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SUMMARY

Human hematopoiesis is surprisingly resilient to disruptions, providing suitable
responses to severe bleeding, long-lasting immune activation, and even bone
marrow transplants. Still, many blood disorders exist which push the system
past its natural plasticity, resulting in abnormalities in the circulating blood.While
proper treatment of such diseases can benefit from understanding the underlying
cell dynamics, these are non-trivial to predict due to the hematopoietic system’s
hierarchical nature and complex feedback networks. To characterize the dy-
namics following different types of perturbations, we investigate a model repre-
senting hematopoiesis as a sequence of compartments covering all maturation
stages—from stem to mature cells—where feedback regulates cell production
to ongoing necessities. We find that a stable response to perturbations requires
the simultaneous adaptation of cell differentiation and self-renewal rates, and
show that under conditions of continuous disruption—as found in chronic hemo-
lytic states—compartment cell numbers evolve to novel stable states.

INTRODUCTION

Hematopoiesis is the physiological process responsible for the production of all circulating blood cells.

This includes the oxygen-carrying erythrocytes and several types of white blood cells associated with the

innate and adaptive immune response and platelets. The general mechanism follows a hierarchical archi-

tecture, with rare slowly replicating multipotent hematopoietic stem cells (HSCs) seeding more differenti-

ated progenitors that increase in frequency through successive levels of maturation (Doulatov et al., 2012;

Laurenti and Göttgens, 2018; Notta et al., 2016). Considering the ubiquitous nature of hematopoietic cell

types in the body, it is no surprise that we observe many disorders—often hereditary in origin—related to

improper development or problematic behavior in the bone marrow (Kaushansky, 2016).

Detailed experimental studies of various aspects of this process can be found dating back to the previous

decennium—spanning topics such as HSCs (Eaves, 2015), lineage development (Höfer and Rodewald,

2018; Notta et al., 2016), and signaling pathways (Robb, 2007)—resulting in a qualitatively detailed picture

of this architecture. However, from a quantitative viewpoint our collective knowledge is still lacking, in no

small part due to the fact that in vivo studies of the bone marrow cell dynamics present numerous chal-

lenges. Still, in the past decades a handful of mathematical models aimed at understanding the dynamics

of hematopoiesis have been developed (Bélair et al., 1995; Bernard et al., 2003; Adimy et al., 2005; Dingli

et al., 2007, 2008, 2009; Marciniak-Czochra et al., 2008; Lo et al., 2009; Doumic et al., 2011; Pacheco et al.,

2008; Lenaerts et al., 2010; Mon Père et al., 2018; Roeder and Loeffler, 2002; Schirm et al., 2013, 2014, 2018;

Krinner et al., 2013; Scholz et al., 2010; Engel et al., 2004; Kirouac et al., 2009, 2010), covering topics such as

stem cell organization (Kirouac et al., 2009; Marciniak-Czochra et al., 2008; Mon Père et al., 2018; Roeder

and Loeffler, 2002), maturation pathways (Bélair et al., 1995; Doumic et al., 2011; Engel et al., 2004; Krinner

et al., 2013; Lo et al., 2009; Schirm et al, 2013, 2014; Scholz et al., 2010), regulatory networks (Kirouac et al,

2009, 2010), and behaviors in selected disease contexts (Adimy et al., 2005; Bernard et al., 2003; Dingli et al.,

2009; Lenaerts et al., 2010; Mon Père et al., 2018; Pacheco et al., 2008; Schirm et al., 2018; Werner

et al., 2011). Given the complex multicompartment structure of hematopoiesis and its reliance on the

presence of cytokines, chemokines, hormones, and the local microenvironment, regulatory feedback

loops linking such compartments are expected to be present. These feedback loops likely have important

consequences on the overall cell dynamics, especially after the occurrence of perturbations which

disrupt normal homeostasis. A number of important models describing selected feedback-driven

organizations within the hematopoietic system have been proposed by Loeffler, Scholtz, and colleagues
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(Engel et al., 2004; Krinner et al., 2013; Schirm et al, 2013, 2014; Scholz et al., 2010), which study compart-

ment-based differentiation dynamics under various pressures such as chemotherapy and growth factor

administration. These efforts have demonstrated how such models can provide important insights into

the behavior and architecture of the hematopoietic system, as well as aid in predicting the course of treat-

ment strategies against diseased states. As such, understanding the types of dynamical behaviors which

may occur under compartmental feedback can be important for understanding the progression of hemato-

poietic diseases which affect blood cell production, concentration, and development. Here we take a gen-

eral approach to investigating some properties of this class of systems, with a focus on how perturbations

to cell numbers can influence the self-renewal and differentiation behavior of the maturing cells. To this

end, we develop a theoretical model which, starting from the description of hematopoiesis developed

by Dingli et al. (Dingli et al., 2007), introduces regulatory feedback mechanisms that allow the system to

react to perturbations, for example a loss of cells due to bleeding or hemolysis. In the following context,

we introduce a general formalism for modeling feedback in linked hierarchical compartments by specifying

the requirements of such a coupling without specific knowledge of the coupling function itself. Subse-

quently, we apply this feedback structure to examine the dynamics of a multistage feedback-driven

compartmental model of hematopoiesis, validated using data from a study on erythrocyte dynamics (Hill-

man and Henderson, 1969). We study possible dynamic behaviors after a perturbation and identify under

which conditions these occur. Finally we assess how the behavior changes under chronic perturbations.
RESULTS

Model development

The model of Dingli et al. (Dingli et al., 2007) constitutes our starting point. It describes the maturation

process of hematopoietic cells through a fixed number M of discrete compartments associated with pro-

gressive ‘‘levels’’ of differentiation that all cells traverse before leaving the bone marrow. Within each

compartment j a cell divides at a predefined rate rj , where each division is considered symmetric (for

simplicity), that is, it gives rise to two identical daughter cells. These are either exact replicas of the

parent—with probability 1� εj—and thus remain in the current compartment j, or have differentiated—

with probability εj—and thus move to the subsequent compartment j + 1. Under homeostatic conditions

the number of cells in each compartment should remain approximately constant in time, while compart-

ment sizes increase toward maturity at a fixed ratio Nj + 1=Nj =h to accommodate the expansion of a small

number of stem cells (N0, of the order of several hundred for humans) to the daily output of the bone

marrow (NMz1011). This exponential increase is mirrored by the division rates: rj + 1=rj = r, while the differ-

entiation probability is taken the same for all maturing compartments: εj = ε. Only for the very first stem cell

compartment ε0 = 0:5 is required, as there is no flux of cells entering it from other compartments. Values for

these parameters can be derived by fixing the initial and final compartment sizes and division rates, and

using the equilibrium requirement vtNj = 0 (see supplemental information).

In order to address the coupling between compartments through feedback, we now alter the existing

formalism. First, we formally describe both types of division—self-renewal (j/j) and differentiation (j/

j + 1)—as independent Poisson processes occurring with rates vj and sj, respectively. It can be shown

that this description is equivalent to the original one through the relations rj = sj + vj and εj = sjðsj + vjÞ�1

(see supplemental information for a detailed derivation). The cell dynamics are given by the following

equations for cell numbers in each maturing compartment j:

vtNj = 2sj�1Nj�1 �
�
sj � vj

�
Nj (Equation 1)

We furthermore add an additional compartment for cells that reach maturity after leaving the final bone

marrow compartment M, the size of which is taken from a recent estimate of the total number of cells in

the peripheral blood (Sender et al., 2016): NPBz1013. In this compartment cells no longer differentiate;

however their number can still decrease due to cell death or destruction. Thus, the first (HSC) and final (pe-

ripheral blood) compartments behave according to

vtNHSC = � ðsHSC � vHSCÞNj

vtNPB = 2sMNM � mPBNPB
(Equation 2)

where mPB is the constant (normal) death rate of cells in the peripheral blood compartment. Under homeo-

static conditions the system is stable with NjðtÞ=N�
j and vtN

�
j = 0, and the division rates are given by their

homeostatic values v�j and s�j . We introduce feedback through sequential coupling between successive

compartments, by allowing these division rates of each compartment to vary depending on the number
2 iScience 24, 102326, April 23, 2021



Figure 1. Illustration of linear and logistic differentiation rate functions

Both are bounded between 0 and kss
�, and have sð0Þ = s�.
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of cells in a neighboring downstream compartment. Given a perturbation ni = ðNi �N�
i Þ=N�

i on the cell num-

ber in compartment i, we are thus looking for non-negative functions vjðniÞ and sjðniÞ that produce a nega-

tive feedback response—i.e. opposing the sign of ni. Furthermore, we assume there is an upper limit to how

many divisions a cell can undergo in a fixed span of time, thus determining upper bounds on vjðniÞ and
sjðniÞ : Naturally, the fact that homeostasis is maintained in the absence of any perturbation implies that

vjð0Þ= v�j and sjð0Þ = s�j .

From the outset, the functions vjðniÞ and sjðniÞare expected to be the solution of a highly non-linear ecolog-

ical network of various cell types, nutrients, and signaling factors (Otto and Day, 2007). Here, instead, we

look for the simplest functional form that fulfills the requirements above; this leads us to the bounded linear

form (Figure 1):

qðnÞ =
8<
:

0; ð1� aqnÞ<0
q�ð1� aqnÞ; 0>ð1� aqnÞ>kq
kqq

�; ð1� aqnÞ>kq
(Equation 3)

where q represents either v or s. Furthermore, since by conception we are only interested in a coupling

which exhibits negative feedback—i.e. where the reaction counteracts the effects of the perturbation—

we require aqR0. Intuitively, this can be understood as only considering systems in which a loss of cells

in a compartment causes an increase in production in the reacting upstream compartment and an excess

of cells causes a decrease in production, as the converse would result in a positive feedback.

A smoother version is easy to define by drawing inspiration from classical ecological systems, which mirror

the competition for promoting or inhibiting factors among different cell groups (Otto and Day, 2007; Stro-

gatz, 2001). In this vein, a logistic function (Figure 1) of the form

qðnÞ
q�

=
kq

1+ ðkq � 1Þeaqn
(Equation 4)

where the parameters kq and aq play analogous roles in determining respectively the maximum and the

slope, constitutes a natural choice.

While the rate functions defined above provide a useful method for coupling any pair of compartments,

modeling the full hematopoietic system requires an interaction network that defines the pairwise connec-

tions between compartments. Many complex circuits are possible, and the number of potential interaction

combinations (through pairs or higher orders) increases dramatically with the number of compartments.

Here, we explore a simple case, in which all compartments are coupled sequentially to their downstream
iScience 24, 102326, April 23, 2021 3
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neighbors, so that the rate functions have the form sjðnj + 1Þ and vjðnj + 1Þ for all j. Given this interaction

network, as well as the rate functions and their parameters as, ks, av , kv˛R+ , the solution to (1) for M com-

partments can be obtained numerically through any finite difference method.
Sequential coupling elicits three types of behavior

We start by examining the case in which hematopoiesis proceeds under homeostasis when a perturbation oc-

curs in a single compartment. The response in the absence of feedback mechanisms has been studied previ-

ously (Werner et al., 2011) and can be recovered in this model by fixing the division rates to their homeostatic

values: vjðtÞ= v�j and sjðtÞ = s�j . Equation 1 shows that without feedback the compartmental coupling is entirely

one-directional and upstream: the dynamics of Nj depends on Nj�1 but not on Nj + 1, meaning that compart-

ments will not respond to disturbances taking place in downstream compartments. Still, when a transient

perturbation from equilibrium occurs in a given compartment j, the homeostatic equilibrium is eventually

restored (Figure 2A), though in the absence of downstream coupling the relaxation time is too long to match

real recovery times (Figure 2), as recent studies on blood donations estimate a typical recovery of hemoglobin

contentwithin 20–60 days (Kiss et al., 2015; Pottgiesser et al., 2008; Ziegler et al., 2015). In this scenario, while all

upstream neighbors j � k remain in homeostatic conditions (nj�k = 0) all downstream j + k are affected as the

perturbation moves successively through these compartments (Werner et al., 2011).

This behavior will change when feedback—as described above—is introduced: A dependence of Nj on

Nj + 1 is now included and a similar wavelike propagation upstream is now expected. In this model we distin-

guish three types of dynamics which may follow a perturbation, each of which occurs in a particular regime

of the feedback parameters as, av , ks, and kv (Supplemental Information S3). These possible responses are

illustrated in Figure 2, which shows the system’s dynamics following a perturbation in the peripheral blood

compartment. In the first regime (Figure 2B) the reacting compartmentM (approximately) maintains its ho-

meostatic cell number, vtnj<j + 1 = 0, which effectively prevents the perturbation from propagating up-

stream. This is achieved by a balanced response of self-renewal and differentiation: the altered rates at

which cells are added (vðnÞ) to and removed (sðnÞ) from the compartment result in no net gain (or loss)

of cells. While we find that the logistic coupling functions can never perfectly achieve this result, a first-order

approximation sets the requirement vnsðnÞ= vnvðnÞ (see supplemental information). Introducing the simpli-

fication ks = kvhk, which in the biological sense implies that the maximum division rates which can occur

are the same for self-renewal and differentiation, this reduces to

av =
�
s�j
.
v�
j

�
as (Equation 5)

Note that this requirement implies that for a balanced response the slope of vðnÞmust be steeper than that

of sðnÞ (Figure 2B), since s�j >v
�
j (see supplemental information and [11]). Intuitively, this means that as the

differentiation rate changes, the self-renewal rate must change even more if the reacting compartment’s

cell number is to remain unperturbed. In the second regime (Figure 2C), the reacting compartment’s

cell number is perturbed in the same direction as the original perturbation—becoming reduced if the

perturbation is negative (loss of cells) or increased if the perturbation is positive (excess cells)—causing

the perturbation to propagate upstream with the same sign as the initial disruption. This occurs when

vns<vnv (in a first order approximation; see supplemental information), which implies the differentiation

rate is changing more than the self-renewal rate. We therefore describe this response as being differenti-

ation-driven. In the third regime (Figure 2D), the reacting compartment’s cell number changes in opposi-

tion to the initial perturbation direction, which leads to damped oscillations in the perturbed and upstream

compartments. This occurs when vnv<vns (see supplemental information), corresponding to the converse

circumstance where the variation in self-renewal rate dominates, which we denote as the self-renewal-

driven response. Compared to the non-feedback case (Figure 2A), each of these behaviors reduces the

time required for the perturbed compartment to return to equilibrium.
Increasing cell amplification between compartments reduces stability

The number of interacting compartments M also influences the overall dynamics. Note that M need not

necessarily be the same as the number of differentiation stages found through traditional methods such

as surface marker identification or transcriptional profiling, as our treatment is flexible enough to loosely

describe stages of development which interact through feedback, and thus these compartments may

encompass multiple maturation stages found in other models. To ensure a meaningful comparison, we

change M assuming the same number of cells at the root of the hematopoietic tree and under circulation.
4 iScience 24, 102326, April 23, 2021
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Figure 2. Dynamical behaviors following a perturbation in the peripheral blood compartment for different

regimes of the coupling parameters

For each regime (A–D) the dynamics following a perturbation in the peripheral blood compartment is shown for a system

with M = 8, and parameters ks, kv , and as obtained from parameterization to Hillman et al. (Hillman and Henderson, 1969)

(see section inclusion of feedback allows prediction of erythrocyte dynamics for details). The first row shows the

perturbation nj on the cell number for the final four compartments (peripheral blood [PB], M, M-1, andM-2) over time. The

second row shows the altered differentiation and self-renewal rates as a factor of normal in time. The third row shows the

shape of the coupling functions sðnÞ and vðnÞ. The feedback-free system is shown in (A) and can be obtained by setting as

and av to 0. (B) shows the balanced (to first-order) response where (4) is satisfied. (C) shows the differentiation-driven

response with av<ðs�j ⁄ v�j Þ as, and (D) shows the self-renewal-driven response where av>ðs�j ⁄ v�j Þ as.
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Thus, smaller M implies larger cell amplification rates between consecutive compartments. Varying M is

found to influence the stability of the hematopoietic system with respect to the rate parameters: when de-

viations from the balanced response take place, one obtains an increase in amplitude of upstream pertur-

bations with decreasingM (see supplemental information). In this sense, hematopoietic models with lower

M are less stable under perturbations on the parameters as and av . It is worth noting here that stability
iScience 24, 102326, April 23, 2021 5
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under variation of these parameters forms an important requirement for the system itself and will be dis-

cussed in detail later.

Recovery time as a measure of efficiency

The time for a compartment to recover from a perturbation is an important measure of the efficiency of he-

matopoiesis, as an expedited recovery can be considered more advantageous for the host. This recovery

time is directly determined by the strength of the response to a loss of cells, which themodel itself sets little

restriction on: The k and a parameters—respectively determining the maximal increase in divisions and the

severity of the perturbation at which this maximal value is reached—can technically (i.e. as long as Equa-

tion 5 is fulfilled) be taken arbitrarily high without inducing oscillations or positive feedback. However, in

real hematopoiesis one would expect physical limitations to apply to these, such as for example the

time and/or resources required for cells to undergo additional divisions. In addressing the recovery

time, we should take all possible recovery types into consideration. Indeed, we should keep in mind that

hematopoietic cell numbers fluctuate in time even under homeostatic conditions (Kaushansky, 2016).

Consequently, it is reasonable to assign some range around the model’s equilibrium value within which

a compartment can be considered ‘‘recovered’’. For example, while Figure 2B shows a greatly improved

response compared to the feedback-freemodel in 2a, the oscillatory behavior in Figure 2D presents a qual-

itatively superior result with respect to the recovery time, if we consider a compartment to be recovered

once it has returned to within approximately 2% of its homeostatic value. Thus a slight emphasis on self-

renewal rather than differentiation in the response can be beneficial if the resulting oscillations are small

in amplitude. Conversely, while the regime depicted in 2c (emphasis on differentiation) also improves

upon the feedback-free model, it is less efficient than that of 2b, as the resulting positive feedback always

reduces efficiency.

As previously noted, realistic estimates for the recovery time after a loss of erythrocytes can be obtained

from studies on hemoglobin recovery after blood donation. This procedure comprises the extraction of

around 500mL of whole blood and results in a perturbation of z10% of the baseline hemoglobin mass.

One study by Pottgiesser et al. (Pottgiesser et al., 2008) found recovery to within 2% of the baseline value

occurring after 20 to 60 days in a cohort of 29 individuals. This timing was corroborated in a later work by

Kiss et al. (Kiss et al., 2015), who furthermore found that individual recoveries depended highly on the

body’s access to iron—both through supplementary intake as well as available iron stores (ferritin)—with

the longest recovery times reaching past 150 days in individuals who presented low ferritin levels before

donation and did not supplement iron during recovery. These quantities fit well with the dynamics shown

in Figure 2, the parameterization of which is discussed in the next section. We note that interestingly the

feedback-free scenario captures the recovery time of slowest responding patients in (Kiss et al., 2015),

which emphasizes the physical requirements that play a role in facilitating this feedback.

Inclusion of feedback allows prediction of erythrocyte dynamics

To evaluate the predictive power of the model we use data from Hillman et al. (Hillman and Henderson,

1969), who study the human bone marrow response to a severe loss of erythrocytes. The authors mark

the increase in erythrocyte production as a function of the normal output for different levels of depletion

of the hematocrit, noting that the efficiency of the response depends strongly on the amount of iron avail-

able to the patient. We can translate the hematocrit measurements to perturbations in our model by taking

the ratio of the depleted to the normal value; for example, if the patient’s normal hematocrit is 50%, a

reduction to 40% would equate to a 20% loss, which is a perturbation in the bloodstream compartment

(B) of nB = � 0:2. A summary of their findings is shown in Figure 3. We estimate our parameter values by

assuming a balanced response (5) and taking the previously introduced assumption of equal maximum dif-

ferentiation and self-renewal rates ks = kvhk. For this coupling the dynamics of the perturbed peripheral

blood compartment can be written as vtnPB = 2sM � mPBð1 +nPBÞ; with mPB the constant loss rate of circu-

lating cells, which is independent of the replication rate function vMðnPBÞ of the preceding compartment.

Thus av is fixed by the response requirement and only k and as are free. A least-squares fit of the logistic

coupling (4) results in parameter pairs for the three patient cohorts defined by the authors (based on the

patients’ body iron stores). The values for the normal patient cohort (k = 3:5, as = 7:5) are used in Figure 2.

Different parameter pairs are found for the other cohorts, with a clear effect being an increase in maximal

production factor k for increasing iron availability. This implies that the response relies not only on the

severity of the perturbation but on the availability of essential resources as well, so that the parameters

as, av , ks and kv should in fact depend on other parameters reflecting a dynamic environment. The values
6 iScience 24, 102326, April 23, 2021



Figure 3. Parameter estimates based on Hillman et al.

Three patient cohorts are defined by the authors (Hillman and Henderson, 1969) based on the size of their available iron

stores: a ‘‘normal’’ control group, a group which was administered supplementary iron intakes, and a number of

individuals suffering from hemochromatosis, a disorder characterized by an increased amount of total body iron stores.

Each production factor shown (symbols) is the center of the range (error bars) measured within a patient cohort, as no

individual measurements or averages are specified. Dashed lines result from a least-squares fit to the data employing the

logistic coupling model (4), with the assumption that ks = kv = k, and av determined by the balanced response

requirement (5).
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for k = kv = ks found here to range between 3.5 (normal cohort) and 7.6 (hemochromatosis) fit with current

knowledge of production rates of mature red blood blood cells, where the highest reported rate increases

are 8- to 10-fold the normal rate (Hillman and Henderson, 1969). For this range of k, we thus estimate the

slope parameter as to be in the range of 7.2–11.3, while av is then determined by the compartment number

through av = as s
�=v�.

Chronic perturbations lead to new equilibrium states

As a final exploration of the capabilities of the present model, we turn our attention to perturbations with a

long-lasting character. These are of particular interest in medicine, as many genetic disorders such as

inherited red cell membrane defects (hereditary spherocytosis, elliptocytosis, ovalocytosis), thalassemia

syndromes and hemoglobinopathies (sickle cell disease, hemoglobin SC disease) all result in a chronic

reduction of red cell survival times and anemia. Autoimmune hemolytic anemia due to autoantibodies

against red blood cell antigens can also cause chronic destruction of red blood cells and anemia. We

take as a model example the rare but well-studied paroxysmal nocturnal hemoglobinuria (PNH), a life-

threatening disease characterized by an acquired mutation in the PIGA gene that renders red blood cells

susceptible to complement attack resulting in severe hemolysis and other complications (Brodsky, 2014). If

the PNH afflicted clone is large enough, a significant portion of circulating erythrocytes will have a severely

reduced lifespan. In our model we can take this into account by splitting the peripheral blood compartment

into a healthy (H) and a PNH afflicted (PNH) population,NPB = NH +NPNH, where the death rate of the PNH

group is significantly higher than that of the healthy cells (mPNH>mH). For a clone which comprises a fraction

p of bone marrow cells, we obtain the dynamics

�
vtNH = 2sMðnPBÞ

�
1� p

�
NMðtÞ � mHNHðtÞ

vtNPNH = 2sMðnPBÞ p NMðtÞ � mPNHNPNHðtÞ (Equation 6)
iScience 24, 102326, April 23, 2021 7
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Figure 4. Dynamics following a chronic loss of cells in the bloodstream

(A–F) Responses of an M = 5 compartmental model employing logistic coupling with ‘‘normal’’ parameter values taken

from Figure 3 (full lines) alongside the feedback-free response (dashed line). The rate of hemolysis of PNH afflicted

erythrocytes is taken at mPNH = 0:2. Two different clone sizes are shown: p = 0.8 (panels (A)–(C)) and p = 0.5 (panels (D)–(F)).

Balanced response to clone of size p is shown in panels (A) and (D), self-renewal-driven response (vnv<vns) to clone of size

p is shown in panels (B) and (E), and differentiation-driven response (vns<vnv) to clone of size p is shown in panels (C)

and (F).
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To determine which values of p might occur in humans, we note that PNH clones can comprise up to 100

percent of the blood cell population (Socié et al., 2016), while clones smaller than 10–20% could be consid-

ered subclinical. To obtain a realistic value for the rate at which these cells are hemolysed we use a study on

the in vivo survival rate of transfused erythrocytes from a PNH afflicted individual (Dacie and Mollison,

1949). While no such death rate is derived in the paper itself, the authors describe a fast initial decay of

the transfused population to 50% after only 5 days, followed by a slower decay down to 30% at the 10th

day. We can describe this behavior by means of two exponentially decaying populations to estimate the

donor’s PNH fraction at pz0:8 and a death rate of mPNHz0:2, which means that a PNH erythrocyte will

be destroyed after on average 5 days in the bloodstream, 20 times faster than its normal counter-part.

Using the same parameter set derived in the previous section, we observe that, in the long-term, new

steady states emerge for all reacting compartments in any response regime (Figure 4). Using Figure 4A

as a reference, we observe a marginal improvement in mitigating the loss in the self-renewal-driven regime

(vnv <vnsÞ (4b, 4e) whereas, in the differentiation-driven regime ðvns <vnv) (4c, 4f) a reduced efficiency is

observed. In contrast with the normal recovery that is realized under transient perturbations (Figure 2),

the model also predicts a new stationary state for the bloodstream hemoglobin content, which in general

remains below the normal homeostatic value. Furthermore, the model captures scenarios where the

enduring reduced hemoglobin and red cell mass in circulation is accompanied by a persistent expansion

of the upstream compartments (Figures 4B and 4E), as often seen in classic hemolytic PNH as well as other

chronic hemolytic disorders (Kaushansky, 2016). As this expansion does not occur in the differentiation-

driven regime we conclude that the adaptive response in chronic hemolytic states must (at least) at times

take place in a self-renewal-driven regime.

While the dynamics shown in Figure 4 present a reduced displacement of the steady state cell numbers for

compartments farther upstream, it is worth noting that this need not be the case in reality. For one, the
8 iScience 24, 102326, April 23, 2021
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parameters of the division rate functions may differ across compartments, allowing for example for higher

adaptability in lower numbered compartments. Indeed, one can argue that because cells in the early com-

partments are slower to act, they can potentially increase their activity tomuch higher degrees than those in

later compartments. Secondly, given the physical necessities such as additional energy and resources

required for increasing proliferation, an inability to sustain a drastic response would move that responsibil-

ity upstream. This is particularly important for the final compartments, as their higher cell numbers would

make such sustained reactions far more costly.
DISCUSSION

The formalism described here provides a simple method for understanding the type of dynamics that pop-

ulations of maturing hematopoietic cell precursors undergo in the bone marrow after being subject to

different types of perturbations (frommild to severe), such as sudden or chronic blood loss. While the start-

ing model of Dingli et al. (Dingli et al., 2007) provides a useful framework for describing the hematopoietic

system under homeostatic conditions, it does not account for the dynamics under perturbations such as

those discussed here, as the time for a compartment to return to equilibrium is too long to fit clinically

observed timescales (Kiss et al., 2015; Pottgiesser et al., 2008; Ziegler et al., 2015). The addition of sequen-

tial feedback to the model not only produces swifter recoveries, but also reproduces observed dynamic

behaviors such as the response to a transient loss of erythrocytes, and the persistence of anemic states

following chronic hemolysis with an associated chronic expansion of precursor cells in the bone marrow.

The increased complexity, on the other hand, calls for a careful analysis of the properties of the feedback

coupling introduced.

We identify three response types for any coupled pair of compartments, determined by the relative

strengths of the differentiation and self-renewal coupling, sðnÞ and vðnÞ respectively. A perfectly balanced

response prevents the perturbation from moving further upstream, thus providing the simplest reaction

profile for hematopoiesis as a whole; it occurs whenever the equality sðnÞ � vðnÞ= s� � v� is fulfilled, and

can intuitively be associated with a response where both differentiation and self-renewal increase (or

decrease) in a balanced manner such that the compartment’s own cell number remains constant. This is

however a very strict condition which is difficult to meet, even on average, in hematopoiesis, given its sto-

chastic nature. Thus one expects that, in general, this detailed balance does not occur, and the dynamic

behavior depends on which of the rates comes to dominate. When the differentiation rate dominates,

the cell number in the compartment will change in the same direction as the perturbation—decreasing

if the perturbation is a loss of cells, increasing if it is an excess—effectively introducing a positive feedback.

When the self-renewal rate dominates, the compartment’s cell number varies in opposition with the pertur-

bation—increasing with a loss, decreasing with an excess—which can lead to an overcompensation of the

loss/excess followed by damped oscillations in the cell number. In some special cases where a resonant

condition is met, nearly undamped oscillating cell counts in the blood are observed, associated with

extreme cases found in certain hematologic disorders such as cyclic neutropenia (Dingli et al., 2009;

Pacheco et al., 2008).

It is important to take into consideration that in real hematopoiesis cell numbers in circulation fluctuate,

even under homeostatic conditions (Kaushansky, 2016). Thus it is appropriate to introduce a range of values

for the cell numbers within which hematopoiesis can be considered to be in (dynamic) equilibrium. In this

sense small oscillations within this range predicted by our model can be presumed to be undetectable (and

even if detectable, irrelevant) in a clinical setting. This in turn implies the rate parameters have some leeway

to be out of sync without disturbing the bloodstream compartment in a detectable way, adding to the over-

all robustness of hematopoiesis. This feature, that leads to faster recovery times for small perturbations,

may however result in long-lasting perturbations for larger perturbations (Figures 2C and 2D). This high-

lights the importance of the stability of hematopoiesis with respect to the division rate parameters.

Here, the coupling functions sðnÞ and vðnÞ posit a deterministic dependency of the division rates on down-

stream cell counts. In reality, these dependencies will be subject to noise from the underlying stochastic

biological circuits and—as already pointed out—are unlikely to have perfectly balanced response solutions

in the first place. Furthermore, since the response also depends on the availability of resources (Hillman and

Henderson, 1969; Kiss et al., 2015) which may vary or become depleted over time, the balance between s

and v adaptation required for stability may itself change in time. However, an important observation is that

this stability increases with increasing compartment number, or more specifically decreasing amplification

between coupled compartments. The result furthermore adds an interesting angle to the currently favored
iScience 24, 102326, April 23, 2021 9
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view that normal hematopoiesis is mostly driven by ‘‘short-term’’ stem cells which would be found further

downstream then the small pool of long-term HSCs (Busch et al., 2015; Sun et al., 2014), as such a larger

pool of feedback coupled ‘‘drivers’’ would increase stability.

An important quantifiable characteristic of the feedback-driven system is the strength of the coupling be-

tween two compartments (determined by the values of the a and k parameters), as it governs the speed

with which a return to equilibrium is attained. We find that while balanced responses (Figure 2B) allow

for arbitrarily strong coupling, the physical limit of how fast a single cell can divide of course cannot be ex-

ceeded. Furthermore, the coupling strength may also depend on the availability of essential resources, as

can be seen from a human erythropoiesis study where individuals with increased access to iron present

amplified responses (Hillman and Henderson, 1969), as well as a study of hemoglobin recovery time after

blood donation where individuals with more access to iron present a swifter recovery (Kiss et al., 2015). This

observation raises the question of how long a particular response can be maintained, especially in the case

of persistent losses.

Finally, it is worth remarking upon the differences between the compartmental dynamics under transient

and chronic perturbations. In the former case, a short-lived perturbation such as bleeding can be swiftly

remedied by increased cell divisions in the higher compartments, without propagating to earlier progen-

itor stages if the homeostatic balance between self-renewal and differentiation is maintained. In this

sense the earliest compartments may not even be requested to respond to an acute loss of blood.

On the other hand, chronic perturbations to the system—found in various hematopoietic disorders

such as PNH and other hereditary or acquired hemolytic anemias—lead to the emergence of new equi-

librium states that do not correspond to normal homeostasis. For example while the altered dynamics

might mitigate a persistent loss of erythrocytes due to hemolysis by increasing the bone marrow output,

the resulting steady state number of erythrocytes in circulation may still be significantly lower than in the

unperturbed system—a scenario which fits the observation of anemia occurring in severe cases of PNH as

well as other hereditary or acquired hemolytic states. Experimental data from telomere length analysis in

both PNH and sickle cell disease show that circulating mononuclear cells have shorter telomeres

compared to age matched controls. Given that in our model self-renewal in any compartment is coupled

to replication, this suggests that within hematopoiesis during chronic hemolysis, progenitor and down-

stream cells are undergoing more self-renewal and thus more replication events than aged matched cells

from healthy individuals, leading to shorter telomeres due to attrition with each replication (Karadimitris

et al., 2003; Mekontso Dessap et al., 2017). In a former study (Karadimitris et al., 2003), it was found that

the shorter telomere length occurred in both PNH afflicted and unafflicted cells, suggesting that the

cause indeed lies within hematopoiesis itself, suggesting that the feedback process intrinsic to hemato-

poiesis does not discriminate between the PIGA mutant and normal cells that co-exist in the bone

marrow of patients with PNH.
Limitations of the study

The model presented in this work provides insight into the dynamics of a hierarchically structured hemato-

poietic system; however it should not be considered a diagnostic tool for high accuracy predictions of he-

matopoietic cell dynamics. The macroscopic approach of combining various regulatory circuits into simple

logistic feedback functions—while excellent for interpretive purposes—implicitly neglects potential

ongoing processes which could lead to behaviors not captured by the model. For instance, in our model

altered division rates depend solely on the perturbed cell numbers, neglecting other influences, such as the

availability of resources required for cell division. A possible extension may thus be the inclusion of a dy-

namic resource pool coupled to hematopoiesis. Another limitation comes from the difficulty of estimating

parameter values for the various bone marrow compartments. While fixing the strength of feedback

coupling across all compartments is useful for identifying behavioral regimes, there is no available justifi-

cation for this to be the case in reality. Estimating their different values would require data from in vivomea-

surements of bone marrow cell dynamics, which remains a challenge.
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Data and code availability

No data was generated for the work presented in this article. The Mathematica code written for analyzing the

model has been made publicly available at https://github.com/natevmp/feedback-driven-hematopoiesis.

METHODS

All methods can be found in the accompanying transparent methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.102326.
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Transparent Methods 

S1 Original model and equilibrium values 
In the model of Dingli et al. (Dingli et al., 2007) the dynamics of a compartment 𝑗 are given by 

𝜕𝑡𝑁𝑗 = 2𝜖 𝑟𝑗−1𝑁𝑗−1 − (2𝜖 − 1)𝑟𝑗𝑁𝑗 

The first term on the right hand side of the equation is the flux of cells coming in from the nearest upstream 
compartment 𝑗 − 1 (where the factor 2 comes from the fact that two daughter cells are created per division), 
while the second term is the sum of the fluxes of cells being removed due to differentiation (at rate 𝜖𝑟𝑗𝑁𝑗) and 

added due to self-renewal (at rate (1 − 𝜖)𝑟𝑗𝑁𝑗). Given the number of HSCs 𝑁0, the number of (non-HSC) 

compartments 𝑀, and the daily bone marrow output 𝜇𝑀; the homeostatic values 𝑁𝑗
∗, 𝑟𝑗

∗, and 𝜖∗ can be found 

by simultaneously solving the equilibrium condition 𝜂𝜌 = 2𝜖/(2𝜖 − 1), the geometric growth equations 𝑁𝑗 =

𝑁0𝜂𝑗 and 𝑟𝑗 = 𝑟0𝜌𝑗, and the bone marrow output rate 2𝜖 𝑟𝑀𝑁𝑀 = 𝜇𝑀 for 𝜖, 𝜂, and 𝜌. For example, given a 

system with 𝑀 = 28, 𝑁0 = 400, and 𝜇𝑀 = 3.5 × 1011; the values 𝜖 = 0.82, 𝜂 = 1.97, and 𝜌 = 1.31 are 
obtained. Finally, recent estimates of the number of cells in the peripheral blood in an average adult human 
(Sender et al., 2016) can be used to take 𝑁𝑃𝐵 ≈ 3 × 1013, and using (2) with the homeostatic condition 𝜕𝑡𝑁𝑃𝐵 =
0, we obtain 𝜇𝑃𝐵 = 𝜇𝑃𝐵/𝑁𝑃𝐵 ≈ 1/100. 
 
S2 Competing Poisson processes 
Consider the events 𝑉 and 𝑆 as respectively self-renewal and differentiation divisions, each with (independent) 
exponentially distributed waiting times with rates 𝑣 and 𝑠. We have 

 
{
𝑃{𝑉𝑡} = 1 − 𝑒−𝑣𝑡

𝑃{𝑆𝑡} = 1 − 𝑒−𝑠𝑡  {
𝑓𝑡𝑉

(𝜏) = 𝑣𝑒−𝑣𝜏

𝑓𝑡𝑆
(𝜏) = 𝑠𝑒−𝑠𝜏  

 

with 𝑃{𝑋𝑡} the probability of at least one event 𝑋 occurring in time 𝑡 and 𝑓𝑡𝑋
(𝜏) the density distribution of the 

waiting times. We now introduce the event  𝑉�̃� as the occurrence of at least one 𝑉, occurring before any 𝑆 in 𝑡; 

and the complementary event 𝑆�̃� with the converse definition. Note that 𝑉�̃� and 𝑆�̃�  are mutually exclusive, and 
cover all possible outcomes except for those where no 𝑆 or 𝑉 occur in 𝑡. In our biological system these can be 
interpreted as two competing processes within the cell, where the first event to occur determines the divisional 
fate. We may write them equivalently as the following sets: 

{
𝑉�̃� = {𝑉𝑡 ∩ 𝑆𝑡

𝑐  , 𝑉𝑡 ∩ 𝑆𝑡 ∩ (𝑡𝑣 − 𝑡𝑠)}

𝑆�̃� = {𝑆𝑡 ∩ 𝑉𝑡
𝑐  , 𝑆𝑡 ∩ 𝑉𝑡 ∩ (𝑡𝑠 − 𝑡𝑣)}

 

Since both events in each set are mutually exclusive we may write the probabilities of 𝑉�̃� and 𝑆�̃�  as the sum of 
the probabilities of their respective elements. The first term is 

𝑃{𝑉𝑡 ∩ 𝑆𝑡
𝑐} = 𝑃{𝑉𝑡}𝑃{𝑆𝑡

𝑐} = 𝑒−𝑠𝑡(1 − 𝑒−𝑣𝑡) 
since 𝑉𝑡 and 𝑆𝑡 are independent (with the analogous argument for 𝑃{𝑆𝑡 ∩ 𝑉𝑡

𝑐}). For the second term we obtain 
 

𝑃{𝑡𝑣 < 𝑡𝑠 ∩ 𝑆𝑡 ∩ 𝑉𝑡} =  𝑃{𝑡𝑣 < 𝑡𝑠 ∩ 𝑆𝑡}

= ∫ 𝑃{𝑡𝑣 < 𝜏}𝑓𝑡𝑠
(𝜏) 𝑑𝜏

𝑡

0

= ∫ (1 − 𝑒−𝑣𝜏)𝑠 𝑒−𝑠𝜏
𝑡

0

 𝑑𝜏

= 1 − 𝑒−𝑠𝑡 +
𝑠𝑒−𝑡(𝑠+𝑣) − 𝑠

𝑠 + 𝑣

 

and summing the two gives 

𝑃{𝑉�̃�} =  
𝑣

𝑠 + 𝑣
(1 − 𝑒−(𝑠+𝑣)𝑡) 

From this we identify (1 − 𝑒−(𝑠+𝑣)𝑡)  =  𝑃{𝑉𝑡 ∪ 𝑆𝑡}, which is the probability of any division (self-renewal or 

differentiation) occurring in 𝑡. Thus 𝑃{𝑉�̃�} and 𝑃{𝑆�̃�} can readily be interpreted as the probabilities of a division 

occurring in 𝑡, multiplied by a probability which determines whether that division is a self-renewal or a 
differentiation. The above expression can furthermore be expanded for an infinitesimal timestep 𝑑𝑡 to obtain a 
rate (Feller, 2009): 

𝑃{𝑉𝑑�̃�}  =  
𝑣

𝑠 + 𝑣
(𝑠 +  𝑣)𝑑𝑡 + 𝜗(𝑑𝑡2) 

which makes it clear that differentiation and self-renewal occur at rates 𝑠 and 𝑣 respectively, and allows us to 
identify 𝜖 = 𝑠 (𝑠 + 𝑣)⁄  and 𝑟 = 𝑠 + 𝑣. 



 
S3 Determining the response regimes following a transient perturbation 
To understand the parameter regimes where each of the three observed behaviors occurs, we examine the 
simplest possible network with just a single coupled “pair”, and turn our attention to the state of the system at 

time 𝑡0 immediately after a perturbation 𝑛𝑗+1 is introduced, so that 𝑛𝑗 is still 0. With 𝑁𝑗(𝑡) = 𝑁𝑗
∗[1 + 𝑛𝑗(𝑡)], the 

dynamics of the reacting compartment 𝑗 given by (1) can then be written as 

 
𝜕𝑡(𝑁𝑗

∗[1 + 𝑛𝑗(𝑡)])|
𝑡0

= 2𝑠𝑗−1 (𝑛𝑗(𝑡0)) 𝑁𝑗−1
∗ [1 + 𝑛𝑗−1(𝑡0)]  

− [𝑠𝑗 (𝑛𝑗+1(𝑡0)) − 𝑣𝑗 (𝑛𝑗+1(𝑡0))]  
 

and since at 𝑡0 we still have 𝑛𝑗(𝑡0) = 0 and 𝑛𝑗−1(𝑡0) = 0, this reduces to 

 𝜕𝑡𝑛𝑗|
𝑡0

=
2𝑠𝑗−1

∗

𝜂
 − (𝑠𝑗(𝑛𝑗+1) − 𝑣𝑗(𝑛𝑗+1)) (7) 

where we again used the shorthand 𝜂 = 𝑁𝑗
∗/𝑁𝑗−1

∗  for the cell amplification between homeostatic 

compartments. We note that the response type is given by the sign of the left hand side: if 𝜕𝑡𝑛𝑗|
𝑡0

= 0 the 

reacting compartment 𝑗 does not change in size, if sign ([𝜕𝑡𝑛𝑗|
𝑡0

]) = sign(𝑛𝑗+1) then the reacting 

compartment is perturbed in the same direction as the initial perturbation, and if sign ([𝜕𝑡𝑛𝑗|
𝑡0

]) ≠ sign(𝑛𝑗+1) 

then the reacting compartment is perturbed in the opposite direction of the initial perturbation. In the first case 
the left hand side of (7) being 0 implies the homeostatic case of (1) is obtained, so that the right hand side leads 
to  

𝑠𝑗(𝑛𝑗+1) − 𝑣𝑗(𝑛𝑗+1) = 𝑠𝑗
∗ − 𝑣𝑗

∗ (8) 

In a biological sense, this means that the amounts of differentiations and self-renewals in the reacting 
compartment change in a mutually balanced manner such that the cell number does not vary. While (7) can be 
solved for linear coupling functions (2) to obtain 

𝛼𝑣 = (𝑠𝑗
∗ 𝑣𝑗

∗⁄ )𝛼𝑠 (9) 

there is no solution to (8) in the case of the logistic coupling, meaning such a system could only approximate this 
equality. To further investigate the regimes in which (8) is not satisfied, we expand the rate functions about 
𝑛𝑗+1 = 0, which after cancellation of the zeroth order terms (due to the homeostatic condition) gives:  

 𝜕𝑡𝑛𝑗|
𝑡0

= − (
𝜕𝑠𝑗

𝜕𝑛𝑗+1
|

0

−
𝜕𝑣𝑗

𝜕𝑛𝑗+1
|

0

) 𝑛𝑗+1 + 𝜗(𝑛𝑗+1
2 ). (10) 

Recalling that we have required 𝜕𝑠𝑗/𝜕𝑛𝑗+1 < 0 and 𝜕𝑣𝑗/𝜕𝑛𝑗+1 < 0 to ensure negative feedback, we can 

determine the behavioral regime up to first order (i.e. ignoring higher order terms 𝜗(𝑛𝑗+1
2 )) from the sign of the 

bracketed expression on the right hand side. We can see that if 𝜕𝑛𝑠 = 𝜕𝑛𝑣 then 𝜕𝑡𝑛𝑗 ≈ 0 and we are 

(approximately) in the balanced response regime (Fig 2b). For logistic coupling functions and the simplification 
𝑘𝑠 = 𝑘𝑣 ≡ 𝑘, this requirement reduces to (9). For both perturbations 𝑛𝑗 and 𝑛𝑗+1 to have the same sign (Fig 2c) 

we require 𝜕𝑛𝑠 < 𝜕𝑛𝑣, which – since both 𝑠(𝑛) and 𝑣(𝑛) are decreasing functions – implies that the rate of 
differentiation changes faster with 𝑛 than the rate of self-renewal. This puts us in the differentiation-driven 
regime (see main text). If 𝑛𝑗 and 𝑛𝑗+1 have opposite signs (Fig 2d) then 𝜕𝑛𝑣 < 𝜕𝑛𝑠, in which case the self-renewal 

adaptation is dominant and we are in the self-renewal-driven regime (see main text). 
 
S4 Compartment cell amplification 𝑴 determines stability of the system 
If the response to a perturbation is not balanced (i.e. 𝜕𝑡𝑛𝑗<𝑗+1 ≠ 0), the amplitude of the upstream 

perturbations will depend on the amplification between compartments 𝜂 and therefore also the total number 
of coupled compartments 𝑀. The origin for this can be seen by employing the linear coupling functions (3) (which 
is equivalent to keeping only the linear terms in the logistic function) in determining the response type in 
equation (10): the inequality in the first derivative becomes 𝛼𝑣/𝛼𝑠 ≠ 𝑠∗/𝑣∗, meaning that the strength of the 

reacting compartment’s perturbation (left hand side of (10)) is determined by how much 𝛼𝑣/𝛼𝑠 deviates from 

𝑠∗/𝑣∗, the ratio of homeostatic division rates. One can see that the smaller this ratio is, the stronger the impact 
of deviations (i.e. perturbations on 𝛼𝑣 and 𝛼𝑠) from it become. Furthermore, it can be shown that 𝑠∗/𝑣∗ 
decreases monotonically with increasing cell number amplification 𝜂 between compartments, which in our 
model is akin to decreasing 𝑀. 
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