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We present a novel non-invasive technique to measure the polarity of GABAergic
responses based on cell-attached recordings of currents activated by laser-uncaging
of GABA. For these recordings, a patch pipette was filled with a solution containing
RuBi-GABA, and GABA was released from this complex by a laser beam conducted
to the tip of the patch pipette via an optic fiber. In cell-attached recordings from
neocortical and hippocampal neurons in postnatal days P2-5 rat brain slices in vitro,
we found that laser-uncaging of GABA activates integral cell-attached currents mediated
by tens of GABA(A) channels. The initial response was inwardly directed, indicating a
depolarizing response to GABA. The direction of the initial response was dependent on
the pipette potential and analysis of its slope-voltage relationships revealed a depolarizing
driving force of +11 mV for the currents through GABA channels. Initial depolarizing
responses to GABA uncaging were inverted to hyperpolarizing in the presence of the
NKCC1 blocker bumetanide. Current-voltage relationships of the currents evoked by
RuBi-GABA uncaging using voltage-ramps at the peak of responses not only revealed a
bumetanide-sensitive depolarizing reversal potential of the GABA(A) receptor mediated
responses, but also showed a strong voltage-dependent hysteresis. Upon desensitization
of the uncaged-GABA response, current-voltage relationships of the currents through
single GABA(A) channels revealed depolarizing responses with the driving force values
similar to those obtained for the initial response. Thus, cell-attached recordings of the
responses evoked by local intrapipette GABA uncaging are suitable to assess the polarity
of the GABA(A)-Rs mediated signals in small cell compartments.
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INTRODUCTION
GABA is a main inhibitory neurotransmitter in the adult brain
(Freund and Buzsaki, 1996; Farrant and Kaila, 2007). However,
early in development, GABA, acting via chloride permeable
GABA(A)-Rs, depolarizes immature neurons (Cherubini et al.,
1991; Owens and Kriegstein, 2002; Ben Ari et al., 2007). The
depolarizing GABA actions are due to an elevated intracellular
chloride concentration as a result of weak functioning of the
chloride extruder KCC2 and an enhanced activity of the chlo-
ride loader NKCC1 in immature neurons (Kakazu et al., 1999;
Rivera et al., 1999; Payne et al., 2003; Yamada et al., 2004; Dzhala
et al., 2005; Brumback and Staley, 2008; Blaesse et al., 2009).
Depolarizing GABA actions were also observed in a number of
other physiological and pathological conditions. These include
depolarizing GABA actions in the axon initial segment (Szabadics
et al., 2006; Khirug et al., 2008; Woodruff et al., 2011) and
dendrites (Gulledge and Stuart, 2003) of adult pyramidal neu-
rons and interneurons (Martina et al., 2001; Chavas and Marty,
2003), transient depolarizing GABA actions as a result of activity-
dependent changes in ionic driving forces (Raimondo et al.,

2012), as well as following trauma, in epilepsy, brain ischemia
and pain (van den Pol et al., 1996; Cohen et al., 2002; Nabekura
et al., 2002; Khalilov et al., 2003; Toyoda et al., 2003; Pond et al.,
2006; De Koninck, 2007; Shulga et al., 2008; Price et al., 2009;
Boulenguez et al., 2010; Dzhala et al., 2010, 2012). Depolarizing
GABA actions are also subject to hormonal modulation, e.g., by
oxytocin, which suppresses depolarizing GABA responses at birth
(Tyzio et al., 2006; Mazzuca et al., 2011).

Different experimental approaches exist to detect depolarizing
actions of GABA. The main requirements for these are: (1) an
unperturbed intracellular chloride concentration and the rever-
sal potential of the currents through GABA receptors (EGABA)
and (2) an unperturbed resting membrane potential (Em). To
achieve these conditions, several techniques have been developed
including gramicidin perforated patch (Abe et al., 1994; Reichling
et al., 1994), extracellular recordings of the local field poten-
tial (Glickfeld et al., 2009; Bazelot et al., 2010), multiple/single
unit responses to GABA (Khazipov et al., 1997; Valeeva et al.,
2010), cell-attached recordings of single GABA channels (Curmi
et al., 1993; Serafini et al., 1995; Tyzio et al., 2006), cell-attached
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recordings of potassium or NMDA channels as voltage sensors
(Zhang and Jackson, 1995; Leinekugel et al., 1997; Verheugen
et al., 1999), cell-attached current-clamp recordings (Perkins,
2006), imaging of intracellular calcium transients evoked by
GABA (Connor et al., 1987; Marty and Llano, 2005), intracellu-
lar chloride sensors (Kuner and Augustine, 2000; Marandi et al.,
2002; Glykys et al., 2009), and voltage sensitive dye imaging (Wei
et al., 2013).

Cell-attached recordings of GABA channels enable one
to assess the polarity (depolarizing or hyperpolarizing) of
GABAergic responses in a small patch of membrane from a sin-
gle neuron (Curmi et al., 1993; Serafini et al., 1995; Tyzio et al.,
2006). In this approach, GABA is added to the pipette solu-
tion at micromolar concentration to maintain the activity of
1–2 channels in the recorded patch of membrane, and the driv-
ing force acting on currents via GABA(A) channels (DFGABA =
EGABA − Em) is estimated from the reversal potential of the
currents through GABA channels. Although efficient, this tech-
nique has certain limitations, including eventual contamination
of non-GABA channels in the recorded patch of membrane
that are hard to control because with this technique, record-
ings from the same patch of membrane without GABA are
unavailable [unless GABA is infused into the tip of the pipette
(Curmi et al., 1993)]. In addition, currents via GABA chan-
nels show poor signal/noise ratio near the reversal potential
(which is often <10 mV from the resting membrane potential)
and thus the polarity of the GABAergic signals and DFGABA

values are deduced from approximations of the current-voltage
relationships basing on values distant from the reversal poten-
tial. Here, we have attempted to overcome these problems by
using photo uncaging of GABA during cell-attached recordings.
Basing on previous studies using local GABA uncaging from
RuBi-GABA in whole-cell recordings (Rial Verde et al., 2008),
we envisaged that this would enable: (1) the generation of a
fast pulse of GABA in the pipette solution to evoke an integral
current in the recorded patch of membrane, detectable at the
resting membrane potential despite small DFGABA values; (2) the
measurement of DFGABA directly from the current-voltage rela-
tionships of the integral currents activated by uncaged GABA
after the subtraction of the patch conductance prior to GABA
uncaging. Because GABA needs to be released within the pipette,
we have developed a device to provide laser pulse from inside the
patch-pipette using a thin optic fiber introduced into the neck
of the patch pipette. We show that intrapipette GABA photo-
uncaging from RuBi-GABA rapidly activates tens of GABA(A)
channels during cell-attached recordings that generate, at rest-
ing membrane potential, detectable integral GABA(A)R mediated
currents. In neonatal rat cortical neurons, these initial responses
are inwardly directed, indicating depolarizing GABA action, and
their polarity is inversed to hyperpolarizing after the addition
of the NKCC1 blocker bumetanide. The direction of these ini-
tial currents thus enables on the conclusion of whether GABA
exerts a depolarizing or hyperpolarizing action on the recorded
cell and, in this regard, the technique can be of interest to assess
the depolarizing/hyperpolarizing actions of GABA in a variety of
conditions when the polarity of GABA responses is a subject of
investigation.

MATERIALS AND METHODS
ETHICAL APPROVAL
All animal-use protocols conformed to the guidelines of the
French National Institute of Health and Medical Research
(INSERM) and of the Kazan Federal University on the use of
laboratory animals.

BRAIN SLICE PREPARATION
Acute coronal brain slices were prepared from P2-5 Wistar rats.
The animals were cryoanesthetized, and the brain was rapidly
removed to oxygenated (95% O2–5% CO2) ice-cold (2–5◦C) arti-
ficial cerebrospinal fluid (ACSF) of the following composition
(in mM): NaCl 126, KCl 3.5, CaCl2 2, MgCl2 1.3, NaHCO3 25,
NaH2PO4 1.2, and glucose 11 (pH 7.4). Five hundred µm thick
coronal slices were cut using a Vibratome (VT 1000E; Leica,
Nussloch, Germany). Slices were kept in oxygenated ACSF at
room temperature (20–22◦C) for at least 1 h before use. For
recordings slices were placed into a conventional submerged
chamber and superfused on both sides with oxygenated ACSF at
30–32◦C at a flow rate of 2–4 ml/min.

ELECTROPHYSIOLOGICAL RECORDINGS
Patch-clamp recordings were performed using Axopatch 200B
(Axon Instruments, Union City, CA, USA). Patch electrodes were
made from borosilicate glass capillaries (GC150F-15, Harvard
Apparatus, Edenbridge, UK). Patch electrodes had a resistance
of 6–8 MOhms when filled with the pipette solution for cell-
attached recordings contained (in mM): NaCl 120, TEA–Cl 20,
KCl 5, 4-aminopyridine 5, CaCl2 0.1, MgCl2 10, glucose 10,
Hepes–NaOH 10 buffered to pH 7.2–7.3. This solution differs
from ACSF composition and introduces two sources of error in
the estimation of the DFGABA: (1) a liquid junction potential of
−2 mV and (2) a Goldman-Hodgkin-Katz (GHK)—error, which
is the difference in the GHK voltage equation values obtained with
anion concentrations of the pipette solution and of the extracellu-
lar fluid of −4 mV. Together, this gives an estimated DFGABA value
that is 2 mV more negative than the real DFGABA value. DFGABA

values were not corrected for this error. GABA(B) receptor antag-
onists were not added to the pipette solution because postsynaptic
GABA(B) receptors are little expressed in the neonatal cortical
neurons (Gaiarsa et al., 1995); however, in older animals addi-
tion of the GABA(B) receptor antagonists to the pipette solution
could be suggested. RuBi-GABA was added to the solution on
the day of experiment at a concentration of 20 µM from a frozen
20 mM stock solution. Following the formation of a gigaseal, the
gain was set to 50 mV/pA and the headstage was switched to the
capacitor feedback mode. Recordings were performed using 2.7 s
long sweeps (with a minimal inter-sweep interval) with the fol-
lowing voltage waveform at the pipette (Vp): (1) 0 mV for 1 s;
(2) step to +55 mV for 100 ms; (3) 500 ms ramp from +55 mV
to −55 mV; (4) holding at −55 mV for 100 ms; (5) 500 ms ramp
from −55 mV to +55 mV; (6) 500 ms step to 0 mV. In the exper-
iments on the current-voltage relationships of the initial part
of the response, Vp was set at 0, +50, or −50 mV. Following
stabilization of the resistance (typically within 5–10 sweeps),
analogous output of a 1 s long voltage command was sent to trig-
ger a 20–60 mW laser pulse. Five to ten sweeps were recorded
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following the pulse. In some cells, single GABA channels were
then recorded at different holding potentials for further anal-
ysis of current-voltage relationships. The signals were digitized
at 10 kHz using an analogue-to-digital converter Digidata 1440
(Axon Instruments, Union City, CA, USA).

RuBi-GABA UNCAGING
Since RuBi-GABA is light-sensitive, special caution was taken to
prevent its untimely uncaging with ambient light (Rial Verde
et al., 2008). All experiments were performed at minimal ambi-
ent light in the experimental room. The computer screen was
set at red mode. The filling of the patch pipette with internal
RuBi-GABA containing solution, insertion of the pipette into the
holder, positioning of the pipette, and establishment of a gigaseal
were performed under a red filtered light.

Continuously radiating (cw) lasers with analog modulation
of output power, models Spectra-Physics 161c-030 (30 mW,
488 nm) and DragonLazers (100 mW, 473 nm) were used as a
light source for GABA uncaging. The laser beam was introduced
into a multimode 50 µm optic fiber in core via a collimating lens,
meeting the condition for the numerical aperture of the fiber
(0.22 NA). The open end of the fiber was cut under the binocular
loupe by a diamond, pulling the free end of the fiber with forceps.
The nominal power of the output laser beam used in the exper-
iment was ∼20 mW. It was typically attenuated at the optic fiber
output to 60–80%. The nominal light pulse duration used for
uncaging was 1 s. A hole (about 0.3 mm in diameter) was drilled
using a conic bid in the patch pipette holder to introduce the optic
fiber into the patch pipette holder. The hole was then filled with
dental cement to secure the fiber and to prevent air leakage. We
kept the optic fiber 2–5 mm longer than the signal wire so that
when the patch pipette was introduced into the holder, the fiber
appeared in the neck of the patch pipette.

ANALYSIS
pCLAMP 10.1 (Axon Instruments, USA), Origin 7.0 (Microcal
Software, Northampton, MA, USA) and custom-written func-
tions in Matlab (MathWorks, MA, USA) were used for data
acquisition and analysis. For each response, we calculated a slope
of the initial response within a time window of 25 ms after the
laser pulse onset. Current-voltage relationships of the integral
response were analyzed after subtraction of the control ramp
response in two directions as described above. After the decay
of the response to a few (1–3) levels of GABA channels, in some
cells, current-voltage relationships of the currents through sin-
gle GABA channels were analyzed as described previously (Tyzio
et al., 2006, 2008).

Group measures are expressed as means ± SE, and error
bars also indicate SE. Data were assessed for normality using
the Shapiro–Wilk test. The statistical significance of differences
for normally distributed data was determined with the Student’s
t-test (paired and unpaired). The Wilcoxon Signed Rank test was
used to compare non-normally distributed data. Unless indicated,
the level of significance was set at P < 0.05.

DRUGS
RuBi-GABA was purchased from Tocris (Tocris Cookson Inc.,
USA). A 20 mM RuBi-GABA stock solution was prepared in the

dark, divided in aliquots, and stored frozen in tightly sealed vials
in a light-impermeable box. Other reagents were from Sigma
(Sigma-Aldrich Inc., USA) and Tocris (Tocris Cookson Inc.,
USA).

RESULTS
Cell-attached responses to photo-uncaged GABA from Rubi-
GABA were studied in cortical and hippocampal neurons of
neonatal P2-5 rats. Patch pipettes were filled with a solution
containing Rubi-GABA (20 µM) and the laser pulse for GABA
uncaging was provided by an optic fiber introduced into the
patch pipette (Figure 1A). Typical responses to GABA uncaging
at different potentials of the recording pipette (Vp) are shown
on Figure 1B. At the holding potential of 0 mV (which corre-
sponds to the resting membrane potential) the response was
characterized by an initial inwardly directed current (note that
in cell-attached recordings the inward currents are upward; see
also Figure 2B). Because the whole-cell GABAergic currents acti-
vated by RuBi-GABA photo-uncaging attain peak values within
the first tens of milliseconds [28 ms for 5 ms pulses (Rial Verde
et al., 2008)], we analyzed the initial response slope during the
first 25 ms after the laser pulse onset (the region outlined by
the dashed cyan box in Figure 1B). The initial response slope is
determined by the direction and magnitude of current through
the GABA(A) receptors, and thus reflects the number of open
channels and the driving force acting on ions flowing through
GABA(A) channels (DFGABA) at the response onset. In its nature,
this parameter is similar to the slope of extracellularly recorded
GABAergic postsynaptic currents (Glickfeld et al., 2009; Bazelot
et al., 2010) with a difference that it is generated by several open
GABA(A) channels in the recorded patch of membrane. Because
DFGABA is highly use-dependent, the initial response slope pro-
vides a valuable measure of the polarity of the response to GABA
in an unperturbed neuron.

At the resting membrane potential (Vp = 0 mV), the initial
slopes ranged from -1.9 to 64.1 pA/s (mean ± SE: 15.2 ± 4.6 pA/s;
n = 18 cells; Figures 1B,C, 2B, 3C). Initial slope values revealed
depolarizing responses both in P2-5 neocortical neurons (15.7 ±
5.6 pA/s; n = 11 cells) and CA3 hippocampal neurons (14.5 ±
8.5 pA/s; n = 7 cells). These values were not significantly different
(P > 0.05) and therefore the data obtained from the neocortical
and hippocampal neurons were pooled together during analysis.
The positive direction of the currents evoked by uncaged GABA
indicates a depolarizing action of GABA in these neurons, which
is consistent with results obtained using other approaches (see
Introduction).

The slopes of the initial response to GABA uncaging were
compared at different holding potentials of the recording elec-
trode: hyperpolarized (+50 mV) and depolarized (−50 mV;
Figures 1B,C). The initial depolarizing response (0:25 ms) slope
increased during 50 mV membrane hyperpolarization to 48.5 ±
12.1 pA/s (n = 4), but inverted its polarity during membrane
depolarization attaining values of −100.6 ± 24.0 pA/s at Vp =
−50 mV (n = 3) (Figure 1C). An exponential fit of the initial
current slope—voltage relationships revealed a reversal poten-
tial near −11.3 mV (Figure 1C), corresponding to depolarizing
DFGABA values of +11.3 mV, which is close to the value obtained

Frontiers in Cellular Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 83 | 3

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Minlebaev et al. Cell-attached RuBi-GABA recordings

FIGURE 1 | Intrapipette GABA photorelease from RuBi-GABA evokes

currents in cell-attached recordings. (A) Scheme of the experimental
setup. The patch-pipette is filled with a solution containing RuBi-GABA
(20 µM). An optic fiber is positioned close to the tip of the pipette.
Once a gigaseal is formed between the pipette and neuronal
membrane, cell-attached recordings enable the recording of currents
through the ion channels in the patch of cell membrane attached to
the tip of the pipette. After recordings of the baseline activity, a laser
pulse is delivered via an optic fiber to uncage GABA from RuBi-GABA
and to activate GABA(A) receptor-channels (GABA-Rs). (B) Example
traces of the responses evoked by GABA uncaging in cell-attached

recordings from P2-5 cortical neurons at different pipette potentials.
Note that the initial response slope (indicated by dashed red line in a
[0:25 ms] time window after the laser pulse onset outlined by cyan box)
is positively directed (in cell-attached recordings the inward currents are
upward) at the resting membrane potential (Vp = 0 mV), that it
increases with patch hyperpolarization and changes its direction from
depolarizing to hyperpolarizing during patch depolarization. (C) Plot of
the dependence of the initial response slopes on the pipette potential.
Data points show mean values ± S.E. Slope-voltage relationships are
approximated with an exponential function which shows reversal
near −11 mV that corresponds to DFGABA of +11 mV.

during analysis of cell-attached recordings of single GABA chan-
nels at the tail of GABA-uncaging evoked response (see below,
Figure 4) and with GABA continuously present in the pipette
(Tyzio et al., 2006, 2008).

Depolarizing GABA responses in the immature cortical neu-
rons are primarily maintained by NKCC1 chloride co-transporter
(Payne et al., 2003; Yamada et al., 2004; Dzhala et al., 2005;
Tyzio et al., 2006). Therefore, we next tested whether the depo-
larizing responses evoked by uncaged GABA depend on NKCC1
activity. In the presence of the bath applied selective NKCC1
blocker bumetanide (10 µM), the initial response to uncaged
GABA changed its polarity to outward (Figures 3A,B) and the
initial (0:25 ms) slope obtained an average of −144.4 ± 72.2 pA/s
(range from −526.5 to −0.03 pA/s; n = 9 cells, pooled data from
6 neocortical and 3 hippocampal neurons) (Figure 3C). The out-
ward direction of the initial response indicates that when the
NKCC1 co-transporter is blocked, responses to GABA become

hyperpolarizing, which is consistent with previous observations
using cell-attached recordings of GABA activated channels (Tyzio
et al., 2006, 2008). Thus, it appears that the direction of the
photoreleased GABA-evoked initial response provides a reliable
assessment of the polarity of GABA responses, as it shows a depo-
larizing direction in P2-5 cortical neurons and it is inverted to
hyperpolarizing after the addition of bumetanide.

In the same experiments, we attempted to assess DFGABA val-
ues from the voltage-dependence of the currents activated by
photoreleased GABA using two-direction voltage ramps (from
+55 mV to −55 mV) delivered 500 ms after the laser pulse onset
(Figure 2A). Current-voltage relationships of the uncaged GABA
activated conductance were analyzed after the subtraction of
the control ramp-responses performed prior to photostimula-
tion from the ramps obtained during the uncaged GABA-evoked
responses. These revealed a conductance activated by uncaged
GABA of 194 ± 52 pS (range from 35 to 750 pS) in the range of
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FIGURE 2 | Cell-attached responses evoked by photoreleased GABA

and their voltage-dependence. (A) Example trace of cell-attached
recordings of currents evoked by GABA photorelease from a P5 rat L2/3
neuron. The voltage protocol is shown in the top trace and the
cell-attached current is on the bottom trace. The pipette potential (Vp) is
first held at 0 mV during GABA uncaging by a laser pulse. GABA uncaging
evokes an initial inward current. Five hundred ms after the pulse onset,
two-direction voltage ramps (between +55 and −55 mV; ramp directions
are color coded) reveal an increase in the membrane conductance
compared to the control trace before GABA uncaging (gray traces).
(B) Examples of the initial cell-attached responses to RuBi-GABA uncaging

at resting membrane potential (Vp = 0 mV) in hippocampal (CA3) and
cortical (L5/6) neurons of P2-3 rats. Initial (0:25 ms) slopes are indicated by
red dashed lines. Note the inward direction of the initial response slopes in
all recorded cells. (C) Current-voltage relationships of the currents activated
by uncaged GABA, obtained after subtraction of control ramps from the
responses after RuBi-GABA uncaging during hyperpolarizing-to-depolarizing
ramps (blue) and depolarizing-to-hyperpolarizing ramps (red). Note a
difference in the reversal potentials of these curves that indicates a
hysteresis of the GABA conductance reversal potential. The black-on-yellow
curve is a smoothed average of the current-voltage relationships obtained
during bidirectional ramps.

Vp-values from 0 to −50 mV (n = 16 cells; average of responses
in both directions). Basing on a single GABA channel con-
ductance of 11.3 pS (see below), we estimated that from 3 to
66 GABA channels (mean, 17 ± 5) contribute to the integral
response during the ramp commands. As shown in Figures 2A,C,
during ramps performed in a direction from hyperpolarized
to depolarized membrane potentials (from +55 to −55 mV),
uncaged GABA-activated currents reversed at a Vp of −2.7 ±
2.5 mV (which corresponds to DFGABA of +2.7 mV), yet when
the ramps were performed in a direction from depolarized

to hyperpolarized membrane potentials, they reversed at Vp =
−15.4 ± 3.4 mV (DFGABA = +15.4 mV; n = 16 cells; p < 0.01;
see also Figure 3E). Thus, the responses to uncaged GABA show
a voltage-dependent hysteresis of their reversal potential, char-
acteristic of the chloride conductance (Huguenard and Alger,
1986; Thompson and Gähwiler, 1989; Raimondo et al., 2012). In
order to minimize the impact of hysteresis, the ramps going in
both directions were averaged, and this revealed a reversal poten-
tial of the currents activated by uncaged GABA at Vp = −5.8 ±
2.5 mV (DFGABA = +5.8 mV; n = 16; Figure 3C). A similar
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FIGURE 3 | Effects of the Na+-K+-2Cl− co-transporter bumetanide on

cell-attached responses evoked by uncaged GABA. (A) Example
responses to GABA uncaging in cell-attached recordings at resting
membrane potential from a P5 rat L5/6 neuron in the presence of
bumetanide (10 µM). Layout is the same as on Figure 2A. The initial
response to uncaged GABA on an expanded time scale is shown in
panel (B) where the dashed line indicates an outwardly directed
(0:25 ms) initial slope. (C) Summary plot of the initial (0:25 ms) slope
values at resting membrane potential in control conditions and in the
presence of bumetanide (10 µM). Each circle corresponds to an
individual cell. Boxes indicate 25–75% confidence intervals. Note that

the initial slopes change direction from inward to outward after the
addition of bumetanide. (D) Current-voltage relationships of the uncaged
GABA-activated cell-attached currents during bidirectional ramp voltage
commands (layout is same as in Figure 1C). (E) Summary plot of the
reversal potentials of the uncaged GABA activated currents using the
ramp protocol. Blue and red circles (mean ± S.E.) correspond to the
hyperpolarizing-to-depolarizing and depolarizing-to-hyperpolarizing ramp
directions, respectively. Black on yellow circles correspond to the
bidirectional ramp averages. (C–E) Pooled data from 16 neurons in
control conditions and 9 neurons in the presence of bumetanide
(P2-5 rats; ∗p < 0.05; ns, nonsignificant).
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analysis of the current-voltage relationships of the currents acti-
vated by uncaged GABA using two-direction voltage ramps in
the presence of bumetanide (10 µM) revealed a tendency to
shift the reversal potential during both hyperpolarization—to—
depolarization (7.9 ± 4.4 mV) and during depolarization—to—
hyperpolarization (−2.5 ± 6.5 mV) ramp directions, but was not
significant (n = 9 cells; p > 0.05) (Figure 3D). Reversal potential
of the averaged current-voltage relationships in both directions
also shifted to more negative values of 3.7 ± 3.8 mV (compared
to the control values of −5.8 ± 2.5 mV; p < 0.05) (Figures 3D,E).
The changes in the initial response polarity and the negative
shifts in the reversal potential of the uncaged GABA activated
currents observed in the presence of bumetanide are consistent
with the hypothesis that the depolarizing action of GABA in
immature neurons is supported by NKCC1 activity. However, the
DFGABA values obtained during voltage ramp protocols, although
depolarizing and bumetanide-sensitive, were more negative than
those obtained using an analysis of single GABA channels at P2-5
[around +14 mV (Tyzio et al., 2006, 2008), see also below] and
were affected by the voltage-dependent hysteresis of the reversal
potentials. Moreover, many cells fired action potentials during
voltage ramp protocols when the Vp-values were positive, inde-
pendently of the ramp direction after (but not before) GABA

uncaging (Figure 2A), and some cells fired action potentials after
the initial response even at Vp = 0 mV (Figure 2B). This sug-
gests an electrical access to the recorded cell via a large number
of GABA channels activated by uncaged GABA [see also (Alcami
et al., 2012)]. Small shifts in chloride gradient across the patch,
gain of the electrical access to the cell, as well as activation of the
voltage-gated conductances may be involved in the variability of
current waveforms seen during the first 500 ms after RuBi-GABA
uncaging (Figure 2B).

The membrane conductance evoked by uncaged GABA desen-
sitized to a few (1–3) levels of GABA channel openings within
30–90 s after the laser pulse (Figure 4A). GABA channels were
recorded at different Vp-values and the amplitudes of currents via
single GABA channels were plotted against the pipette potential
(Figure 4B). To ensure that the voltage imposed on the pipette
did not affect the membrane potential (Alcami et al., 2012) we
controlled the firing rate of the recorded cells and did not observe
any dependence in the action potential on Vp-values. An expo-
nential fit of the current-voltage relationships of the current
amplitudes through single GABA channels revealed an elemen-
tary conductance of 11.3 ± 0.3 pS in the range of Vp-values
from 0 to −50 mV, and a reversal potential of −15.0 ± 1.7 mV,
corresponding to DFGABA of +15 mV (n = 3) that is close to

FIGURE 4 | Single GABA channels activated by photorelease of

GABA. (A) Example traces of cell-attached currents through GABA
channels activated on the decay of the response evoked by RuBi-GABA
uncaging at different holding potentials of the recording pipette.
Corresponding all current point histograms are shown on the right from
each trace. Levels are indicated by red dashed lines. Data from a P2

CA3 pyramidal cell. (B) Current-voltage relationships of the amplitudes of
currents through single GABA channels activated by uncaged GABA in
the cell shown in panel A. An exponential fit of the current-voltage
relationship shows a reversal at −15 mV that corresponds to a DFGABA

value of +15 mV. (C) Dependence of the action potential frequency on
Vp. Note that the cell does not fire more with an increase in Vp.
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previously reported values obtained in this age group during cell-
attached recordings of single GABA channels activated by GABA
continuously present in the pipette (Tyzio et al., 2006, 2008).

DISCUSSION
In the present study, we describe a novel technique to assess the
polarity of responses to GABA using non-invasive cell-attached
recordings of responses evoked by laser uncaging of GABA from
RuBi-GABA. We demonstrate that intrapipette GABA uncaging
evokes integral GABA(A) receptor mediated currents which show
depolarizing polarity in immature neurons.

This technique has several advantages over conventional cell-
attached recordings of GABA channels activated by GABA con-
tinuously present in the pipette. First, it avoids a problem of
contamination of the response by channels other than GABA-
activated channels that is always a concern in cell-attached record-
ings. Second, simultaneous activation of many GABA channels
by GABA transients generated by GABA uncaging significantly
improves the signal-to-noise ratio of responses at the resting
membrane potential, where the currents via single channels are
hardly detectable from the baseline. This enables to conclude
on the polarity of GABA responses directly from the direc-
tion of the initial response slope, while with single-channel
recordings, the polarity of the GABA response often, particularly
when the reversal potential of the currents via GABA channels
is close to the resting membrane potential, can only be esti-
mated from fits of the current-voltage relationships built from
the currents recorded at potentials distant from the reversal
potential.

Current-voltage relationships of the integral responses evoked
by GABA uncaging also showed a depolarizing direction of GABA
responses, as they reversed at potentials more positive than the
resting membrane potential. Moreover, the reversal potential of
the integral currents measured during ramp-protocols negatively
shifted after the blockade of NKCC1 with bumetanide. This is
in keeping with previous reports pointing out the pivotal role
of NKCC1 in maintaining elevated intracellular chloride and
depolarizing DFGABA values in immature cortical neurons (Payne
et al., 2003; Yamada et al., 2004; Dzhala et al., 2005; Tyzio et al.,
2006; Brumback and Staley, 2008). Hysteresis of GABA responses
(dependence of their reversal potential on the prehistory of mem-
brane potential) has been seen during two-directional voltage
ramp protocols in our cell-attached recordings of the integral
responses evoked by uncaged GABA. This indicates that voltage-
dependent changes in the intracellular chloride concentration are
highly dynamic and may occur as a result of chloride flow via tens
of GABA channels [comparable with ∼thirty channels activated
during unitary synaptic events (Edwards et al., 1990)] within
hundreds of milliseconds. This corresponds to the hypothesis
that intracellular chloride concentration is dynamically modi-
fied during physiological or paroxysmal activities so that chloride
accumulates in synapses previously activated during strong cell
depolarization (e.g., during spike trains or epileptic population
spikes) (Kaila et al., 1997; Fujiwara-Tsukamoto et al., 2003, 2010;
Ilie et al., 2012; for reviews, Isomura et al., 2008; Lamsa et al.,
2010; Raimondo et al., 2012). An additional factor contribut-
ing to the hysteresis of GABA responses could be a change in

the chloride concentration at the tip of the recording electrode.
Indeed, the spatial angle from the patch into the cell is much
larger than to the pipette, or in other words, diffusion within
the pipette is nearly one dimensional, whereas in the cell it is
three dimensional, and this geometry makes intrapipette chlo-
ride concentration prone to changes. Therefore, the overall effect
could be that the chloride concentration changes on both sides
of the patch, and hysteresis is caused by both intra- and extracel-
lular ionic shifts. In addition to hysteresis, in a number of cells
we also observed action potentials generated at Vp = 0 after the
initial response (Figure 2B) or at positive pipette potentials dur-
ing ramp commands (Figure 2A) suggesting an electrical access to
the recorded cell via a large number of GABA channels activated
by uncaged GABA. Electrical access to the cell would affect the
membrane potential and would contaminate cell-attached cur-
rents with whole-cell currents, thus introducing an additional
source of error in the measurements of DFGABA. Therefore, we
conclude that the initial slope of the response evoked by uncaged
GABA, which shows a depolarizing direction of GABA currents
in immature cortical neurons that reverses to a hyperpolariz-
ing direction after the blockade of NKCC1, and which shows a
voltage-dependence comparable to that of the currents through
single channels, is more reliable than voltage-ramp measurements
to determine whether the recorded compartment of a cell is
depolarized or hyperpolarized by GABA.

Thus, a novel method of cell-attached recordings of the
responses evoked by uncaged GABA presented here can be reli-
ably used to characterize the polarity of GABA responses in an
unperturbed neuron. Present results were obtained using blind-
patch recordings presumably (given the pipette resistance of
6–8 MOhm) from the soma of the immature neurons. With visual
patch-clamp recordings, this technique can be particularly suited
to study the actions of GABA in small cell compartments, e.g.,
in the initial axon segment or dendrites. It could be also used in
a number of applications where the polarity of GABA responses
is a subject of investigation, including development, activity-
dependent alterations in the intracellular chloride, pathologies
including epilepsy, trauma, and pain, as well as for a screen-
ing of molecules that modify GABA actions via alterations of
intracellular chloride homeostasis.
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