following set of probabilities of state transition (for
similar models, see, for instance, [16, 17]). At each time step
𝑡, the probability of a 𝑆-individual being infected is given by
𝑃𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 = 1−𝑒

−𝜇𝜂, in which 𝜇 is the sum of V𝑗 considering the
eight surrounding neighbors and 𝜂 is number of 𝐼-neighbors.
Note that 𝑃𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 = 0 if 𝜇 = 0 and/or 𝜂 = 0; hence, the
transition 𝑆 󳨀→ 𝐼 between the time steps 𝑡 and 𝑡 + 1 cannot
occur if there are not vectors and/or infected individuals
in the neighborhood of such a 𝑆-individual. Note also that
𝑃𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 monotonously increases with 𝜇 and/or 𝜂. For “high”
values of 𝜇𝜂, then 𝑃𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 ≃ 1.

An 𝐼-individual has probability 𝑃𝑐𝑢𝑟𝑒 per time step of
becoming cured and permanently protected against the
infection; if not cured, then this 𝐼-individual has probability
𝑃𝑑𝑒𝑎𝑡ℎ−𝐼 per time step of dying (due to the disease). A 𝑅-
individual has probability 𝑃𝑑𝑒𝑎𝑡ℎ−𝑅 per time step of dying (for
other causes). Assume that when 𝐼 and 𝑅-individuals perish,
𝑆-individuals replace them. Consequently, the total number
of individuals 𝑁 remains constant, which is a convenient
assumption for modeling host populations in which the
deaths are balanced by the births. Notice that the probabilities
𝑃𝑐𝑢𝑟𝑒, 𝑃𝑑𝑒𝑎𝑡ℎ−𝐼, and 𝑃𝑑𝑒𝑎𝑡ℎ−𝑅 correspond to the state transitions
𝐼 󳨀→ 𝑅, 𝐼 󳨀→ 𝑆, and 𝑅 󳨀→ 𝑆, respectively. The states
of all individuals are simultaneously updated throughout a
simulation [18].

In many models, the vector population is divided into
infected and noninfected subgroups [7–9, 11–14, 19, 20]. In
our model, this division is not made; only the vector abun-
dance matters. The rationale for this simplifying assumption
is that the higher the amount of transmitters, the higher
the probability of an 𝐼-neighbor being bitten and indirectly
infecting a 𝑆-individual.

In short, the parameters of themodel are the probabilities
𝑃𝑐𝑢𝑟𝑒,𝑃𝑑𝑒𝑎𝑡ℎ−𝐼, and𝑃𝑑𝑒𝑎𝑡ℎ−𝑅, the total number of individuals𝑁,
the total amount of vectors (for instance, mosquitoes) 𝑉, the
spatial distribution, and the time variation of V𝑗.

The following spatial distributions are considered in the
simulations:

(i) Uniform distribution: in each cell of the CA lattice,
V𝑗 = V = c𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

(ii) Random distribution: in each cell of the CA lattice,
there is a 50% chance of V𝑗 = 2V and a 50% chance of
V𝑗 = 0.

(iii) Column distribution: in each cell of the 𝑗th-column,
V𝑗 = 2V if 𝑗 is even and V𝑗 = 0 if 𝑗 is odd.

(iv) One-cluster distribution: in each cell of a region 𝑛/2×
𝑛/2 of the CA lattice, then V𝑗 = 4V; outside this region,
V𝑗 = 0.

(v) Two-clusters distribution: in each cell of two regions
𝑛/4 × 𝑛/2, then V𝑗 = 4V; outside these regions, V𝑗 = 0.
These two regions are horizontally separated by 𝑛/4
cells.

(vi) Four-clusters distribution: in each cell of four regions
𝑛/8×𝑛/2, then V𝑗 = 4V; outside, V𝑗 = 0. These clusters
are horizontally separated by 𝑛/8 cells.

Note that, in all distributions, 𝑉 = 𝑁V; thus, the total
amount of vectors is the same. Therefore, only the impact of
the geographical spread of vectors is evaluated.

We also consider the following time dependencies of V𝑗:

(i) Time-invariant function: the value of V𝑗 in each cell is
not altered during the simulation; therefore,𝑉 is kept
fixed.

(ii) Periodic function: V𝑗 oscillates between two numbers
with period𝑇. In this case, V𝑗 is kept fixed for𝑇/2 time
steps, then it is reduced to 𝑞V𝑗 (with 𝑞 < 1) for the next
𝑇/2 time steps, then it returns to the original value V𝑗
for the next 𝑇/2 time steps, and so on. Thus, the total
amount of vectors periodically varies between 𝑉 and
𝑞𝑉. This variation can be a consequence of seasonal
oscillations of climatic variables, such as temperature
and humidity [21].

Also, there is nomigration of vectors on the lattice; that is,
it is supposed that the vectors can move only a short distance
from their breeding sites [22, 23].

3. Simulation Results

Computer simulations were performed by taking: 𝑃𝑐𝑢𝑟𝑒 =
70%, 𝑃𝑑𝑒𝑎𝑡ℎ−𝐼 = 40%, 𝑃𝑑𝑒𝑎𝑡ℎ−𝑅 = 20%, 𝑛 = 200 (hence,
𝑁 = 40000), and V = 0.1, 0.15, and 0.2 (therefore, 𝑉 = 4000,
6000, and 8000, respectively). When time variation in V𝑗 is
considered, 𝑉 = 4000, 𝑞 = 9/200, and 𝑇 = 10 or 30.
Simulationswith other parameter values were performed, but
the results were qualitatively the same as reported below. In all
simulations, the initial condition (at 𝑡 = 0) is 𝑆(0)/𝑁 = 99%,
𝐼(0)/𝑁 = 1%, and 𝑅(0)/𝑁 = 0%. The asymptotical solution,
however, does not depend on this starting point (that is, the
attractor is globally asymptotically stable). Figure 1 illustrates
a simulation with 200 time steps in which an endemic
solution is reached. In this figure, 𝑆(𝑡)/𝑁 is represented by a
dotted line, 𝐼(𝑡)/𝑁 by a thick line, and 𝑅(𝑡)/𝑁 by a thin line.

Table 1 shows the endemic steady-states reached for V𝑗 =
constant. For each 𝑉, the average value of 𝐼(𝑡)/𝑁 obtained in
the last 100 time steps is given. Observe that the percentage of
infected individuals growswith𝑉, as intuitively expected. For
the clustered distributions, this percentage increases with the
number of clusters. The values found for uniform, random,
and column distributions are similar to each other.The values
found for the three clustered distributions are also similar
to each other, but they are smaller than those found for
the three homogeneous distributions. Obviously, the number
of infected individuals can be increased, for instance, by
reducing 𝑃𝑐𝑢𝑟𝑒 and/or 𝑃𝑑𝑒𝑎𝑡ℎ−𝐼 [18].

Inspired by the mosquito theorem, another set of simu-
lations was run to determine the critical number of vectors
𝑉𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 below which the disease disappears. For values of 𝑉
below the ones shown in Table 2, the infection was naturally
eradicated in 10 consecutive simulations.These critical values
were numerically found by varying 𝑉 with a step size of 100.
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Table 1: Normalized infected population in steady state as a function of 𝑉 for six time-invariant distributions.

distribution 𝑉 = 4000 𝑉 = 6000 𝑉 = 8000

uniform 0.1565 ± 0.0004 0.1667 ± 0.0004 0.1712 ± 0.0003
random 0.1511 ± 0.0005 0.1626 ± 0.0004 0.1679 ± 0.0003
column 0.1480 ± 0.0004 0.1607 ± 0.0004 0.1667 ± 0.0003
1-cluster 0.0455 ± 0.0001 0.0458 ± 0.0001 0.0459 ± 0.0002
2-clusters 0.0462 ± 0.0002 0.0466 ± 0.0001 0.0466 ± 0.0002
4-clusters 0.0476 ± 0.0002 0.0480 ± 0.0002 0.0482 ± 0.0002

Table 2: Critical amount of vectors 𝑉𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 for six time-invariant
distributions.

distribution 𝑉𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

uniform 1200
random 1000
column 1000
1-cluster 300
2-clusters 300
4-clusters 300

Table 3: Number of eradications in 100 simulations in function of
𝑇 for six seasonal distributions.

distribution 𝑇 = 10 𝑇 = 30

uniform 100 100
random 100 100
column 100 100
1-cluster 0 18
2-clusters 0 41
4-clusters 0 82

Observe that these two tables lead to a surprising conclusion:
the prevalence in clustered distributions is lower than in
homogeneous distributions; however, clustered distributions
impair disease eradication. That is, clustered distributions
require a greater effort to eliminate the disease than homoge-
neous distributions, in which the prevalence is higher! This
result should be taken into account in the planning of public-
health interventions.

Table 3 presents the number of eradications in 100
simulations for seasonal variation of the amount of vectors.
In these simulations, 𝑉 periodically oscillates between 4000
and 180 with period 𝑇 = 10 or 30. Figures 2 and 3 illustrate
eradication and persistence of the disease, respectively.These
simulations show that the more the vectors are clustered, the
lower the number of cases in which the disease disappears.
Observe that, for 𝑇 = 10, the disease endemically persists
only in the clustered distributions (it is always eradicated in
the three homogeneous distributions); for𝑇 = 30, the disease
is always eliminated in the homogeneous distributions and,
for the clustered distributions, the number of eradications
grows with the number of clusters.
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Figure 1: Time evolution of 𝑆(𝑡)/𝑁 (dotted line), 𝐼(𝑡)/𝑁 (thick line),
and 𝑅(𝑡)/𝑁 (thin line) from 𝑆(0)/𝑁 = 0.99, 𝐼(0)/𝑁 = 0.01, and
𝑅(0)/𝑁 = 0. Parameter values: 𝑃𝑐𝑢𝑟𝑒 = 70%, 𝑃𝑑𝑒𝑎𝑡ℎ−𝐼 = 40%,
𝑃𝑑𝑒𝑎𝑡ℎ−𝑅 = 20%, and 𝑛 = 200, time-invariant uniform distribution
with V = 0.1. In this case, the disease endemically persists at a
constant level (around 0.1565, as shown in Table 1).

20 40 60 80 100 120 140 160 180 200 0 
time steps

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

no
rm

al
iz

ed
 co

nc
en

tr
at

io
ns

Figure 2: Parameter values: 𝑃𝑐𝑢𝑟𝑒 = 70%, 𝑃𝑑𝑒𝑎𝑡ℎ−𝐼 = 40%, 𝑃𝑑𝑒𝑎𝑡ℎ−𝑅 =
20%, 𝑛 = 200, periodic uniformdistributionwith V = 0.1, 𝑞 = 9/200,
and𝑇 = 30 (thus,𝑉 oscillates between 4000 and 180with period 30).
In this case, the disease naturally disappears (that is, 𝐼(𝑡) 󳨀→ 0 as the
time passes).

4. Conclusions

The influence of spatiotemporal heterogeneities of vectors on
the propagation of vector-borne diseases has been experi-
mentally [24, 25] and theoretically [8, 26] analyzed. Here, our
simplistic epidemic model reveals that the more the vectors
are clustered in a given region, the lower is the prevalence;
however, the greatermust be the effort to eradicate the disease
from such a region.
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Figure 3: Parameter values: 𝑃𝑐𝑢𝑟𝑒 = 70%, 𝑃𝑑𝑒𝑎𝑡ℎ−𝐼 = 40%, 𝑃𝑑𝑒𝑎𝑡ℎ−𝑅 =
20%, 𝑛 = 200, periodic one-cluster distribution with V = 0.1, 𝑞 =
9/200, and 𝑇 = 30. In this case, the disease prevalence tends to a
periodic oscillation.

Reducing the vector population is one of the keymethods
employed to control the transmission of vector-borne dis-
eases [7, 8, 11–13, 20]. Our simulations suggest that vector-
control programmes should take into consideration the spa-
tial distribution of vectors and not only the disease prevalence
and/or the vector population size. A decrease in the number
of infections can also be achieved by restricting the mobility
of the host population in the infected region [9, 11, 14, 19],
but this surveillance measure may be difficult to implement
in practice.

Big cities are shelters for directly transmitted infections
[16, 27]. In agreement with other studies [11, 24], this work
proposes that the main focus of vector-control programmes
should be to eliminate the large clustered breeding sites of
infected big cities, because these sites are shelters for vector-
borne diseases.
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