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Abstract: There is a great demand for improving the effective utilization of pesticides and reducing
their application for sustainable agriculture, and polymeric nanoparticles have provided strong
technical support for the efficient delivery of pesticides. To this context, we tried to construct a
relatively safe imidaclothiz nano-delivery system for enhanced plant uptake, reduced pesticide
residue and improved bioactivity toward green peach aphids. The imidaclothiz could be assembled
with the hydrophobic core of SPc through hydrophobic association, which led to the self-assembly
of nanoscale imidaclothiz/SPc complex consisting of nearly spherical particles. The SPc decreased
the contact angle of imidaclothiz drops and remarkably increased the plant uptake. Furthermore,
the bioactivity and control efficacy of imidaclothiz were significantly improved with the help of SPc
in both laboratory and field. Excitingly, the residue of imidaclothiz decreased with the help of SPc
7 d after the treatment due to the faster degradation of nanoscale imidaclothiz/SPc complex, which
exhibited no negative effects on agronomic traits of tobacco plants. The current study successfully
constructed a nano-delivery system for imidaclothiz, which can not only increase the effective
utilization of pesticides, but also decrease the pesticide residue.

Keywords: nano-delivery system; nanopesticide; pesticide adjuvant; polymer; sustainable agriculture

1. Introduction

In recent years, nanotechnology has provided strong technical supports and innovative
ideas for sustainable agriculture, and a series of nanoparticles have been designed and
constructed as carriers of synthetic/botanical pesticides and fertilizers [1–5]. Most synthetic
pesticides contain the hydrophobic active ingredients (AIs) that can be encapsulated in or
attached to the peripheral groups of nanoparticles [6–8]. Polymeric nanomaterials have
been recently applied for agrochemical delivery, and it is important to explore efficient
polymer nanocarriers. A star polymer (SPc) has been designed and synthesized to deliver
both double-stranded RNA (dsRNA) and synthetic/botanical pesticides [9–13]. The SPc
can activate the clathrin-mediated endocytosis to improve the delivery efficiency of loaded
cargo [14,15]. Additionally, the plant-uptake of SPc-loaded pesticides is significantly
improved, while the pesticide residue is simultaneously decreased [16–18]. In a recent
publication, the SPc has been successfully applied to co-deliver dsRNA and botanical
pesticide to overcome the short life disadvantage of dsRNA and slow-acting property of
botanical pesticide for a great enhancement of sequential bioactivity [19]. Therefore, SPc
exhibits good potential for field application as an excellent adjuvant for improving the
delivery efficiency of various agents for plant protection.

As a highly effective pesticide, neonicotinoid pesticide has become one of the most
heavily applied classes of insecticides worldwide since the 1990s, with the large-scale appli-
cation including plant protection (crops, vegetables and fruits), veterinary products and
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biocides to invertebrate pest control in fish farming [20]. Neonicotinoids act as a competi-
tive inhibitor on nicotinic acetylcholine receptors in the central nervous system, and their
systemic properties and long residual activity make them ideal insecticides toward sucking
pests [21]. However, their residual levels are relatively high in the environment, and the ex-
cessive application of neonicotinoids has led to food safety problems [22–25]. Furthermore,
the neonicotinoids exhibit toxicity toward non-target organisms such as bees, earthworms,
predatory lady beetles, etc. [26–28]. As a fourth-generation neonicotinoid insecticide, the
imidaclothiz, 1-(2-chloros-5-thiazolylmethyl)-N-nitroimida-zolin-2-ylideneamine is devel-
oped by Nantong Jiangshan Agrochemical Co., Ltd., and registered for the management
of sucking and biting insects such as aphids, whiteflies, beetles and some Lepidoptera
species [29]. The nano approach is a good choice to further increase the effective utilization
of imidaclothiz. However, no information of imidaclothiz is available in this area.

The application of SPc has the potential to achieve the nanometerization of imida-
clothiz and overcome its delivery obstacle for enhanced bioactivity. However, new en-
vironmental and human health hazards may emerge from SPc application, and several
important issues should be firstly evaluated, including the pesticide residue, surface runoff
and spray drift, hazard toward non-target predators, potential chemical damage toward
plants, etc. [30–34]. To this context, we tried to construct a relatively safe imidaclothiz
nano-delivery system for enhanced plant uptake and bioactivity toward aphids. The self-
assembly mechanism of imidaclothiz/SPc complex was elucidated by determining the
pesticide loading content (PLC) of SPc, particle size and morphology of imidaclothiz/SPc
complex, and interaction between SPc and imidaclothiz. Then, the mechanism of enhanced
bioactivity of imidaclothiz/SPc complex was illustrated by determining the contact angle,
plant uptake and toxicity of dinotefuran/SPc complex. Finally, the environmental safety
of imidaclothiz/SPc complex was demonstrated by testing the residue, toxicity toward
non-target predatory lady beetles, and potential chemical damage toward tobacco plants.

2. Result and Discussion
2.1. Self-Assembly of Imidaclothiz/SPc Complex through Hydrophobic Interaction

The SPc is consisted of a hydrophilic shell with positively charged tertiary amines
and a hydrophobic core, and the particle size of SPc is 100.5 nm [9]. The hydrophobic core
is designed to combine with hydrophobic AIs, and the hydrophilic shell is beneficial for
improving the water solubility and dispersion stability of loaded AIs [10]. As expected,
the self-assembly of imidaclothiz/SPc complex could be easily realized through a simple
mix and incubation at room temperature for 15 min. The imidaclothiz concentration was
proportional to the ultraviolet absorption at 270 nm, and the PLC was calculated to be
16.31% (Figure S1), which was a bit lower than those of dinotefuran (17.41%), osthole
(17.09%) and thiamethoxam (20.63%) [16–18]. The loading efficiency of SPc is comparable
to those of other polymer-based nanocarriers [35,36]. The interaction of imidaclothiz
with SPc was also analyzed using the isothermal titration calorimetry (ITC) according to
the previous study (Figure 1) [37]. The negative ∆G revealed that the self-assembly was
automatic, and high affinity constant Ka of 5.053 × 105 M−1 and low dissociation constant
Kd of 1.979 × 10−6 M suggested that this interaction was strong. The positive values of
∆H and ∆S demonstrated that the complexation of SPc with imidaclothiz was through
hydrophobic association, revealing that the imidaclothiz was assembled in the hydrophobic
core of SPc. Based on the current and our previous studies, the SPc can assemble with
exogenous agents through different interactions [16–18], which is beneficial for expanding
the application area of SPc.
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250 μL of SPc solution (1 mmol/L), and the test temperature was 25 °C. 
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As shown in Figure 2B and Table 1, the complexation of imidaclothiz with SPc dis-

turbed the self-aggregated structure of imidaclothiz in aqueous solution, decreasing the 
particle size of imidaclothiz from 187.76 to 84.28 nm (mass ratio of 1:1). The particle size 
of imidaclothiz/SPc complex could be further reduced to 44.84 nm with the decreasing 
mass ratio. This conclusion was also supported by the representative transmission elec-
tron microscope (TEM) images (Figure 2A). It could be concluded that the most of 
self-aggregated imidaclothiz/SPc complex was composed of stable spherical particles 
with smaller size compared to imidaclothiz alone. The SPc can be applied as a universal 
adjuvant for pesticide nanometerization, and it is the first attempt to construct an im-
idaclothiz nano-delivery system to our knowledge [16–18]. The smaller particle size of 
polymer-loaded pesticide is beneficial for not only improving the systematic transmis-
sion and plant uptake of pesticide, but also increasing the contact area of pesticide to 
target pests for enhanced bioactivity [38–40]. 

Figure 1. Schematic illustration of imidaclothiz/SPc complex (A) and ITC titration of SPc into
imidaclothiz solution (B). The 2 mL of pure imidaclothiz solution (0.138 mmol/L) was titrated with
250 µL of SPc solution (1 mmol/L), and the test temperature was 25 ◦C.

2.2. Reduced Particle Size and Characterization of Imidaclothiz/SPc Complex

As shown in Figure 2B and Table 1, the complexation of imidaclothiz with SPc dis-
turbed the self-aggregated structure of imidaclothiz in aqueous solution, decreasing the
particle size of imidaclothiz from 187.76 to 84.28 nm (mass ratio of 1:1). The particle
size of imidaclothiz/SPc complex could be further reduced to 44.84 nm with the decreas-
ing mass ratio. This conclusion was also supported by the representative transmission
electron microscope (TEM) images (Figure 2A). It could be concluded that the most of
self-aggregated imidaclothiz/SPc complex was composed of stable spherical particles with
smaller size compared to imidaclothiz alone. The SPc can be applied as a universal adjuvant
for pesticide nanometerization, and it is the first attempt to construct an imidaclothiz nano-
delivery system to our knowledge [16–18]. The smaller particle size of polymer-loaded
pesticide is beneficial for not only improving the systematic transmission and plant uptake
of pesticide, but also increasing the contact area of pesticide to target pests for enhanced
bioactivity [38–40].
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F3,8 = 879.818, p < 0.001 
Means ± SE followed by different letters are significantly different (Tukey HSD test, p < 0.05). 

2.3. Reduced Contact Angle and Increased Plant Uptake of Imidaclothiz/SPc Complex 
The hydrophobic surface of plant leaves results in pesticide drift and environmental 

pollution [41,42]. After 10 s of contact, the contact angle of SPc-loaded imidaclothiz de-
creased from 95.56° to 82.48° (Figure 3A). Normally grown leaves carry a net negative 
charge, and the SPc with positively charged tertiary amines was more likely to be wetted 
on plant leaves. Furthermore, the SPc could reduce the surface tension of the im-
idaclothiz/SPc complex droplet to promote its spread and adhesion. Nanoparticles have 
been designed and applied as pesticide carriers for reduced contact angle and surface 
tension, and enhanced retention [43,44]. For instance, Chen et al. [45] has modified zein 
with dialdehyde carboxymethyl cellulose (DCMC) to construct a pesticide delivery sys-

Figure 2. TEM images (A) and particle size distributions (B) of imidaclothiz and imidaclothiz/SPc
complex at the mass ratio of 1:1.

Table 1. Reduced particle size of SPc-loaded imidaclothiz at various mass ratios.

Formulation Mass Ratio Sample Number Size (nm) Average Size (nm)

Imidaclothiz -
1 182.00

187.76 ± 6.31 a2 186.76
3 194.51

Imidaclothiz/SPc
complex

1:1
1 82.12

84.28 ± 2.04 b2 84.55
3 86.18

1:2
1 64.55

60.76 ± 3.28 c2 58.94
3 58.80

1:3
1 43.67

44.84 ± 1.26 d2 44.67
3 46.18

F3,8 = 879.818, p < 0.001
Means ± SE followed by different letters are significantly different (Tukey HSD test, p < 0.05).

2.3. Reduced Contact Angle and Increased Plant Uptake of Imidaclothiz/SPc Complex

The hydrophobic surface of plant leaves results in pesticide drift and environmen-
tal pollution [41,42]. After 10 s of contact, the contact angle of SPc-loaded imidaclothiz
decreased from 95.56◦ to 82.48◦ (Figure 3A). Normally grown leaves carry a net negative
charge, and the SPc with positively charged tertiary amines was more likely to be wetted on
plant leaves. Furthermore, the SPc could reduce the surface tension of the imidaclothiz/SPc
complex droplet to promote its spread and adhesion. Nanoparticles have been designed
and applied as pesticide carriers for reduced contact angle and surface tension, and en-
hanced retention [43,44]. For instance, Chen et al. [45] has modified zein with dialdehyde
carboxymethyl cellulose (DCMC) to construct a pesticide delivery system which can de-
crease the contact angle of loaded avermectin (AVM) and regulate the contact angle by
adjusting the mass ratio of zein to DCMC.
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Figure 3. Contact angles (A) and plant uptake (B–D) of imidaclothiz and imidaclothiz/SPc complex
at the mass ratio of 1:1. (A) Photos and correlation analysis of contact angles of various formulations.
Each treatment contained 3 independent samples. Different letters indicate significant differences
(Tukey HSD test, p < 0.05). (B) Schematic diagram for plant uptake assay. (C) Standard calibration
curve of imidaclothiz for liquid chromatography-tandem mass spectrometry. (D) Imidaclothiz
content in plants treated with imidaclothiz or imidaclothiz/SPc complex. Each treatment contained
3 independent samples. The “***” indicates significant differences (independent t test, p < 0.001).

Nano-delivery system has been applied to promote the transportation of pesticides
in plants. The AVM can be detected in stems and all leaves of rice plants treated with
nanocarrier-loaded AVM, whereas rare AVM was detected only in treated leaves for AVM
alone, revealing the enhanced transportation [46]. Similarly to the same class of imida-
cloprid, due to its high water solubility and good transportation in plants, imidaclothiz
can be taken up by plant roots and translocated upward, leading to relative enrichment in
leaves [47]. In the current study, the imidaclothiz contents in tobacco plants treated with im-
idaclothiz were 0.23, 0.45 and 0.89 mg/kg at 1, 6 and 12 h after the imidaclothiz immersion,
and those increased to 0.74, 1.80 and 2.62 mg/kg with the help of SPc (Figures 3B and S2).
The plant uptake of SPc-loaded imidaclothiz was remarkably improved 2.94–4.00 times,
which might be related to the smaller particle size and contact angle of imidaclothiz/SPc
complex. The mechanism of SPc-based enhanced cellular uptake has been elucidated in
our previous studies. The SPc-loaded chitosan can activate the endocytosis pathway of
potato plants by up-regulating CHMP5, Epsin, Rab7 gene, etc. [14]. The clathrin-mediated
endocytosis is the major route for SPc-mediated exogenous substance delivery, and the SPc
can remarkably improve the delivery efficiency of loaded cargo [15].
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2.4. Improved Bioactivity of SPc-Loaded Imidaclothiz toward Green Peach Aphids

The imidaclothiz has been used extensively to control pests such as aphids, planthop-
pers, whiteflies, etc. [48]. Based on the plant uptake data, the root application method
was firstly used to evaluate the bioactivity of imidaclothiz/SPc complex toward green
peach aphids in the laboratory (Figure 4). In the dose-dependent experiments, the mortal-
ity of aphids treated with SPc-loaded imidaclothiz was significantly increased by 18.20%
(5 mg/mL), 21.37% (3 mg/mL) and 21.77% (1 mg/mL) at 24 h after the treatment, which
was consistent with our previous study that the mortality of aphids treated with nanoscale
thiamethoxam through the root application was increased by approximately 20% compared
with thiamethoxam alone [17]. As expected, the SPc exhibited no obvious toxicity toward
aphids, confirming its negligible stomach toxicity. Extremely high concentrations of SPc
can down-regulate many membrane protein genes and lysosome genes, leading to the
damage of cell membrane in gut tissues of ladybirds [49]. Based on our current data, the
SPc exhibited an excellent biocompatibility.
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The highest concentrations of SPc and ddH2O were used as controls. Each treatment included ap-
proximately 30 aphids, which was repeated 5 times. The “*” and “**” indicate significant differ-
ences (independent t test, p < 0.05 and p < 0.01). 

Various formulations were sprayed against green peach aphids on tobacco plants in 
field, and two methods were used to analyze the control efficacy of SPc-loaded im-
idaclothiz. The dead aphids caused by various formulations exhibited dehydration and 
turned to black on tobacco leaves (Figure S3). According to the previous studies [10,13], 

Figure 4. Bioactivity of imidaclothiz/SPc complex toward green peach aphids through root appli-
cation. The pure imidaclothiz was mixed with SPc at the mass ratio of 1:5.1 according to the PLC.
The highest concentrations of SPc and ddH2O were used as controls. Each treatment included ap-
proximately 30 aphids, which was repeated 5 times. The “*” and “**” indicate significant differences
(independent t test, p < 0.05 and p < 0.01).

Various formulations were sprayed against green peach aphids on tobacco plants in
field, and two methods were used to analyze the control efficacy of SPc-loaded imidaclothiz.
The dead aphids caused by various formulations exhibited dehydration and turned to
black on tobacco leaves (Figure S3). According to the previous studies [10,13], the dropping
rate of aphids treated with imidaclothiz/SPc complex was significantly higher than that
of imidaclothiz, and the control efficacy of imidaclothiz/SPc complex could reach 76.75%
(4 d) and 81.91% (6 d) compared with 39.84% (4 d) and 47.90% (6 d) in imidaclothiz
treatment (Figure 5A,B). National standard (grade and investigation method of tobacco
diseases and insect pests, GB/T 23222-2008) was also used to analyze the control efficacy.



Int. J. Mol. Sci. 2022, 23, 6651 7 of 16

This method also supported the above conclusion that the aphid index in imidaclothiz/SPc
complex treatment was consistently lower than that of imidaclothiz treatment, and the
control efficacy of SPc-loaded imidaclothiz was significantly increased by 31.69% (4 d) and
28.89% (6 d) (Figure 5C,D). The potential mechanism explaining the enhanced bioactivity
may be due to the efficient pesticide nano-delivery system that increases the contact area
and plant uptake of pesticides. Similar to a previous study, Zhang et al. [50] constructed
the emamectin benzoate (EB) nanogel suspension with a polymer poly (vinyl alcohol)-
valine that exhibited higher anti-pest activity than EB emulsifiable concentrate against
Plutella xylostella, which might be related with the enhanced drug transport across the
physiological barriers.
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Figure 5. Control efficacy of imidaclothiz/SPc complex toward green peach aphids through spraying
method in field. Commercial preparation (cp) of imidaclothiz was mixed with SPc at the mass ratio
of 1:1. The 20 and 40 mg/L formulation was sprayed on 0 and 3 d, respectively, with the application
amount of 100 mL/m2. Sixteen plants from each plot were selected as 16 replicates to record the
number of aphids on the top five leaves. Dropping rate of insect (A) and control efficacy (B) were
calculated using method 1, and aphid index (C) and control efficacy (D) were calculated using method
2. The “*”, “**” and “***” indicate significant differences (independent t test, p < 0.05, p < 0.01 and
p < 0.001).

2.5. Relative Safety of SPc-Loaded Imidaclothiz

The widespread application of neonicotinoids has led to ubiquitous environmental
detection, and previous studies have proven the presence of neonicotinoids in various
types of bodies of water and soils [51–53]. For instance, imidaclothiz is fairly stable in
water and soil under natural conditions, and only 25.1% of imidaclothiz can be degraded
over a long period of 25 days in soils [54,55]. Whether enhanced plant uptake of SPc-
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loaded imidaclothiz leads to the higher residue is an inevitable problem before large-scale
field application. As shown in Figures 6 and S4, the imidaclothiz residue 3–5 d after the
treatment of imidaclothiz/SPc complex was significantly higher than that of imidaclothiz,
but the residue was lower on 7 d with the help of SPc. The degradation rate of imidaclothiz
alone was 12.67% and 16.15% on 5 and 7 d, and the SPc-loaded imidaclothiz degraded
faster with a degradation rate of 13.77% and 34.89%. These results suggested that the
SPc could accelerate the degradation of imidaclothiz, which might be due to the faster
biodegradation of nanoscale complex in tobacco plants [16,18]. Therefore, the SPc can be
applied as a pesticide adjuvant to decrease the pesticide residue and mitigate the negative
impacts on the environment. Meanwhile, the status of tobacco plants was observed since
the immersion, and no obvious negative effects of SPc-loaded imidaclothiz on plant growth
were observed (Figure S5).
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Figure 6. Residue and degradation rate of SPc-loaded imidaclothiz in tobacco plants. Five-leaf
stage tobacco plants were immersed in imidaclothiz or imidaclothiz/SPc complex solution for
1 min, and collected on 3, 5 and 7 d after the immersion for liquid chromatography-tandem mass
spectrometry (LC-MS/MS) analysis. Each treatment contained 3 independent samples. The “***”
indicates significant differences according to the independent t test (p < 0.001).

There is no or very little information about the negative effects of imidaclothiz on non-
target organisms. There is only one reference reporting the negative effects of imidaclothiz
on earthworms, and the imidaclothiz can induce oxidative damage which causes damage
to vital macromolecules [56]. In structure, imidaclothiz has the same imidazolidine ring
and nitroguanidine moiety as imidacloprid that exhibits the ecological hazards to earth-
worms at different organization levels [26,57]. Predatory lady beetles are famous biological
agents, and their eggs have been widely released in greenhouses for pest management.
The neonicotinoids can influence the performance of lady beetles, which are moderately
harmful to the predatory lady beetles [28]. As shown in Figure 7A, the toxicity of SPc-
loaded imidaclothiz was slightly improved against the larvae of lady beetles due to the
enhancement of broad-spectrum bioactivity. However, the application of imidaclothiz/SPc
complex or imidaclothiz exhibited nearly no negative effects on the hatching rate of lady
beetles (Figure 7B,C).
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Figure 7. Potential negative effects of SPc-loaded imidaclothiz on lady beetle Harmonia axyridis.
(A) Toxicity of SPc-loaded imidaclothiz against 1st instar larvae of lady beetles. The larvae were
immersed in the formulations of imidaclothiz/SPc complex, imidaclothiz, SPc and ddH2O (control)
for 10 s, and the mortality was recorded and calculated. Each treatment included approximately
20 larvae and was repeated 4 times. The “*” and “**” indicate significant differences according to
the independent t test (p < 0.05 and p < 0.01). (B) Photos of lady beetle eggs treated with various
formulations. The eggs of lady beetles were immersed in the formulations of imidaclothiz/SPc
complex at the mass ratio of 1:1 (imidaclothiz concentration: 40 mg/mL), imidaclothiz, SPc and
ddH2O (control) for 10 s, and the photos were collected 3 d after the immersion. The arrows indicate
the dead eggs. (C) Egg hatching rate of lady beetles. The hatching rate of above treated eggs was
recorded and calculated 3 d after the immersion. Each treatment included approximately 30 eggs and
was repeated 4 times.

3. Experimental Methods
3.1. Materials

Pure imidaclothiz (≥98%) and cp imidaclothiz (effective content: 10%) were purchased
from Macklin Inc. (Shanghai, China) and Nantong Jiangshan Agrochemical Co., Ltd. (Nan-
tong, China), respectively. The 2-bromo-2-methylpropionyl bromide and triethylamine
were purchased from Heowns BioChem Technologies (Tianjin, China), the N,N,N′,N′,N”-
Pentamethyl diethylenetriamine (PMDETA, 98%) and CuBr (99.999%) were purchased
from Sigma-Aldrich (Saint Louis, MO, USA), and the 2-(Dimethyl amino) ethyl methacry-
late (DMAEMA, 99%) purchased from Energy Chemical (Shanghai, China) was used to
synthesize the star polymer (SPc). Other agents were purchased from Beijing Chemical
Works (Beijing, China).
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3.2. SPc Synthesis

As shown in Figure 8A, the SPc was synthesized according to the method described
by Li et al. [9]. In brief, the SPc was synthesized using the commercial and cheap material
sources through two reaction steps. The 2-bromo-2-methylpropionyl bromide (253 mg,
1.11 mmol) was added dropwise into the pentaerythritol solution (25 mg, 0.18 mmol) in dry
tetrahydrofuran (THF, 20 mL) and triethylamine (TEA, 111.3 mg, 1.11 mmol) at 0◦C. The
reaction was quenched with methanol after stirring for 24 h at room temperature, and the
product was recrystallized in cold ether to obtain the star initiator Pt-Br (50 mg, 40%) that
was confirmed by 1H NMR (CDCl3, Bruker 400, Billerica, Massachusetts, USA). The Pt-Br
(40 mg, 0.055 mmol), DMAEMA (2.2 g, 7.7 mmol) and dry THF (8 mL) were added into a
flask, and the mixture was degassed by nitrogen for 30 min. The CuBr (46 mg, 0.22 mmol)
and PMDETA (110 mg, 0.44 mmol) were then added, and the polymerization was carried
out at 60 ◦C for 7 h. The reaction was quenched by cooling and air exposure, and the THF
was removed and recycled for the next polymerization to decrease the production cost. The
crude polymer was purified by dialysis in water four times, and the white powder of SPc
was finally obtained, which was also confirmed by 1H NMR (CDCl3, Bruker 400, Billerica,
MA, USA).
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3.3. Construction of Imidaclothiz Nano-Delivery System

As shown in Figure 8B, pure imidaclothiz and SPc were dissolved in double distilled
water (ddH2O) to prepare the 2 mg/mL of imidaclothiz and SPc aqueous solution, respec-
tively. The imidaclothiz solution was mixed with SPc solution at different mass ratios, and
the mixture was incubated for 15 min at room temperature to prepare the imidaclothiz nano-
delivery system. The SPc could spontaneously combine with pesticide into pesticide/SPc
complex [16,17].

3.4. Loading Capacity Measurement

Pure imidaclothiz was dissolved in ddH2O to prepare a series of imidaclothiz dilutions
(0, 8, 11, 14, 17 and 20 µg/mL), and the ultraviolet absorbance was determined via UV-vis
spectrophotometry (Thermo Genesys180, Saint Louis, MO, USA). The standard calibration
curve was constructed using the absorbance at 270 nm. The 2 mL of excess imidaclothiz
solution (0.25 mg/mL) was mixed with 2 mL of SPc solution (0.304 mg/mL) to determine
the pesticide loading content (PLC). The mixture incubated for 15 min was dialyzed using
the regenerated cellulose with a molecular weight cutoff of 1000 Da (Shanghai Yuanye Bio-
Technology Co., Ltd., Shanghai China) for 12 h. The absorbance at 270 nm was measured
to determine the imidaclothiz concentration, and the PLC was calculated using the formula
of PLC (%) = weight of imidaclothiz loaded in complex ÷ weight of imidaclothiz-loaded
complex × 100%.

3.5. Isothermal Titration Calorimetry (ITC) Assay

As a universal method, ITC is a high-accuracy method for measuring binding affini-
ties [58,59], which was performed to examine the binding force between imidaclothiz and
SPc. The 2 mL of pure imidaclothiz solution (0.138 mmol/L) was titrated with 250 µL of
SPc solution (1 mmol/L) in Nano ITC (TA Instruments Waters, New Castle, DE, USA).
The heats of interaction during each injection were calculated by integrating each titration
peak using Origin7 software (OriginLab Co., Ltd., Northampton, MA, USA). The test
temperature was 25 ◦C, and ∆G was calculated using the formula of ∆G = ∆H − T∆S.

3.6. Particle Size Measurement and Complex Morphology Characterization

Pure imidaclothiz was mixed with SPc at the mass ratios of 1:1, 1:2 and 1:3 to pre-
pare the imidaclothiz/SPc complex, respectively. The particle sizes of imidaclothiz and
imidaclothiz/SPc complex at various mass ratios were measured using a Particle Sizer
and Zeta Potential Analyzer (Brookhaven NanoBrook Omni, New York, NY, USA) at
25 ◦C. Each treatment contained 3 independent samples. The morphologies of imidaclothiz
and imidaclothiz/SPc complex at the mass ratio of 1:1 were further examined using a
transmission electron microscope (TEM, JEOL-1200, Tokyo, Japan). A 10 µL of each sample
was dropped on the microgrid and treated with 2% phosphotungstic acid. Two samples
were air-dried before the observation.

3.7. Contact Angle Analysis

The contact angles of pure imidaclothiz and imidaclothiz/SPc complex at the mass
ratio of 1:1 were examined to evaluate the wetting performance using an Optical Contact
Angle Meter (Date Physics Corporation OCA25, Stuttgart, Germany) according to the
method described by Zhu et al. [60]. The SPc and ddH2O were applied as controls. The
5 µL of various samples (1 mg/mL) was dripped onto the glass slide, and the image of
contact angle between the liquid and glass slide was collected when the droplet became
stable for approximately 10 s. The contact angle was analyzed using the ellipse fitting
algorithm [61]. The algorithm assumes that the water drop profile is part of an ellipse. Each
treatment included 3 independent samples.



Int. J. Mol. Sci. 2022, 23, 6651 12 of 16

3.8. Plant Uptake Analysis

Cp imidaclothiz was mixed with SPc at the mass ratio of 1:1 to prepare imida-
clothiz/SPc complex solution (imidaclothiz concentration: 40 mg/L), which was used
to test the plant uptake. Five-leaf stage tobacco plants (Nicotiana benthamiana) were im-
mersed in imidaclothiz or imidaclothiz/SPc complex solution for 1 min, and then air-
dried. The plant uptake needed to be examined in a relatively short time; thus the plants
were washed with ddH2O to remove the pesticide on the plant surface at 1, 6 and 12 h
after the immersion, and collected for liquid chromatography-tandem mass spectrome-
try (LC-MS/MS) analysis. The ddH2O was used as control. Each treatment included
3 independent samples.

The extraction and quantification of imidaclothiz were similar to the procedure de-
scribed by Jiang et al. [18]. In brief, the imidaclothiz was extracted from homogenized
plants (5 g) using 20 mL acetonitrile acetate (1%). After the centrifugation, the 20 mL of
supernatant was evaporated using nitrogen (40 ◦C) until the volume was reduced to 1 mL,
which was purified using a polytetrafluoroethylene membrane filter (Haiming Zhongli
Filtering Equipment Factory, Haining, China). The obtained residues were dissolved in
1 mL acetonitrile/water (2:8 v/v) for LC-MS/MS analysis, which was performed on an
ACQUITY UPLC-TQD system (Waters Co., Milford, Massachusetts, USA) with a Shim-Pack
GIST C18 column (2 µm, 2.1× 100 mm, Shanghai, China). The two analytes were separated
using a mobile phase consisting of acetonitrile-0.1% formic acid (2:8 v/v) solution. The
injection volume was 20 µL, and the column temperature was 40 ◦C.

3.9. Bioactivity Evaluation through Root Application in Laboratory

According to the PLC, pure imidaclothiz was mixed with SPc at the mass ratio of 1:5.1
to prepare the imidaclothiz/SPc complex (imidaclothiz concentration: 5, 3 and 1 mg/mL).
The root application was applied to examine the bioactivity of imidaclothiz/SPc complex
toward green peach aphids that pierce the phloem and indirectly transmit plant virus in
many crops [62]. Similar to the methods described by Deng et al. [63] and Zhang et al. [64],
the roots of 9–10 cm height radish seedlings infested with aphids (about 30 aphids per plant)
were immersed in the formulations of imidaclothiz and imidaclothiz/SPc complex. The
highest concentrations of SPc and ddH2O were employed as controls. The treated aphids
were maintained at 18 ± 1 ◦C, 80 ± 10% relative humidity and 14L: 10D photoperiod in an
incubator. The number of dead aphids was recorded at 12, 24 and 36 h after the treatment,
and mortality was calculated. Each treatment was repeated 5 times.

3.10. Bioactivity Evaluation through Spraying Application in Field

Cp imidaclothiz was mixed with SPc at the mass ratio of 1:1 to prepare the imida-
clothiz/SPc complex (imidaclothiz concentration: 20 and 40 mg/L). The spraying ex-
periment was carried out against green peach aphids in tobacco field. The 20 mg/L of
imidaclothiz and imidaclothiz/SPc complex was firstly sprayed on 0 d using an electric
528B (Shenzhen Longray Tech. Co., Shenzhen, China) with the application amount of
100 mL/m2, and the 40 mg/L of imidaclothiz and imidaclothiz/SPc complex was sprayed
on 3 d again. The 200 and 400 mg/L of SPc were also sprayed on 0 and 3 d, respectively.
The ddH2O was applied as control. The area of each plot was 40 m2 and each plot contained
approximately 80 plants. Sixteen plants from each plot were selected as 16 replicates to
record the number of aphids on the top five leaves on 0, 1, 3, 4 and 6 d.

Two methods were used to calculate the control efficacy. (1) According to the previous
studies [10,13], the dropping rate of insect (DRI) and control efficacy (CE) were calculated
using the formulas of DRI (%) = (aphid number before pesticide application − aphid num-
ber after pesticide application) ÷ aphid number before pesticide application × 100% and
CE (%) = (DRI in the treatment plot − DRI in the control plot) ÷ (100 − DRI in the control
plot) × 100%. (2) According to the national standard (grade and investigation method
of tobacco diseases and insect pests, GB/T 23222-2008), the plants infested with aphids
were classified. Grade 0: no aphid; Grade 1: 1~5 aphids/leaf; Grade 3: 6~20 aphids/leaf;
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Grade 5: 21~100 aphids/leaf; Grade 7: 101~500 aphids/leaf; Grade 9: >500 aphids/leaf.
The aphid index (AI) and control efficacy (CE) were calculated using the formulas of
AI (%) = Σ (number of leaves infested with aphids × grade) ÷ (number of investigated
leaves × 9) × 100% and CE (%) = (1 − AI in treatment plot after pesticide application × AI
in control plot before ddH2O application) ÷ (AI in treatment plot before pest application ×
AI in control plot after ddH2O application) × 100%.

3.11. Safety Assessment of SPc-Loaded Imidaclothiz

Neonicotinoid residue has been a major public concern around the world and is
directly related to food and environmental safety [27,64]. The degradation rate of imida-
clothiz is relatively low compared to that of acetamiprid or thiacloprid, which may pose a
potential risk to human health [65]. To examine the residue of SPc-delivered imidaclothiz,
cp imidaclothiz was mixed with SPc at the mass ratio of 1:1 to prepare imidaclothiz/SPc
complex (imidaclothiz concentration: 40 mg/L). Five-leaf stage tobacco plants were im-
mersed in imidaclothiz or imidaclothiz/SPc complex solution for 1 min, and collected
on 3, 5 and 7 d after the immersion for LC-MS/MS analysis. Each treatment included
3 independent samples. The degradation rate (DR) was calculated using the formula of
DR (%) = (imidaclothiz content on 3 d − imidaclothiz content on 5/7 d) ÷ imidaclothiz
content on 3 d × 100%. Meanwhile, considering the potential chemical damage brought
by SPc-delivered pesticides, the status of the above treated plants was observed since the
immersion, and the plant height, plant weight, and the largest leaf length and width were
measured on 0, 3, 5 and 7 d after the immersion. Six plants were selected as 6 replicates to
record the data.

As a major predator of aphids, lady beetle H. axyridis was selected to evaluate the
toxicity of SPc-loaded imidaclothiz. The eggs of lady beetles were immersed in pure
imidaclothiz/SPc complex at the mass ratio of 1:1 (imidaclothiz concentration: 40 mg/mL),
pure imidaclothiz, SPc and ddH2O (control) for 10 s, and the hatching rate was recorded
and calculated on 3 d after the immersion. Meanwhile, the first instar larvae were treated
similar as above, and the mortality was recorded and calculated on 1, 2 and 3 d after the
immersion. Each treatment included approximately 30 eggs or 20 larvae, and was repeated
4 times.

3.12. Data Analysis

The Tukey HSD test or independent t test was conducted using SPSS 26.0 (SPSS Inc.,
New York, NY, USA) at the p = 0.05 level of significance. The descriptive statistics were
shown as the mean value and standard errors of the mean.

4. Conclusions

Herein, a relatively safe imidaclothiz nano-delivery system was constructed success-
fully based on a star polymer. The imidaclothiz could be loaded in the hydrophobic core
of SPc spontaneously through hydrophobic association. This self-assembly formed nearly
spherical particles of imidaclothiz/SPc complex with nanoscale size. The contact angle
of imidaclothiz decreased with the help of SPc, suggesting the easier distribution and
spreading of imidaclothiz/SPc complex. Furthermore, the plant uptake of SPc-loaded
imidaclothiz was remarkably increased and thus its bioactivity and control efficacy were
significantly improved against green peach aphids in both laboratory and field. Excitingly,
the SPc-loaded imidaclothiz degraded faster than imidaclothiz alone in tobacco plants
due to the smaller particle size. In addition, the imidaclothiz/SPc complex exhibited no
negative effects on the agronomic traits of tobacco plants but had a slight synergistic effect
on predatory lady beetles. The current study has constructed a pesticide nano-delivery
system for improved plant uptake, reduced residue and enhanced bioactivity, which is
beneficial for pesticide reduction in sustainable agriculture.
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