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Cocrystal engineering is an advanced supramolecular strategy that has attracted a lot of
research interest. Many studies on cocrystals in various application fields have been
reported, with a particular focus on the optoelectronics field. However, few articles have
combined and summarized the electronic and magnetic properties of cocrystals. In this
review, we first introduce the growth methods that serve as the basis for realizing the
different properties of cocrystals. Thereafter, we present an overview of cocrystal
applications in electronic and magnetic fields. Some functional devices based on
cocrystals are also introduced. We hope that this review will provide researchers with
a more comprehensive understanding of the latest progress and prospects of cocrystals in
electronic and magnetic fields.
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INTRODUCTION

Organic semiconductor materials have outstanding characteristics, such as easy preparations,
large-area solution processing, good flexibility, light weight, playing a crucial role in chemical
engineering and materials design. To date, many advances have been made in the design and
synthesis of high-performance organic crystals (Dong et al., 2013; Zhang X. et al., 2018; Yu P. et al.,
2019; Qin et al., 2021). However, since these materials have a single component that only exhibits
intrinsic properties, further applications are limited. Cocrystal engineering is a brilliant strategy
that combines two or more components through noncovalent assembly (Yan and Evansa, 2014;
Sun et al., 2020; Wang and Qin, 2021), which is promising in materials and chemistry science (Yan
et al., 2011; Yan et al., 2012; Li et al., 2016; Lin et al., 2017; Zhou and Yan, 2019). The original
constituent units display intrinsic properties, and more novel properties may emerge owing to the
cooperativity effect between donor-acceptor (D-A) molecules (Li and Yan, 2018a; Sun et al., 2018;
Huang et al., 2019; Zhou et al., 2020). For example, ambipolar charge-transport can be achieved by
coassembling p-type and n-type semiconductors, which is difficult to realize for individual
components (Goetz et al., 2016; Liu C. H. et al., 2019). Thus, organic cocrystal provides an
effective way to construct multifunctional materials with desirable properties (Park et al., 2013; Liu
et al., 2017; Wang Y. et al., 2018; Yu Y. et al., 2019).

Wöhler published the first report on cocrystals in 1844 (Wöhler 1844). After John Ferraris
found the TTF-TCNQ (TTF, tetrathiafulvalene; TCNQ, 7,7,8,8-tetracyanoquinodimethane)
cocrystal with high electrical conductivity in 1973 (Ferraris et al., 1973), people became
increasingly interested in cocrystal engineering and conducted a wide range of correlational
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research (Sun et al., 2018). Especially in the electronic field, the
charge transfer (CT) interaction and ambipolar transport
gradually became the research hotspots. Following the
discovery of the (BEDT-TTF)-F2TCNQ (BEDT-TTF,
bis(ethylenedithiolo)tetrathiafulvalene; F2TCNQ, 2.5-
difluorotetracyanoquinodimethane) cocrystal, which exhibits
ambipolar CT behavior at low temperatures (Hasegawa et al.,
2004), massive researches into cocrystals with high and balanced
ambipolar charge-transport characteristics emerged (Park et al., 2013;
Huang et al., 2019). Simultaneously, extensive studies on cocrystals
with optoelectronic properties were carried out (Wang et al., 2016a).
In 1995, the Kochi group proved that CT excitons generated in
TCNB-based (TCNB, 1,2,4,5-tetracyanobenzene) cocrystals could
relax into free carriers, implying that the cocrystals are ideal
candidates for photoelectric conversion. Thereafter, many cocrystals
with high carrier dissociation yields were synthesized (Hubig and
Kochi, 1995). With the development of cocrystals, scientists went
forward to a new field of magnetism and discovered that magnetic
behavior was visible in CT cocrystals (Bolla et al., 2016). Since the
discovery of the first all-organic multiferroic TTF-BA (BA,
p-bromoaniline) in 2010 (Kagawa et al., 2010), lots of
breakthroughs and developments in magnetic cocrystals have been
made in the last 10 years (Wang and Zhang 2020).

This review systematically introduces the recent developments
of cocrystals in electronic and magnetic areas because of their
critical research value. The main preparation methods, involving
the liquid-phase, vapor-phase, and solid-phase methods, are first
introduced. Subsequently, achievements in these areas are
elaborated from the following aspects: ambipolar transport,
photoelectric conversion, magnetoelectric coupling, and
magnetic anisotropy. Finally, the opportunities and challenges
of cocrystal engineering in electronic and magnetic fields are
proposed.

PREPARATIONS OF ORGANIC
COCRYSTALS

Currently, there are three main methods for effectively preparing
cocrystals, including the liquid-phase, vapor-phase, and solid-
phase methods (Braga et al., 2013; Hui and Christian, 2013;
Huang et al., 2019). Since the growth methods significantly affect
the properties of cocrystals, further affect the devices’
performances based on cocrystals, it is essential to select
suitable growth conditions by considering the intrinsic
properties of different components.

Liquid-phase Methods
The liquid-phase methods are the most frequently used methods
for preparing cocrystals owing to the advantages of low cost and
easy preparation (Yan et al., 2014; Li and yan, 2018b; Lu et al.,
2018). By adjusting some factors such as solvent type,
temperature, and concentration, cocrystals of different
morphologies and sizes can be obtained easily (Wang et al.,
2021). Here, we mainly introduced three common liquid-
phase methods: slow evaporation, drop-casting, and diffusion
method.

In the slow evaporation method, the mixture of donors and
acceptors is dissolved in the organic solvent and then kept at
room temperature (Figure 1A). As the solvent evaporates, raw
components aggregate and crystallize as a result of the
intermolecular interaction. The donors and acceptors should
have similar and good solubility in the same solvent to avoid
the precipitation of a single component (Sun et al., 2019; Wu
et al., 2021). Since the solubility of raw components highly
depends on the solvent type, the selection of solvent is very
crucial. When changing the solvent type, the morphology and
composition of cocrystal can be quite different. For instance, by
using CH2Cl2 and tetrahydrofuran (THF) as the solvent,
respectively, Wang et al. obtained a binary NDI-Cor (NDI,
napthalenetetracarboxylic diimide; Cor, coronene) with ribbon
structure and a ternary (NDI-Cor)·THF with block structure
(Wang et al., 2020a). Slow cooling evaporation is based on the
slow evaporation method, which is a method for growing
cocrystals by controlling the temperature condition
(Figure 1B). With this method, more components dissolve in
the solution as the temperature increases, the raw materials
crystallize as the temperature decreases. This method is more
suitable for materials with moderate solubility at room
temperature (Zhang et al., 2017a).

While the slow evaporation method is used to grow cocrystals
with big sizes, the drop-casting method is used to prepare micro/
nano cocrystals for constructing optoelectronic devices (Sun
et al., 2018; Yan, 2015). By dropping an amount of solution
on the prepared substrate, raw components gradually nucleate
and crystallize with the volatilization of solvent in the droplet
(Figure 1D). In this method, the solution concentration is a
crucial factor affecting the micro-/nanostructures of cocrystals.
Liu et al. revealed that the DMAQ (DMAQ, 4-(4-
Dimethylaminostyryl)quinoline) and FDIB (FDIB, 1,4-
diiodotetrafluorobenzene) with high concentration formed an
M-DFC cocrystal with a two-dimension (2D) hexagonal
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microplate shape, whereas the low concentration formed a
T-DFC cocrystal with 2D rhomboid-shaped microplate
morphology (Liu Y. et al., 2019). Injecting a solution of raw
materials into the nonvolatile solvent before drop-casting can
induce cocrystals with unique morphologies. For example, after
injecting a solution of pyrene and TCNB into an ethanol/water
mixture, microtubes of pyrene-TCNB were collected on the
quartz substrate (Sun et al., 2017).

The process of diffusion method is more complex, in which
the raw materials are dissolved in a good solvent, and then a
poor solvent (methanol, ether, or triethylamine) is diffused
into the solution. The solubility of the solution gradually
decreases as the poor solvent diffuses, and then the
solution becomes saturated for crystallization (Figure 1C).
The slow diffusion process guarantees the good quality and
large size of cocrystal (Huang et al., 2019). Wang et al.

FIGURE 1 | Schematic illustrations of the cocrystal growth processes of (A) slow evaporation, (B) slow cooling evaporation, (C) diffusion, (D) drop-casting, and (E)
physical vapor transport (PVT) (Reproduced from Sun et al. (2019) with permission from WILEY-VCH, Copyright 2019.).

FIGURE 2 | MAS apparatus for the growth of (A) one-dimension (1D) and (B) two-dimension (2D) fluoranthene-TCNB (Reproduced from Ye et al. (2019) with
permission from Springer Nature, Copyright 2019.). (C) Liquid-assisted grinding procedures (LAG) for TC-OFN (TC, tetracene; OFN, octafluoronaphthalene)
(Reproduced from Huang et al. (2020) with permission from American Chemical Society, Copyright 2020.).
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assembled NDI-Δ with coronene (NDI-Δ, an organic
naphthalenediimide-based triangle) by the diffusion
method, obtained two bulk cocrystals of CNC-T and CNC-
Q with good quality for the X-ray single-crystal structure
characterization (Wang et al., 2020b).

Vapor-phase Methods
Compared with the liquid phase methods, vapor phase methods are
unrelated tomaterials’ solubility, which are suitable for materials with
low solubility (Wang et al., 2021; Fang et al., 2017). The physical
vapor transport (PVT) method is most popular (Figure 1E), using
equipment consisting of a vacuum pump, a tubular furnace, a quartz
tube, temperature controllers, and a gas path device. Under a flowing
atmosphere of inert gas or in a vacuum, the original components in
the high-temperature region sublimate and are subsequently
transported to the low-temperature zone to form cocrystals. There
are two types of PVTmethods according to the sublimation points of
the constituents (Figure 1E). The components are placed in the same
sublimation region when the sublimation temperatures of the donors
and acceptors are similar (Figure 1E-i). For example, two sizes of
coronene-HAT(CN)6 (HAT(CN)6, 1,4,5,8,9,12-hexaazatriphenylene-
hexacarbonitrile) were prepared by coevaporation in argon gas or
vacuum (Liang et al., 2019). Another type of PVT method is
appropriate for the constituents with significantly different
sublimation points, in which the donors and acceptors are placed
in two furnace regions (Figure 1E-ii). By placing the donors and
acceptors in two furnace regions of 155°C and 190°C, respectively, the
micro cocrystals of TMB-TCNQ (TMB, 3,3′,5,5′-
tetramethylbenzidine) were obtained (Mezzadri et al., 2018).
However, the products are difficult to separate, which is an
inevitable problem when using this method to prepare cocrystals
with different phases (Wang et al., 2021).

The PVT method requires a vacuum environment and a long
time, resulting in high cost and time-consuming (Sun et al., 2019).
To solve this problem, Tao’s group proposed a microspacing
in-air sublimation (MAS) method to grow a series of PAH-TCNB
(PAH, polycyclic aromatic hydrocarbon) cocrystals, which
exhibited (one-dimension) 1D needle-like (Figure 2A) or 2D
plate-like morphologies (Figure 2B) (Ye et al., 2019).

Solid-phase Methods
Solid-phase methods produce fewer organic cocrystals than the
methods mentioned above. However, in recent years, these
methods being commonly employed to prepare cocrystals due
to the advantages of vacuum/heat-free conditions and a minimal
amount of solvent or no solvent. The solid-phase methods can be
divided into plain grinding and liquid-assisted grinding (LAG)
methods. In the plain grinding method, raw materials are mixed
according to a certain molar ratio in a mortar for grounding. This
method is suitable for raw materials with poor solubility (Sun
et al., 2018). As an example, in the grounding process, the yellow
BQ and IP (BQ, p-benzoquinone; IP, 4-iodophenol) powders
converted into red in several seconds, forming a 1:1 BQ-IP
cocrystal (Carstens et al., 2020). Although the grinding
method is fast and has a higher yield, the products always
have small sizes and irregular morphologies. The other
grinding method is liquid-assisted grinding (LAG). By adding

a small amount of solvent during the grinding process, the
interaction between donors and acceptors becomes stronger as
the friction between the two substances increases, contributing to
the cocrystallization of the components (Sun et al., 2018). Huang
et al. successfully prepared TC-OFN (TC, tetracene; OFN,
octafluoronaphthalene) by adding the THF solvent twice in a
two-step LAG process (Figure 2C). This method produces
cocrystals with better crystallinity and more controllable
polymorphs (Huang et al., 2020).

ELECTRONIC PROPERTIES AND
FUNCTIONALITIES

Since the discovery of highly conductive polyacetylene in 1977
(Chiang et al., 1977), people have been increasingly keen to
explore the electronic properties of organic materials (Zhang
et al., 2017b). In recent years, a large number of organic D-A
complexes have been synthesized, which exhibit field-effect
(Zheng et al., 2018; Mandal et al., 2020), photoresponse (Wu
et al., 2014a), photovoltaic (Zhang et al., 2016), thermoelectric
(Liang et al., 2020), and superconducting properties (Ferraris
et al., 1973). With the development, the electronic properties of
cocrystals may eventually be comparable to those of single
crystals (Jiang et al., 2018). For example, p-type FETs based
on DPTTA-DPNDI (DPTTA, meso-diphenyl tetrathia[22]
annulene[2,1,2,1]; DPNDI, N, N′-bis(phenyl) naphthalene-
1,4,5,8-bis(dicarbox-imide)) cocrystals exhibited a high
transport property of 1.8 cm2 V−1 s−1, while the hole mobility
of the pure DPTTA single crystals was only 0.7 cm2 V−1 s−1

(Zhang et al., 2014). The authors attributed the enhanced
p-channel performance to the acceptor functioning as a good
assistant in confining the stacking of donor molecules.
Additionally, in 2012, the remarkable ambipolar
semiconductor nature of mixed-stack cocrystals was predicted
via density functional theory calculations, demonstrating that
cocrystals have high potential in organic electronics, rivaling or
even surpassing the best single-component organic crystals (Zhu
et al., 2012). This review highlights the ambipolar transport and
photoelectric conversion characteristics of organic cocrystals and
their applications in organic field-effect transistors (OFETs) and
photoresponse devices.

Ambipolar Transport and OFET Devices
At present, researchers have made great progress in the synthesis
of organic semiconductor materials with ambipolar properties
(Zhang J. et al., 2018; Mandal et al., 2019a; Mandal et al., 2019b).
Regardless, there are few high-performance and stable ambipolar
materials in the ambient atmosphere because of the complexity
and uncertainty of the synthesis route. It is inspiring that the
cocrystal strategy can effectively integrate donors and acceptors
into a single crystal system to obtain hole or electron carriers
channels (Sun et al., 2019). This “molecular level heterojunction”
provides an alternative approach to realize ambipolar transport
through an easy-to-process method of low cost and high
efficiency. Therefore, the cocrystals are considered promising
active elements to construct ambipolar OFETs with high
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performance. Herein, we introduce the latest achievements in
OFETs based on cocrystals and discuss the influencing factors on
the adjustable ambipolar properties, including energy level,
molecular stacking pattern, and molecule structure, from
theoretical and experimental perspectives.

Compared with single-component materials, the electronic
properties of cocrystals can be easily regulated by altering the
donors or acceptors (Wang et al., 2021; Sun et al., 2018). Using
molecules with increasing F atoms as acceptors is a typical
method for regulating the charge transport properties of
cocrystals (Liu H. et al., 2019; Wei et al., 2020). The increasing
electron affinity of acceptors usually results in enhanced CT
degree, which has a significant impact on the molecular
stacking pattern and the energy levels, further influencing the
charge transport properties of cocrystals. In comparison to
DPTTA-TCNQ that had no CT between D-A molecules,
DPTTA-FxTCNQ (FxTCNQ, fluorinated derivatives of 7,7,8,8,-
tetracyanoquinodimethane, X � 2, 4) exhibited enhanced CT
features with almost identical overlap patterns between D-A
molecules along the stacking direction (Liang et al., 2020).
Furthermore, Liang et al. proved that the CT degree of
DPTTA-FxTCNQ (X � 1, 2, 4) increased as F atoms of the
acceptor molecules increased. The calculated transfer integrals
displayed an increasing tendency, indicating that the electronic
coupling improved from DPTTA-F1TCNQ, DPTTA-F2TCNQ to

DPTTA-F4TCNQ. The relatively strong intermolecular
electronic couplings led to more dispersed valence bands and
conducting bands, as well as narrower band gaps (Zheng et al.,
2015). OFETs based on these cocrystals all exhibited ambipolar
transport characters. The mobilities were 0.15 cm2 V−1 s−1 (μh)
and 0.24 cm2 V−1 s−1 (μe) for DPTTA-F1TCNQ, respectively;
1.01 cm2 V−1 s−1 (μh), 0.27 cm2 V−1 s−1 (μe) for DPTTA-
F2TCNQ; and 0.11 cm2 V−1 s−1 (μh), 0.46 cm2 V−1 s−1 (μe) for
DPTTA-F4TCNQ. It should be noted that the predominant
carrier in DPTTA-F4TCNQ were electrons, while that in
DPTTA-F1TCNQ were holes (Figures 3A–C). The n-doping
in the DPTTA-F4TCNQ was contributed to the deepest
conducting band minimum (CBM) level caused by the
strongest electron affinity of F4TCNQ. On the contrary,
the F1TCNQ complex preferred to be p-type doped because of
the highest valence band maximum (VBM) level (Figure 3D)
(Liang et al., 2020). This study shed light on the design of
cocrystals with ambipolar transport behaviors.

In addition, Yu et al. also achieved the ambipolar charge
transport in cocrystals by assembling acceptors with donors of
different aromatic conjugated backbones. With the aromatic
conjugated backbone of donors increased, the energy levels of
supramolecular hybrid orbitals in D/A pairs were higher,
contributing to the CT interaction (Zhang X. et al., 2018;
Dasari et al., 2019). They synthesized four cocrystals using

FIGURE 3 | Transfer characteristics of OFETs based on (A) DPTTA-F1TCNQ, (B) DPTTA-F2TCNQ, and (C) DPTTA-F4TCNQ. (C) Schematic drawing of the band
structure of DPTTA-FXTCNQ (LA and HD refer to the lowest unoccupied molecular orbitals (LUMOs) of isolated acceptors and highest occupied molecular orbitals
(HOMOs) of donors, LDA and HDA refer to LUMOs and HOMOs in DPTTA-FXTCNQ, CBW and VBW refer to conducting bandwidth and valance bandwidth, CBM and
VBM refer to conducting band minimum and valance band maximum.) (Reproduced from Liang et al. (2020) with permission from WILEY-VCH, Copyright 2019.).
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PDICNFN (PDICNF, N′-bis(perfluorobutyl)-1,7-
dicyanoperylene-3,4:9,10-bis (dicarboximide) as the acceptor
and anthracene, pyrene, perylene, and DPTTA as the donors
(Figure 4A). The theoretical calculation of density functional
theory (Jiang et al., 2018) suggested that in the range of -3.82 eV
to -4.07 eV, the cocrystals maintained similar lowest unoccupied
molecular orbitals (LUMOs), slightly higher than PDICNF. The
highest occupied molecular orbitals (HOMOs) of the cocrystals
increased from −5.75 eV (anthracene-PDICNF) to −4.84 eV
(DPTTA-PDICNF), higher than the corresponding donors.

Meanwhile, the extended π-conjugated system of the donor
molecule DPTTA further promoted electronic coupling.
Therefore, the DPTTA-PDICNF was hypothesized to have
better charge transport properties, which were confirmed by
well-balanced field-effect mobilities of 2.0 × 10–2 cm2 V−1 s−1

for the holes and 1.7 × 10–2 cm2 V−1 s−1 for the electrons (Figures
4B,C). The anthracene-PDICNF, pyrene-PDICNF, and perylene-
PDICNF only showed n-transport properties. Notably, pyrene-
PDICNF had carrier mobility of 0.19 cm2 V−1 s−1, the highest
value ever found in PDI-based cocrystals (Yu et al., 2021). This

FIGURE 5 | (A) Crystal structure and (B) transfer characteristics of 1-C70 (Reproduced from Gao et al. (2020) with permission from American Chemical Society,
Copyright 2020.).

FIGURE 4 | Chemical structures of (A) anthracene-PDICNF, pyrene-PDICNF, and perylene-PDICNF. The (B) n-type and (C) p-type transfer characteristics of
DPTTA-PDICNF (Reproduced from Yu et al. (2021) with permission from Wiley-VCH, Copyright 2021.).
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research also provided a guide for synthesizing cocrystals with
ambipolar transport properties.

Considering that the electrical properties of cocrystals highly
rely on the molecular structures (Zhu et al., 2014; Ai et al., 2017),
selecting D-A molecules with matching structures as constituents
is another strategy to achieve the ambipolar properties. For
example, DTTCNQ [DTTCNQ, 4,8-bis(dicyanomethylene)-
4,8-dihydrobenzo(1,2-b:4,5-b’)-dithiophene] with the extended
π-conjugated system may better match the donor molecule than
TCNQ. The increasing conjugated system and partial charge-
transfer character in DPTTA-DTTCNQ enhanced D-A
interactions by shortening the D-A distance and formed a
quasi-2D ambipolar transport network. There were both
superexchange and indirect paths for charge transport. Thus,
high charge-transport properties could be expected by extending
the π-conjugated systems despite the weak electron-accepting
ability of DTTCNQ (Qin et al., 2014). In addition to applying the
similar structures of D-A molecules, complementary geometry
also facilitates charge transport. Recently, Gao et al. synthesized
diindeno (4,3,2,1-fgh i:4′,3′,2′, 1′-Opqr) perylene, which was a
subunit of C70. This buckybowl skeleton was functionalized at the
meta-positions with triethylsilyl-ethynyl (TES-ethynyl) (1),
ensuring the solubility and stability of the buckybowl skeleton
and forming 1D concave-in-convex stacking columns with a hole
mobility of 0.31 cm2 V−1 s−1. Considering the potential shape
complementarity, one was blended with the C70 acceptor to
obtain a novel cocrystal. The TES-ethynyl helped form
buckybowls arrangement with strong concave-convex
interactions. As shown in Figure 5A, each C70 molecule made

contact with six bowl molecules, forming 2D cocrystals and
facilitating the effective transmission of charge carriers
through curved surfaces. The OFET measurements
demonstrated that the cocrystal possessed ambipolar property,
with electron and hole mobilities of 0.40 cm2 V−1 s−1 and
0.07 cm2 V−1 s−1, respectively (Figure 5B) (Gao et al., 2020),
indicating that the complementary structures were promising for
the ambipolar transport of cocrystals.

All in all, cocrystal engineering provides a practical and simple
strategy for systematically controlling the operation mode
(ambipolar, or p-/n-type) of the transistor by modifying the
components. Through co-crystallization, the band gaps of the
semiconductors can be adjusted to facilitate the energy matching
between the cocrystal Frontier orbitals and the work function of
the injected electrodes, which is beneficial to efficient charge
injection to improve the OFETs performance.

Photoelectric Conversion and
Photoresponse Devices
Photoresponse materials play an important role in the organic
optoelectronics field, which can transfer optical signals into
electrical signals, have wide applications in photodetectors (Altaqui
et al., 2021), photoswitches (Kellner and Berlin, 2020),
phototransistors (Gelinck et al., 2010; Dong et al., 2012), and
optical imaging (Chen et al., 2021). An idea photoresponse device
should ensure the processes of photon absorption, exciton
dissociation, and charge carrier transport (Najafov et al., 2010;
Ostroverkhova, 2016). The features of modulating absorption,

FIGURE 6 | (A) Optical microscopy image and (B) schematic diagram of OFET device of C60/3,5-TPP, inset: scanning electron microscopy (SEM) image of C60/
3,5-TPP. (C)Wavelength dependence of the output characteristics of a C60/3,5-TPP phototransistor at VG � 80 V when illuminated with different LEDs (Elight � 0.1 mW/
cm2). (D) Output characteristic curves of the phototransistor based on C60/3,5-TPP at VG � 80 V when illuminated with 660 nm light of different intensities (Elight)
(Reproduced from Wakahara et al. (2020) with permission from American Chemical Society, Copyright 2020.).
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special D-A molecular interfaces engender cocrystals serving as
outstanding candidates for photoresponse (Wu et al., 2014b;
Wang et al., 2016b; Wang et al., 2020d; Singha et al., 2021). In
this section, besides the superiorities, we will discuss the structure-
property relationship of cocrystals in photoresponse and introduce
recent high-performance photoresponse devices based on micro/
nano cocrystals.

In CT cocrystals, a new CT state generates between donors and
receptors because of the intermolecular interaction, allowing for
redshift absorption (Siegmund et al., 2017). When strong CT
interaction occurs, the CT absorption band moves to the long-
wavelength region (Sun et al., 2019; Tang et al., 2021). By virtue of
this phenomenon, photoresponse in the infrared or near-infrared
region can be achieved. Wakahara et al. fabricated an OFET, in
which 3,5-TPP/C60 [3,5-TPP, 5,10,15,20-tetrakis(3,5-
dimethoxyphenyl)porphyrin] served as the semiconductor
layer (Figures 6A,B). The four dimethoxyphenyl substitutions
endowed the 3,5-TPP with a strong electron-donating ability that
enhanced the CT interaction with C60. A new CT absorption
band emerged at 600–800 nm. The channel current (ID)
increased as the light intensity (Elight) increased when light-
emitting diodes with emission peaks in the visible-to-NIR region
(450, 590, 660, 810, and 940 nm) were used to illuminate the

OFET (Figure 6C). The increasing current at 810 nm was
attributed to the CT state in the C60/3,5-TPP cocrystals were
excited to generate excitons that subsequently separated. Due to
the CT absorption band and component bands, the
phototransistor based on the C60/3,5-TPP cocrystal exhibited a
strong photoresponse at 660 nm, and the measured
photosensitivity was 4.5 (0.05 mW/cm2) (Figure 6D)
(Wakahara et al., 2020).

In addition to the modulating absorption, the plenty of D-A
interfaces in cocrystals ensure efficient exciton dissociation,
contributing to the photoelectric conversion (Wang et al., 2017;
Sun et al., 2019). The CT excitons in cocrystals are considered a
highly localized excitation-pair state and then relax to the ground
state or dissociate into free carriers (Hubig and Kochi, 1995; Sun
et al., 2019). Meanwhile, the hybrid molecular orbital (MOs) at D-A
interfaces hinder the reversed charge-transfer process, which
prevents the exciton recombination, ultimately affects the
photoresponse. Zhang’s group selected TMIQ (TMIQ, 8,8,18,18-
tetramethyl-8,18-dihydroindolo(1,2,3-fg)indolo(3′,2′,1′:8,1)
quinolino[2, 3-b]acridine) as the donor and synthesized it with
acceptors of CA, FA, and TCNQ (CA, p-chloranil; FA, p-fluoranil).
Under photoexcitation, the charge was redistributed between D-A
molecules, which enhanced the density of charge carrier and thus

FIGURE 7 | (A) Transfer characteristics of the OFET based on α-phase perylene-DTTCNQ. Crystal packing structures of (B) α-phase perylene-DTTCNQ and (C)
β-phase perylene-DTTCNQ. (D) Transfer characteristics of the OFET based on α-phase perylene-DTTCNQ. (E) Photoresponse characteristics of the β-phase measured
in the dark and under illumination with a light intensity of 274.2 mW cm−2 (VDS � 80 V). (F) Photosensitivity of the β-phase OFETs under irradiation at different gate
voltages (Reproduced from Jin et al. (2020) with permission from American Chemical Society, Copyright 2020.).
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induced the photocurrent. The large energy barriers in TMIQ-CA
and TMIQ-FA were 0.4 and o.96 eV, which hindered the reversed
charge-transfer processes, while the energy barrier was lost in
TMIQ-TCNQ. Therefore, only the TMIQ-CA and TMIQ-FA
exhibited photoresponse properties. However, the result appeared
that the TMIQ-CA showed the best photoresponse despite having a
smaller energy barrier than TMIQ-FA. It may be attributed to that
the CH . . . C bonds network of donors in TMIQ-CA further
promoted the excitons separation and carrier transport. Under
ultraviolet (UV) illumination, the phototransistor based on
TMIQ-CA had a maximum photocurrent on/off ratio of 353,
photoresponsivity of 3.0 × 103 A W−1, detectivity of 1.4 × 1014

Jones, and external quantum efficiency of 2.4× 106%, whichwere the
best values among all reported organic cocrystals (Wang et al.,
2020d).

It is worth noting that the optoelectronic properties of cocrystals
are also closely related to themolecular stacking structure (Park et al.,
2013; Zhang et al., 2017b). Cocrystals with identical components but
different stacking structures exhibit different photoresponse
properties (Goetz et al., 2016). It was proposed that the
(perylene)1-TCNQ with segregated-stacking mode had better
photoresponse properties than the (perylene)3-TCNQ with
mixed-stacking mode, which was unfavorable for the exciton
dissociation (Zhu et al., 2015). A recent study reported that the
cocrystals with different phases also showed different photoresponse
properties. Jin et al. synthesized α-phase and β-phase cocrystals

composed of perylene and DTTCNQ through homogeneous and
heterogeneous nucleation, respectively. Thereinto, the α-phase
cocrystal exhibited ambipolar transporting, but the
semiconducting feature and photoresponse were low (Figure 7A).
Compared to the brick-type α-cocrystal, β-cocrystal had a 20.5°

rotation angle between D-A molecules, more like a columniform
type (Figures 7B,C). This packing mode avoided steric hindrance
but caused the vanish of the p-type channel (Figure 7D).
Nonetheless, the photocurrent of the device based on β-cocrystal
increased sharply under the illumination. The photosensitivity
reached 1.5 × 105 at VG of 1 V, and the photoresponsivity was
28.2 mA W−1 (Figures 7E,F) (Jin et al., 2020).

Thanks to the advantages in photoelectric conversion, cocrystals
have been widely used in photoresponse. Nowadays, novel ways for
synthesizing cocrystals with photoresponse properties are being
developed (Dong et al., 2012; Wang C. et al., 2018). For instance,
molecule-level heterojunction cocrystal thin films, which promote
the migration and separation of excitons, display great potential in
achieving photoresponse. Yang et al. assembled AD with IPA, IPB,
and TMA (AD, acridine; IPA, isophthalic acid; IPB, 5-
bromoisophthalic acid; TMA, trimesic acid) to obtain three
cocrystal thin films of AD-IPA, AD-IPB, and AD-TMA
(Figure 8A). Among the three cocrystal thin films, the AD-TMA
thin film exhibited the best photoresponse. The high crystallinity of
the AD-TMA thin film benefited the transfer of charge carriers.
Besides, the TMA anions layer and AD cation layer formed an

FIGURE 8 | (A) Photographs of AD, AD-IPA, AD-IPB, and AD-TMA films under UV light. (B) Transient current density-time characteristic of the AD-TMA thin film for
reusable tests without bias potential, inset: the maximal current density of the first on-off cycle measured at different reusable tests. (C) Incident photon-to-current
efficiency of the three cocrystal thin films. (D) Electrochemical impedance spectroscopy Nyquist plots of three cocrystal thin films (the bias is −0.5 V) (Reproduced from
Yang et al. (2020) with permission from American Chemical Society, Copyright 2020.).
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internal electric field that promoted the efficient charge carriers
separation. In a three-electrode system, the photocurrent density of
the AD-TMA thin film electrode rapidly increased to 27.79 μA/cm2

(Ilight) under the on-off cycle’s illumination (30 s). After switching off
the irradiation, the low photocurrent density is 0.002 μA/cm2 (Idark)
(Figure 8B). The maximum current on/off ratio of the AD-TMA
cocrystal thin film was 13,895 (Ilight/Idark), much higher than that of
carbon nitride nanotube membranes, metal-organic framework
materials in electrolytes, and the optoelectronic devices composed
of inorganic perovskite and organic single crystal, indicating the
exceptional sensitivity to light. Furthermore, the incident photon-to-
current efficiency of theAD-TMA thin filmwas highest (Figure 8C).
The fast CT rate was also confirmed by the lowest CT resistance

(Figure 8D) (Yang et al., 2020). Recently, Wang et al. successfully
fabricated a vertical photodetector device based on the 2D cocrystal
film of ZnTPP (ZnTPP, 5,10,15,20-tetraphenyl-21H,23H-porphine
Zinc) and C60. The photoresponsivity of this large-area cocrystal film
was as high as 2,424 mAW−1 at 800 nm, combined with fast
response times and high external quantum efficiency of 376%,
further proving the superiority of cocrystal film in photoresponse
(Wang et al., 2020c).

The cocrystal strategy provides a fascinating avenue for
constructing materials with photoresponse by rationally
selecting the donors and acceptors. The features of strong
intramolecular interaction and unique structure facilitate an
efficient photoelectric conversion. Nevertheless, the ultimate

FIGURE 9 | (A) Temperature dependence of the static susceptibility x and xT of (HMTTF)-[Ni(mnt)2]. (B) Temperature dependence of static x and xT for (ChSTF)-
[Ni(mnt)2]. (Reproduced from Nakajima et al. (2004) with permission from American Chemical Society, Copyright 2004.). (C) Transformations of 18-Crown-6/4,5-
dicyanoimidazole and 18-Crown-6/1,2,4-triazole under an external magnetic field with various strengths (Reproduced from Luo et al. (2017) with permission from
American Chemical Society, Copyright 2017.).
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goal is to achieve more cocrystals with high-performance
photoresponse, which requires further exploration and
expansion of the co-crystalline system.

MAGNETIC PROPERTIES AND
FUNCTIONALITIES

Organic magnetic materials are applied in sensors (Xu et al.,
2017), magnetic recording (Zhang et al., 2008; Wei et al., 2019),
microwave devices (Ustinov et al., 2007), magnetic memories
(Bibes and Barthélémy, 2008; Vopson, 2016), and gyrators (Zhai
et al., 2009) have aroused great interest in recent years. Cocrystal
engineering synthesizes two or more components, has emerged as
an intelligent way to design and tailor the multifunctional
magnetic properties of organic materials (Hu and Zhang,
2020; Wang et al., 2021). Although research on cocrystals in
magnetic field began later, it is gaining prominence (Wang and
Zhang, 2020). This section mainly introduces the magnetic

properties of cocrystals and then focuses on the multiferroic
cocrystals. Potential applications in magnetic-field sensors and
magnetic memory devices are also proposed.

Recently, many works toward synthesizing cocrystals with
magnetic properties have been reported (Xu et al., 2016a; Zenno
et al., 2021). It is proposed that the magnetic properties of
cocrystals highly depend on the staking modes of D-Amolecules
(Yuan et al., 2018). According to the previous studies, the
materials with separate-stacking mode usually exhibit
ferromagnetism, while those with mixed-stacking mode often
exhibit antiferromagnetism. For example, (EDO-TTFI2)
[M(mnt)2] (EDO-TTFI2, diiodoethylenedioxy-TTF; mnt,
maleonitrile dithiolate; M � Ni, Pt) with segregated columns
showed ferromagnetic properties, while (BMDT-TTF)2
[M(m-nt)2] (BMDT-TTF, bis(methylenedithio-TTF) with a
mixed-stacking structure was an antiferromagnetic model
(Nishijo et al., 2000; Torrent et al., 2002). Takehiko Mori
et al. prepared CT (charge transfer) complexes of (HMTTF)-
[Ni(mnt)2] and (ChSTF)-[Ni(mnt)2] (HMTTF,

FIGURE 10 | (A) Scanning electron microscopy (SEM), (B) atomic force microscopy (AFM), and (C) transmission electron microscopy (TEM) images of 2D TTF-C60

film, inset: SAED pattern. (D)Magnetic-field-dependent dielectric constant of amorphous and crystallized 2D TTF-C60 films. (E)Magnetic-field-dependent photocurrent
(at 0.2 V) of crystallized 2D TTF-C60 film; (F) The tuning of magnetization of a crystallized 2D TTF-C60 films by switching an electric field on and off. (G) Electric-field-
dependent and lightintensity-dependent magnetoelectric coupling coefficient of crystallized 2D TTF-C60 films (Reproduced from Xu et al. (2019) with permission
from American Chemical Society, Copyright 2019.).
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bis(trimethylene)-tetrathiafulvalene; ChSTF, 2,3-
cyclohexylenedithio-1,4-dithia-5,8- diselanafulvalene), which
had mixed-stacking modes, both exhibited
antiferromagnetism. The xT minima of (HMTTF)-[Ni(mnt)2]
and (ChSTF)-[Ni(mnt)2] showed around 16 and 55 K,
respectively, while the xT peaks formed at 8 and 16 K
(Figures 9A,B). The disappeared ESR signal at low
temperature further demonstrated the antiferromagnetic
transition of two CT complexes. However, the ferromagnetic
anomaly of the (HMTTF)-[Ni(mnt)2] was discovered owing to
the different g values of the donor and the anion or the
ferromagnetic interaction of the [Ni(mnt)2] anions
(Nakajima et al., 2004). Another work realized the reversibly
stretching of cocrystals by applying a magnetic field with various
strengths. The distance between molecules in 18-Crown-6/4,5-
dicyanoimidazole was stretched under a magnetic field of 0.5 or
1 T strength. In comparison, the magnetic field of 0.5 T strength
could alter the stretching distance of molecules in 18-Crown-6/
1,2,4-triazole (Figure 9C). In consequence, the physical/chemical
properties of the two cocrystals were altered (Luo et al., 2017).
Ultimately, the two cocrystals were separated completely under the
magnetic fields of 1.5 and 1.0 T strengths, respectively. These works
promoted the development of functional organic cocrystals in the
magnetic field.

With the development of magnetic cocrystals, the
multiferroic properties of cocrystals are taken seriously
(Naka and Ishihara, 2016; Xu et al., 2016b; Qin et al.,
2015a). In contrast to the materials with single magnetic
properties, the multiferroic materials simultaneously exhibit
two or more iron characteristics, including ferromagnetism,
ferroelectricity, and ferroelastricity (Wang et al., 2021).
Significantly, the materials with ferromagnetism and
ferroelectricity can induce a magnetoelectric coupling effect
that has prompted great concern. In this regard, the
supramolecular structure of D-A-D-A . . . and the exchange
interactions in CT cocrystals allow for ordered and
controllable coupling of the electric and magnetic

interactions (Wang and Zhang, 2020). Xu et al. assembled
TTF with C60 to form a 2D cocrystal film (Figures 10A–C). In
the 2D TTF-C60 films, the external magnetic field induced the
conversion from singlet CT state to triplet CT state. More
dipoles generated with triplet exciton density enhancement,
and the ultimate polarization indicated the magnetoelectric
coupling. The TTF-C60 films exhibited a magnetic-field-
controlled magnetodielectric effect (Figure 10D). And the
magnetoconductance further suggested the magnetoelectric
coupling. With the magnetic field increased, the triplet CT
state in the 2D TTF-C60 films enhanced the interaction of
excitons and polarons, more triplet excitons dissociated into
charge carriers, finally, the current increased (Figure 10E).
Moreover, as the electric field and photoexcitation enhanced
the magnetization of TTF-C60 films, the magnetoelectric
coupling could be strengthened (Figures 10F,G) (Xu et al.,
2019). Overall, magnetoelectric coupling control in 2D TTF-
C60 films was realized, and their magnetic-field-dependent
photoresponse property could be applied in magnetic-field
sensors.

It should be stressed that the materials with anisotropic
magnetoelectric coupling properties, which exhibit different
energy densities of saturated (or spontaneous) magnetization
in different crystal directions (Palneedi et al., 2016), have
potential applications in multiferroic memory devices (Spaldin
and Ramesh, 2019). Cocrystals have long-range ordered CT
networks and largely delocalized π-electrons (Zhu et al., 2021),
providing more opportunities for guiding the magnetoelectric
coupling of organic materials. Qin et al. have proved the
anisotropy of magnetization within C60-thiophene between in-
plane (easy axis) and out-of-plane (hard axis) directions, which
were attributed to the electron-phonon coupling tightly related to
the molecular assembly axes and spin cone orientation (Qin et al.,
2015b). Latter, Yang et al. obtained pyrene-TCNQ and pyrene-
FxTCNQ (FxTCNQ, fluorinated derivatives of 7,7,8,8,-
tetracyanoquin- odimethane, X � 1, 4) cocrystals. They
discovered that the higher the CT degree, the better the

FIGURE 11 | (A) The predicted crystal morphology and the schematic of applying horizontal (Ex) and perpendicular (Ey) electric field on a pyrene-F4TCNQ cocrystal.
(B) Electric-field-dependent ΔM, (ΔM � M(E)-M(E � 0), where M(E) is the value of magnetization under an electric field), inset: perpendicular electric field-dependent
magnetization of pyrene-F4TCNQ (Reproduced from Yang et al. (2018) with permission from American Chemical Society, Copyright 2018.).
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magnetism. Pyrene-F4TCNQ, which had the greatest CT degree,
had the best magnetic property and showed the anisotropic
magnetoelectric coupling at room temperature. The
magnetoelectric coupling coefficient induced by the horizontal
electric field was substantially larger than that caused by the
perpendicular electric field due to the anisotropic molecular
packing and CT interaction in the perpendicular direction
(Figures 11A,B) (Yang et al., 2018). This anisotropic
magnetoelectric coupling effect of pyrene-F4TCNQ met the
requirements of perpendicular magnetic recording that could
be applied in multiferroic memory devices.

Up to now, extensive studies on magnetic cocrystals have
been reported, but some anomalies are still incomprehensible
because the internal mechanism is not very clear. Further
research into the relationship between the molecular
structure and magnetic property is required, which is a
challenge for scientists.

CONCLUSIONS AND OUTLOOK

This review highlights the advancement in cocrystals with high-
performance ambipolar transport, photoelectric conversion,
magnetoelectric coupling, and magnetic anisotropy. These
materials can not only integrate the properties of the single
component but can also exhibit novel characteristics due to
the noncovalent intermolecular interaction, such as CT
interaction. The inherent advantages of crystals, including lack
of defects and no grain boundaries, make it easy to explore the
structure-property relationship, facilitating the rational design of
cocrystals in OFETs, photoresponse devices, magnetic-field
sensors, and magnetic memory devices. However, the

development of cocrystals still faces critical challenges: 1) the
variety of donors and acceptors for preparing cocrystals is limited,
and thus, more suitable materials must be developed; 2) the
molecular structure, stoichiometry, and the type of donors and
acceptors significantly influence the physical properties of
cocrystals, but the specific mechanism is not precise. Selecting
D-A molecules to directionally regulate their performance and
establishing a complete mechanism are crucial issues in designing
organic cocrystals; 3) there still are some problems in large-scale
and low-cost preparation methods of organic cocrystals. For
practical applications, it is necessary to develop diverse
preparation methods for obtaining highly ordered arrays. We
believe these difficulties can be overcome with continued research
efforts. The cocrystals strategy will play an increasingly critical
role in designing organic materials with electronic and magnetic
properties.
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