
© RADCLIFFE CARDIOLOGY 2020

Risk Factors and Cardiovascular Disease Prevention

Access at: www.ECRjournal.com

We are witnessing an epidemic global increase in the prevalence of 

obesity and its clinical consequences (e.g. insulin resistance and 

diabetes). This epidemic has been potentiated and sustained by the 

widespread adoption of unhealthy lifestyles in broad swathes of the 

population and is characterised by a sedentary lifestyle and an 

imbalance between the type and characteristics of nutrition, dominated 

by an excess of calorie intake. Its effects have come to offset the 

decline in cardiovascular (CV) mortality achieved in recent years as a 

result of marked therapeutic advances.1,2

The prevalence of atherogenic dyslipidaemia (AD) has increased 

considerably. AD is characterised by the coexistence of profound 

qualitative and quantitative modifications in lipid metabolism. The 

excess of non-LDL particles is a distinctive feature, with an increase in 

triglyceride (TG)-rich lipoproteins (TRL), low HDL cholesterol levels, 

accumulation of lipoprotein remnants (i.e. small very LDL [VLDL] and 

intermediate-density lipoprotein [IDL]), a preponderance of numerous 

small and dense (sd) LDL particles and postprandial hyperlipidaemia.3–5 

The management of AD requires therapeutic lifestyle modification 

coupled with pharmacological intervention aimed at reducing CV risk. 

Because of the range of cardiometabolic alterations these patients 

present with, trying to attenuate their CV risk can pose formidable 

management issues.6,7

Atherogenic Dyslipidaemia and its Relationship 
with Atherosclerotic Cardiovascular Disease
The increasing prevalence of obesity is directly associated with the 

increase in type 2 diabetes (T2D) and metabolic syndrome (MS), which, 

in turn, are associated with lipoprotein abnormalities described as AD. 

AD is causally linked to the development and progression of 

atherosclerotic CV disease (ASCVD).8,9 The relationship between AD 

and ASCVD is supported by prospective longitudinal cohorts, clinical 

evidence and genetic linkage studies. As an example, the best predictor 

of risk of MI at the population level in the INTERHEART study was the 

apolipoprotein (apo) B100/apoA-I ratio, reflecting the correlation 

between all apoB (atherogenic lipoproteins) and HDL (representing the 

classically anti-atherogenic particles).10 In addition, a huge registry of 

almost 140,000 patients hospitalised in the US due to acute coronary 

syndromes (ACS) showed that more than half had LDL cholesterol 

levels <2.59 mmol/l, whereas mean HDL cholesterol and TG values 

were <1.03 and >1.81 mmol/l, respectively.11,12 In these patients the 

LDL cholesterol level was not reflecting the real burden of atherogenic 

lipoproteins; this was more aptly quantified by non-HDL cholesterol 

(total cholesterol minus HDL cholesterol), a better predictor of CV risk 

in these individuals. 

The evidence goes beyond epidemiological studies. The relationship 

between AD and ASCVD has also been demonstrated in prospective 
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randomised clinical trials using statins. Even when treated with statins, 

patients with the AD phenotype have a higher risk of CV events than 

those without AD.13,14 

The Pravastatin or Atorvastatin Evaluation and Infection Therapy – 

Thrombolysis in Myocardial Infarction (PROVE IT-TIMI 22) trial showed 

that among patients receiving high-intensity statins after an ACS, those 

with TG <1.69 mmol/l (adjusted by HDL cholesterol and LDL cholesterol 

levels) had a lower risk of coronary events (HR 0.80; 95% CI [0.66–0.97]; 

p=0.025) than those with TG exceeding this threshold.15 

Similarly, in the Incremental Decrease in End Points through Aggressive 

Lipid Lowering (IDEAL) and Treating to New Targets (TNT) studies, even 

in patients who reached LDL cholesterol <1.81 mmol/l, the risk 

increased 63% (p<0.001) when comparing the highest quintile of TG 

levels with the lowest one.16 Long-term (>20 years) follow-up of the 

Bezafibrate Infarction Prevention (BIP) study showed a significant 

association between elevated TG and all-cause mortality.17 In addition, 

in a meta-analysis of prospective studies in patients treated with 

statins, increased TG concentrations were independently correlated 

with coronary disease and predicted recurrent ischaemic events in 

patients with a history of ACS treated with statins.11,18,19

Some studies have shown that the association between plasma TG 

concentrations and CV risk is attenuated when adjusted for other lipid 

parameters. In a meta-analysis by the Emerging Risk Factors 

Collaboration, which included data from 302,430 individuals, there was 

a significant association between TG concentrations and CV risk, but 

this association was attenuated after adjusting for HDL cholesterol 

and non-HDL cholesterol.20 In some respects, the case can be made 

that because non-HDL cholesterol includes lipoproteins that can carry 

TGs, this likely represents an ‘over-adjustment’ of two highly inter-

related risk factor covariates. However, in a more recent analysis, 

among approximately 46,000 high-risk patients on statin therapy 

whose LDL cholesterol was well controlled, TG >169 mmol/l was 

independently and significantly correlated with CV events even after 

adjusting for LDL cholesterol, non-HDL cholesterol and HDL 

cholesterol.21 

TRL particles (precursors of LDL, including small VLDL and IDL) can be 

estimated in clinical practice as total cholesterol minus LDL cholesterol 

minus HDL cholesterol. TRLs are associated with increased CV risk.22,23 

Varbo et al. showed that each 1 mmol/l increase in TRLs is associated 

with a 2.8-fold increase in CV risk independent of the HDL cholesterol 

level.24 Directly measured TRLs were correlated with an increased risk 

for ASCVD events in both the Framingham Heart Study and the Jackson 

Heart Study.25 TRLs are also potently proinflammatory, which likely 

contributes to their overall atherogenic profile.26 Highlighting the 

importance of TRLs, postprandial TG concentrations are a stronger 

predictor of CV events than fasting TG levels. Although most individuals 

are in a postprandial state during most hours of the day, changes in 

postprandial TG levels can have a significant effect on the development 

of atherosclerosis.27–29

In summary, there is convincing evidence that AD is highly atherogenic, 

although the true significance of each component in this context is 

incompletely characterised and understood. Human genetic evidence 

suggests that TRLs contribute causally to the development of ASCVD.12 

Gene variants leading to higher levels of plasma apoB-containing 

lipoproteins, including TRL, consistently increase ASCVD risk.30

Lipoprotein lipase (LPL) plays a critical role in the disposal of TGs carried 

with chylomicrons and apoB100-containing lipoproteins. LPL is tethered 

to vascular endothelial cells via glycosylphosphatidylinositol-anchored 

HDL-binding protein 1 and hydrolyses TGs within the core of TRLs 

(Figure 1). 

LPL activity can be regulated by changes in nuclear expression of the 

gene for LPL, but it is also responsive to a variety of effector molecules. 

LPL is inhibited by apoCIII and activated by apoCII and apoA-V.31 

Angiopoietin-like protein (ANGPTL) 3 and ANGPTL4 exert inhibitory 

effects via distinct mechanisms. ANGPTL3 stimulates cleavage of LPL 

from GP1HBP by proprotein convertase subtilisin/kexin types 3 and 6, 

rendering it inactive.32 LPL monomers are catalytically inactive; the 

active form is an LPL dimer. In contrast, ANGPTL4 competitively inhibits 

LPL by inducing the dissociation of its constituent dimers.33 The severity 

of diabetes can also affect the dimeric integrity of this enzyme.34

The genetics of LPL and the effector molecules that regulate its activity 

support the conclusion that TGs are an independent risk factor for 

ASCVD. Loss-of-function mutations in apoCIII result in lower mean 

serum TG levels than in patients who express normal levels of this 

enzyme that are correlated with significant reductions in ASCVD 

risk.35,36 Similarly, a variety of genetic polymorphisms giving rise to 

reduced activity of ANGPTL3 and ANGPTL4 result in lower mean TG 

levels and lower risk for ASCVD compared with wild-type controls.37–39 

Patients with loss-of-function mutations in apoA-V have higher TG 

concentrations and augmented risk for ASCVD and ischaemic 

stroke.40,41 Consistent with these changes, gain-of-function mutations 

and loss-of-function mutations in LPL are correlated with lower TGs/

lower ASCVD risk and higher TGs/higher ASCVD risk, respectively.35 

Epidemiological data associate low HDL cholesterol with heightened 

ASCVD risk, although a more recent analysis has questioned this.19,42-44 

It was long believed that treating low serum HDL cholesterol 

concentrations would reduce residual risk. However, clinical outcomes 

trials targeting low HDL cholesterol with different pharmacological 

interventions failed to reduce CV endpoints, and, similarly, genetic 

studies do not support a protective role of HDL cholesterol in 

humans.45-49 Together, these findings imply that HDL cholesterol may be 

considered a metabolic marker of increased CV risk rather than a 

therapeutic target. It will be some time before the HDL proteome and 

lipidome are understood well enough to tailor therapeutic interventions 

that affect ASCVD risk.50,51 

The Study to Investigate CSL112 in Subjects With Acute Coronary 

Syndrome (AEGIS-II; NCT03473223) is a large Phase III trial testing the 

capacity of an infusible human apoAI preparation to reduce the risk of 

CV events in patients with a history of ACS. The trial will also evaluate 

the efficacy of CSL112 (apoA-I [human]) in inducing atherosclerotic 

plaque regression by promoting reverse cholesterol transport.

Abnormalities in Lipid Metabolism: 
The Perfect Storm
The aforementioned phenotypic characteristics of AD reflect an 

abnormal metabolism of TRL, conditioned by both genetic and acquired 

factors that also affect HDL and LDL particles.52 In the setting of insulin 

resistance, insulin has reduced capacity to inhibit hormone-sensitive 

lipase in adipose tissue. This leads to a constitutive release of fatty acid 

from visceral adipose tissue stores. The liver can dispose of this fatty 

acid in multiple ways:
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•	 It can be oxidised in the mitochondrial matrix.

•	 It can be reassimilated into TG and secreted in VLDL particles.

•	 Some can be shunted toward gluconeogenesis by activation of 

phosphoenolpyruvate carboxykinase, which will exacerbate the 

hyperglycaemia of insulin resistance.

•	 If all pathways become saturated, excess TG will be stored in the 

liver and manifest as hepatic steatosis.

In addition to the overproduction and increased hepatic secretion of 

VLDLs, there is reduced capacity to lipolyse TRLs because of decreased 

LPL activity. Insulin resistance can reduce nuclear expression of LPL, 

leading to increased production of apoCIII and decreased production 

of apoCII.53 Secondary to both hepatic overproduction of TRL and 

their reduced catabolism, there is a considerable increase in TRLs in 

the serum. 

As TRLs accumulate in serum, the activity of cholesterol ester transfer 

protein (CETP) increases. CETP catalyses the neutral lipid of exchange of 

TG out of TRLs for cholesterol from both HDLs and LDLs (Figure 2).54 As 

the HDLs and LDLs become more enriched with TG, they become better 

substrates for lipolysis by hepatic lipase. Hepatic lipase catabolises HDL 

and promotes the wasting of apoA-I by the kidney. Hepatic lipase also 

converts large, buoyant LDLs into smaller (sdLDL) and more numerous 

ones, rendering the LDL fraction more atherogenic.55 HDL cholesterol 

levels decrease via other mechanisms as well. There is an insulin 

response element in the gene for apoA-I, the primary apolipoprotein 

constituent of HDL particles.56,57 As the liver becomes more insulin 

resistant, less apoA-I is produced and there is less HDL biogenesis. 

Adipocytes express the ATP-binding membrane cassette transport 

protein A1 (ABCA1). Insulin resistance downregulates expression of 

ABCA1 on the surface of adipocytes and reduces HDL formation by these 

cells.58–60 Chylomicrons are enriched with apoA-I. Insulin resistance 

reduces the release of this apoA-I in serum by inhibiting LPL. In addition, 

within the milieu of insulin resistance or diabetes, HDL particle 

concentrations are not only quantitatively reduced, but also tend to be 

dysfunctional and thus are not able to perform their primary functions, 

including reverse cholesterol transport and inhibition of oxidative and 

inflammatory phenomena.61

The sdLDL particles are highly atherogenic.62 There is accumulating 

evidence that smaller LDL particles are more atherogenic than larger, 

more buoyant ones. In addition, sdLDL:

•	 Is more susceptible to oxidation (oxidised LDL is avidly scavenged 

by activated macrophages in the subendothelial space, giving rise to 

foam cell cells);63 

•	 Contains apoB100, which undergoes conformational alteration as 

the particle decreases in volume and size, resulting in lower affinity 

for, and clearance by, the LDL receptor;64 and 

•	 Has increased affinity for proteoglycans in the subendothelial space, 

exacerbating lipoprotein retention.5 

An increase in the hepatic content of TG also promotes an increase in the 

size of the TRL pool and augmentation of VLDL biosynthesis and secretion. 

All these observations help explain the extensive and more premature 

development of ASCVD in patients with insulin resistance and AD.65–67

Figure 1: Regulation of Triglyceride-Enriched Lipoprotein Lipolysis
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In summary, changes in lipid metabolism in the setting of insulin 

resistance or diabetes are profound and include an excess of apoB, 

including remnants, HDL, which is decreased in quantity and function, 

and changes in LDL size and particle number. These metabolic changes, 

coupled with the pro-oxidative, proinflammatory and prothrombotic 

state of insulin resistance, predispose to the development of 

accelerated atherogenesis in ‘cardiometabolic’ patients.

Apolipoprotein B and Non-HDL 
Cholesterol as Risk Markers
ApoB measurement represents an estimation of all atherogenic 

lipoproteins, namely VLDL, IDL, LDL and lipoprotein(a) (Lp(a)), because 

they all contain a molecule of apoB100. In the same way, each 

chylomicron particle or its remnants contain a molecule of apoB48 (a 

truncated form of apoB100). In AD there is overproduction not only of 

VLDL, but also of apo B. In patients with cardiometabolic risk, the total 

number of sdLDL particles is increased, and hence apoB is elevated. 

Neither the sdLDL concentration nor the apoB level is reflected in LDL 

cholesterol measurements.68 Among patients with insulin resistance, 

LDL cholesterol is frequently low or ‘normal’, despite increases in apoB. 

Non-HDL cholesterol is a simple and practical calculation (total 

cholesterol minus HDL cholesterol) that represents an estimation of the 

cholesterol concentration within all atherogenic lipoproteins. It is 

defined as a secondary treatment target in most international 

dyslipidaemia guidelines.69–72 Using sophisticated techniques, the 

number of particles of each lipoprotein class and its subclasses can be 

quantified, but its application in daily clinical practice is an area of 

continuing investigation.73

Non-HDL cholesterol and apoB are better therapeutic targets in patients 

with AD.74 In that sense, most guidelines established for patients at very 

high risk, include objectives of LDL cholesterol <1.81 mmol/l, non-HDL 

cholesterol <2.59 mmol/l and apoB <1.56 µmol/l, and in those at high 

risk of LDL cholesterol <2.59 mmol/l, non-HDL cholesterol <3.36 mmol/l 

and apoB <1.75 µmol/l. In addition, therapeutic effort should be made 

to reduce TG burden in serum through lifestyle modification and 

medication as indicated.75

Non-pharmacological Interventions: 
Therapeutic Changes in Lifestyle
Healthy Eating
Favourable therapeutic changes in lifestyle constitute the basic 

approach and the cornerstone of AD treatment. The greatest benefit is 

obtained with a reduction in saturated and trans-fats intake, along with 

an increase in consumption of mono- and polyunsaturated fats. It is 

essential to reduce the excess of carbohydrates in the diet, especially 

refined sugars.76,77 The Mediterranean diet seems to be more effective 

than a low-fat diet; the Mediterranean diet has been shown to 

significantly reduce the total cholesterol:HDL cholesterol ratio and non-

HDL cholesterol, and to reduce clinical events and CV mortality.78,79

Both low-fat and low-carbohydrate diets affect lipid levels. The low-fat 

diet has little effect in decreasing total cholesterol and LDL cholesterol, 

whereas the low-carbohydrate diet shows more favourable effects on 

TG and HDL cholesterol. In addition, the consumption of sea fish or 

omega-3 fatty acids has favourable effects.

In conclusion, lowering the dietary carbohydrate content or losing 

weight appears to attenuate AD, whereas reducing the total fat or 

saturated fat content has little effect.80 Weight loss is associated with 

significant relief of insulin resistance.

Regular Physical Activity
The effects of physical activity on serum lipids have been widely studied. 

Regular aerobic exercise is associated with increased skeletal muscle 

and systemic tissue insulin sensitisation.81,82 As this occurs, HDL 

cholesterol tends to increase and TGs and sdLDL decrease.83,84 Regular 

physical activity is a key recommendation in the approach to AD.85

Unfortunately, despite the benefits, long-term adherence to lifestyle 

changes is often difficult to sustain over time.86

Current Pharmacological Interventions
Statins
Statins are first-line drugs in the treatment of AD. They comprise a 

pharmacological group that inhibit the rate-limiting step of cholesterol 

biosynthesis catalysed by 3¢-hydroxy-3¢-methylglutaryl coenzyme A. 

By decreasing intrahepatocyte concentrations of cholesterol, the 

statins activate the nuclear transcription factor sterol regulatory 

element binding protein-1c, which increases the cell surface expression 

of LDL receptors (LDLR). Thus, statins reduce circulating levels of LDL 

cholesterol by:

•	 decreasing cholesterol biosynthesis and VLDL secretion; and

•	 increasing the clearance of LDL particles from the circulation.

In addition, statins can reduce plasma TGs by 15–20% and increase HDL 

cholesterol by up to 15%.87,88 However, the effect of statins on sdLDL 

has not been completely clarified.89 A recent meta-analysis of six statin 

trials, including 802 subjects, demonstrated that statins significantly 

reduce circulating levels of apoCIII, which likely contributes to their 

modest TG-lowering capacity.90 In addition to their lipid-lowering 

effects, the statins exert cholesterol-independent pleiotropic actions, 

which have been widely studied and contribute to the stabilisation of 

atherosclerotic plaques and reverse endothelial dysfunction, among 

Figure 2: Molecular Dynamics of Atherogenic Dyslipidaemia
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other effects.91 The beneficial effects of statins have been extensively 

demonstrated in both primary and secondary prevention studies 

because they incontrovertibly reduce risk for MI, ischemic stroke, 

revascularisation by both percutaneous transluminal coronary 

angioplasty and coronary artery bypass grafting, as well as 

cardiovascular and all-cause mortality.92,93 

There is some concern that treatment of dyslipidaemia with statins 

increases the incidence of diabetes. As first reported by Ridker et al. in 

the Justification for the Use of statins in Prevention: an Intervention Trial 

Evaluating Rosuvastatin (JUPITER), rosuvastatin therapy is associated 

with an increased risk for new-onset diabetes.94 A subsequent meta-

analysis showed that statins increase the risk for diabetes by 

approximately 9%.95 However, this does require some contextualisation. 

As shown in JUPITER, compared with placebo, statin therapy accelerates 

time to onset of diabetes by only 5.4 weeks and, for those with risk 

factors for diabetes, 134 vascular events or deaths were prevented for 

every 54 new cases of diabetes diagnosed.96 Thus, the benefit:risk ratio 

of statin therapy is quite favourable. 

Subsequent work showed that the greater the number of components 

of MS a patient has, the higher the risk for statin-induced diabetes.97 In 

general, patients with MS have the highest risk for statin-accelerated 

diabetes. The mechanism(s) for this are as yet unknown. With low-dose 

statin therapy 1,000 patients have to be treated for 1 year in order to 

see one new case of diabetes; with moderate- to high-dose statin 

therapy, 500 patients have to be treated for 1 year to see one new case 

of diabetes.98 Statin therapy should not be withheld out of concern that 

it may precipitate diabetes; it has been shown that diabetics derive 

every bit as much benefit from statin therapy as do non-diabetics.99 

Moreover, it has been suggested that patients with features of MS may 

derive particular benefit from statin therapy.100

Fibrates
Fibrates are weak agonists of the nuclear transcription factor 

peroxisome proliferator-activated receptor (PPAR) alpha and regulate 

the expression of genes that influence lipid metabolism. Fibrates were 

found to improve glucose homeostasis via activation of PPAR-alpha 

and increases in adiponectin levels.101 Fibrates lower TGs by 25–50%, 

increase HDL cholesterol 5–30%, reduce LDL cholesterol up to 20% and 

decrease sdLDL particles, postprandial TGs and TRLs.102,103

In both the Helsinki Heart Study (primary prevention) and the Veterans 

Administration Low HDL Intervention Trial (secondary prevention), 

gemfibrozil significantly reduced risk of the primary composite 

endpoint.104,105 However, because gemfibrozil reduces statin 

glucuronidation and can potentiate the risk of rhabdomyolysis, 

gemfibrozil should not be used in combination with a statin.106,107 

Fenofibrate is substantially safer than gemfibrozil when combined with 

a statin.108 Fenofibrate therapy has been evaluated in two prospective 

randomised studies of patients with diabetes. 

In the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) 

trial, fenofibrate as monotherapy failed to reduce the primary composite 

endpoint, but did reduce the risk for MI, stroke, revascularisation and 

multiple microangiopathic endpoints, including retinopathy, 

nephropathy and neuropathy.109 In a subgroup analysis of patients with 

TGs >2.26 mmol/l and HDL cholesterol <1.03 mmol/l, fenofibrate 

significantly reduced the primary composite endpoint by 27%. Although 

fenofibrate may increase serum creatinine concentrations, it has 

actually been shown to be nephroprotective and does not adversely 

affect renal function.110,111 The Action to Control Cardiovascular Risk in 

Diabetes (ACCORD) trial also failed to meet its primary endpoint in 

patients on statins randomised to either fenofibrate or placebo.112 

However, at baseline, both HDL cholesterol and TG levels were very 

near normal. In meta-analyses, fibrates show a reduction in CV 

morbidity and mortality, but not in total mortality.113,114 In another meta-

analysis, fibrates decreased major CV events by 13%, but this benefit 

was evident only in subjects with increased TG (>2.26 mmol/l).115 It is in 

the setting of AD where fibrates are most effective. 

As fibrates are weak PPAR-alpha agonists with limited efficacy and 

dose-related adverse events, a new generation of highly specific PPAR-

alpha agonists, known as selective PPAR-alpha modulators, have been 

developed that preserve the beneficial effects of fibrates and eliminate 

the unwanted side effects. Recently, pemafibrate was introduced; it is 

>2,500-fold more potent than fibric acid, with a greater lipid-modifying 

efficacy and an improved safety and tolerability profile.116 Pemafibrate 

is being evaluated in the CV outcomes trial, Pemafibrate to Reduce 

Cardiovascular Outcomes by Reducing Triglycerides in Patients with 

Diabetes (PROMINENT), studying a high-risk diabetic population on 

statin therapy.117 

Cholesterol Absorption Inhibition: Ezetimibe
Ezetimibe reduces the absorption of dietary and biliary cholesterol 

along the brush border of jejunal enterocytes. Ezetimibe inhibits the 

transmembrane sterol transporter Niemann–Pick C1-like protein.118 

This reduces the amount of cholesterol delivered to the liver and 

stimulates increased expression of LDLR along the hepatocyte cell 

surface.119 As monotherapy, ezetimibe reduces LDL cholesterol by 

approximately 15–20%, but it is most commonly used in combination 

with a statin, where it provides additive benefit for reducing LDL 

cholesterol, non-HDL cholesterol and apoB and is safe.120–122 

Recently, the IMProved Reduction of Outcomes: Vytorin Efficacy 

International Trial (IMPROVE IT) demonstrated that ezetimibe provides 

an incremental reduction in CV events among patients with a previous 

ACS and being treated with a statin.123 It has been successfully used in 

patients who do not tolerate statins and in those who are not at goal 

with adequate doses of statins.119 Ezetimibe can be combined with any 

statin, at the usual single dose of 10 mg/day, with no significant side 

effects reported, except for occasionally mild elevation of liver enzymes 

or myalgia.

In a recent meta-analysis of eight studies including 80,790 diabetics 

and 85,555 non-diabetics, with a mean follow-up of 45 months, the risk 

for ASCVD events was significantly less with ezetimibe–statin 

combination therapy than statin monotherapy in both diabetic (relative 

risk 0.69; 95% CI [0.67–0.73]; p<0.00001) and non-diabetic (RR 0.68; 95% 

CI [0.52–0.90]; p=0.006) subjects.124 In a post hoc analysis of IMPROVE 

IT, the diabetic subgroup on ezetimibe plus simvastatin achieved a 

significantly lower mean LDL cholesterol than the group on placebo 

plus simvastatin (1.27 versus 1.73 mmol/l, respectively; p<0.001), and 

the RR reduction for MI and stroke in diabetics was 24% and 39%, 

respectively. Thus, the benefit of adding ezetimibe to statin appeared to 

be enhanced in patients with diabetes.125

Omega-3 Fatty Acids
The omega-3 fatty acids (eicosapentaenoic acid [EPA] and 

docosahexaenoic acid [DHA]) are long-chain polyunsaturated fatty 
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acids that inhibit the synthesis of VLDL and TG in the liver. Although the 

combination of EPA and DHA reduces serum TGs and VLDL, it also 

induces an elevation in LDL cholesterol that is proportional to the 

baseline TG level.126,127 No recent study in the statin era has been able 

to demonstrate CV risk reduction using combinations of EPA and 

DHA.128 The Outcomes Study to Assess STatin Residual Risk Reduction 

With EpaNova in HiGh CV Risk PatienTs With Hypertriglyceridemia 

(STRENGTH) trial is currently testing whether or not a combination of 

EPA and DHA will affect the risk for ASCVD events in high-risk diabetic 

patients on a statin background. 

The Japan EPA Lipid Intervention Study (JELIS) treated Japanese patients 

on low-dose statin therapy with 1.8 g EPA or placebo.129 The addition of 

EPA did provide incremental risk addition beyond statin therapy, but 

patients were not blinded to therapy and the doses of statin used were 

quite low (oral simvastatin 5 mg once daily, or oral pravastatin 10 mg, 

once daily). In addition, the only endpoint that achieved statistical 

significance was unstable angina requiring hospitalisation. JELIS did not 

achieve significant reductions in endpoints such as non-fatal MI or 

stroke, CV mortality or need for revascularisation. Hence, given these 

limitations, this approach did not become very widely adopted. 

Recently, the Reduction of Cardiovascular Events with Icosapent Ethyl–

Intervention Trial (REDUCE-IT) showed that treatment of high-risk 

individuals (58% with diabetes) with 4 g EPA ethyl ester daily (mean TG 

2.40 mmol/l, mean LDL cholesterol 1.68 mmol/l) resulted in relative 

reductions of 25% in the incidence of major adverse cardiac events 

(MACE) and 20% in CV mortality against a statin background. Entry 

criteria for the REDUCE-IT trial included age >45 years with established 

CV disease or age >50 years with diabetes and one or more additional 

risk factor, fasting TG 1.69–5.63 mmol/l, LDL cholesterol 1.06–2.59 

mmol/l and a stable dose of statin for ≥4 weeks. This benefit was 

independent of both baseline TG and LDL cholesterol.130 The precise 

mechanisms by which EPA exerts these benefits remains under active 

investigation, although it is likely that the inhibition of oxidative 

processes and the augmented production of downstream effectors 

such as resolvins and protectins play beneficial roles.131

Proprotein Convertase Subtilisin/
Kexin Type 9 Inhibitors
Evolocumab and alirocumab, monoclonal antibodies (mAbs) that inhibit 

proprotein convertase subtilisin/kexin type 9 (PCSK9), have been 

approved for use and are available in a number of countries. They are 

indicated for use with or without combination statin therapy to reduce 

LDL cholesterol in patients with established ASCVD or heterozygous 

familial hypercholesterolaemia. PCSK9 regulates the expression of 

LDLRs by shuttling LDLR into the lysosome for proteolytic destruction.132 

Hence, when plasma PCSK9 is increased or exhibits augmented 

functionality, the density of hepatocyte surface LDLR is reduced, plasma 

LDL cholesterol increases and the risk for ASCVD increases.133 

In contrast, when PCSK9 is inhibited by mAbs directed against it, cell 

surface expression of LDLR is increased and plasma LDL cholesterol 

decreases due to increased clearance.134,135 The inhibition of PCSK9 

with mAbs results in a profound decrease in LDL cholesterol of 

approximately 50–70%. These agents also induce significant reductions 

in non-HDL cholesterol, apoB and Lp(a).136 The magnitude of the 

reduction in Lp(a) with the PCSK9 mAbs is proportional to the baseline 

level.137,138 Patients with low Lp(a) typically experience no to small 

changes in this lipoprotein. The mechanism(s) by which these agents 

reduce Lp(a) is a matter of intense debate.139,140 The PCSK9 mAbs are 

available for biweekly or monthly subcutaneous injection and have a 

favourable safety profile. 

Two landmark studies have been conducted with CV endpoints 

including thousands of patients randomised to a PCSK9 inhibitor or 

placebo against statin backgrounds. The Further Cardiovascular 

Outcomes Research with PCSK9 Inhibition in Subjects with Elevated 

Risk (FOURIER) study randomised 27,564 patients with established 

ASCVD to either evolocumab or placebo against a statin background. 

LDL cholesterol decreased 59% (mean level achieved in the active 

treatment group: 0.78 mmol/l). The risk for the primary (HR 0.85; 95% CI 

[0.79–0.92]; p<0.001) and secondary composite endpoints 20% (HR 

0.80; 95% CI [0.73–0.88]; p<0.001) were substantially reduced after an 

average follow-up of 2.2 years.141 Evolocumab significantly reduced CV 

risk in patients with diabetes and did not increase the risk of new-onset 

diabetes.142 Evolocumab therapy was not correlated with an increased 

risk for cognitive impairment even when LDL cholesterol was reduced 

to less than 0.26 mmol/l.143 

The Odyssey Outcomes study included 18,924 patients who were 

between 1 and 12 months after an ACS; 89% were treated with high-

intensity statins but did not reach their LDL cholesterol goal (<1.81 

mmol/l) and mean baseline LDL cholesterol was 2.25 mmol/l. Patients 

were randomised to alirocumab 75/150 mg twice weekly versus 

placebo.144 LDL cholesterol decreased 54.7% in those treated with 

alirocumab, and the mean follow-up was 2.8 years. The primary 

endpoint, a combination of coronary death, non-fatal MI, fatal or non-

fatal stroke and hospitalisation for unstable angina, decreased 15% (HR 

0.85; 95% CI [0.78–0.93]; p=0.0003). Of great interest in this trial was the 

observation that alirocumab reduced the risk for the primary composite 

endpoint significantly more in diabetic patients than in patients with 

prediabetes or those who were normoglycaemic (2.3% absolute risk 

reduction versus 1.2% and 1.2%, respectively).145

In a variety of patient types with AD, alirocumab and evolocumab 

demonstrate excellent capacity on top of statins for reducing 

atherogenic lipoproteins other than LDL cholesterol.146–148 Both 

evolocumab and alirocumab reduce serum concentrations of VLDL, 

remnant lipoproteins and LDL particle numbers.149,150 In the FOURIER 

trial, the reduction in Lp(a) potentiated by evolocumab provided 

incremental risk reduction over and above LDL cholesterol reduction, 

an important advance in dyslipidaemia management.137 Although a 

Mendelian randomisation study suggested that there may be a signal 

for increased risk of diabetes with a PCSK9 mAb, to date there is no 

evidence that either evolocumab or alirocumab increases the risk for 

impaired glucose tolerance, impaired fasting glucose or diabetes.151–154

Conclusion
Despite statin therapy, among patients with AD LDL cholesterol 

reduction is inadequate because significant residual risk remains. At 

least some of this risk is attributable to inadequate LDL cholesterol 

reduction. Clearly, however, mounting evidence suggests that 

inadequate reduction of other apoB-containing lipoproteins also 

contributes to residual risk. In the setting of insulin resistance, patients 

experience a large increase in apoB-containing lipoproteins 

characterised by elevated levels of VLDL, TRLs and LDL particles. These 

changes occur in response to increased hepatic TG and VLDL 

production, inhibition of LPL, activation of CETP and hepatic lipase and 

reduced clearance of apoB-containing lipoproteins. AD is also 
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characterised by substantial changes in HDL metabolism at the level of 

multiple organs and cell types. The contributions of low HDL, HDL 

dysfunction and impaired reverse cholesterol transport to the net 

effect of AD are matters of continuing investigation. In order to better 

reduce residual risk among patients with AD and TGs >2.26 mmol/l, it is 

generally accepted that non-HDL cholesterol and apoB are better 

targets of therapy, and their aggressive reduction is a clinical priority. 

Among the established therapies, statins are the first-line treatment. 

Ezetimibe and the PCSK9 mAbs constitute important additional 

therapies that should be used in patients who fail to reach their LDL 

cholesterol goal with statins alone or in statin-intolerant subjects. 

Fenofibrate can be considered in patients with AD, especially in those 

with high TG and low HDL cholesterol despite the use of statins in 

adequate doses. Although studies with CV outcomes have been 

inconsistent in demonstrating benefits with fibrates, post hoc analyses 

of the subgroups with AD (high TG and low HDL) consistently 

demonstrate ASCVD risk reduction. Based on the REDUCE-IT trial, EPA 

monotherapy constitutes an exciting, highly efficacious approach to 

reducing ASCVD events in patients with established ASCVD or T2D with 

additional CV disease risk factors and controlled LDL cholesterol on 

statin therapy but who still have TGs >1.69 mmol/l. 
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