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Abstract: We introduce here a novel machine learning (ML) framework to address the issue of the
quantitative assessment of the immune content in neuroblastoma (NB) specimens. First, the EUNet,
a U-Net with an EfficientNet encoder, is trained to detect lymphocytes on tissue digital slides stained
with the CD3 T-cell marker. The training set consists of 3782 images extracted from an original
collection of 54 whole slide images (WSIs), manually annotated for a total of 73,751 lymphocytes.
Resampling strategies, data augmentation, and transfer learning approaches are adopted to warrant
reproducibility and to reduce the risk of overfitting and selection bias. Topological data analysis
(TDA) is then used to define activation maps from different layers of the neural network at different
stages of the training process, described by persistence diagrams (PD) and Betti curves. TDA is
further integrated with the uniform manifold approximation and projection (UMAP) dimensionality
reduction and the hierarchical density-based spatial clustering of applications with noise (HDBSCAN)
algorithm for clustering, by the deep features, the relevant subgroups and structures, across different
levels of the neural network. Finally, the recent TwoNN approach is leveraged to study the variation of
the intrinsic dimensionality of the U-Net model. As the main task, the proposed pipeline is employed
to evaluate the density of lymphocytes over the whole tissue area of the WSIs. The model achieves
good results with mean absolute error 3.1 on test set, showing significant agreement between
densities estimated by our EUNet model and by trained pathologists, thus indicating the potentialities
of a promising new strategy in the quantification of the immune content in NB specimens. Moreover,
the UMAP algorithm unveiled interesting patterns compatible with pathological characteristics, also
highlighting novel insights into the dynamics of the intrinsic dataset dimensionality at different
stages of the training process. All the experiments were run on the Microsoft Azure cloud platform.

Keywords: neuroblastoma; digital pathology; classification; deep learning; topological data analysis

1. Introduction

Neuroblastoma (NB) is the most common cancer diagnosed in the first year of life [1],
affecting the sympathetic nervous system. NB is a heterogeneous disease with different
outcomes, ranging from spontaneous regression to aggressive progression, metastasis
and death. Two main staging systems have been created to stratify patients based on
the wide range of outcome and tumor biology: the International Neuroblastoma Staging
System (INSS), introduced in 1988 [2] and revised in 1993 [3], and the International Neu-
roblastoma Risk Group Staging System (INRGSS), introduced in 2009 by the International
Neuroblastoma Risk Group task force [4]. INRGSS enhances INSS by defining a series
of imaging defined risk factors based on radiological data, such as CT scans and MRI,
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assessing whether the tumor is circumscribed, if it has metastasized or if it develops near
vital parts of the body. However, the effort of establishing an accurate staging system is
still ongoing: for instance, additional factors, like the MYCN status, the histopathologic
classification, and the DNA content have also proven to be significant [5], and they are
currently evaluated in clinical practice. Tumor microenvironment (TME) has been shown to
play a role in tumor development. In particular, several pieces of evidence highlighted the
importance of the composition, density and distribution of tumor-infiltrating lymphocytes
as prognostic markers in several human cancers, including NB. Such observations are
stimulating a growing research flow, targeting the dynamics of the immune system during
the NB evolution [6], following the Precision Medicine paradigm [7–10].

Here, we propose a novel artificial intelligence (AI) procedure, sketched in Figure 1,
for the quantitative evaluation of the immune content in NB specimens in an immunohisto-
chemistry (IHC) / digital pathology (DP) framework, i.e., using whole slide histopatho-
logical images (WSIs) as input data: in detail, a deep learning (DL) predictive model is
trained to estimate the density of lymphocytes over the whole tissue area of the WSIs.
The approach is demonstrated on the neuroblastoma specimens with T-Lymphocytes -
Bambino Gesù (NeSTBG), an original dataset of samples from NB patients, provided by
Ospedale Pediatrico Bambino Gesù (OPBG) in Rome, achieving a satisfying performance
(MAE ≈ 3.1). To boost the reproducibility and interpretability of the DL model, the ex-
tracted deep features are analyzed by topological data analysis (TDA) methods [11,12] and,
in particular, persistent homology (PH) [13]. To date, this is the first realization of an ex-
plainable artificial intelligence (XAI) reproducible platform, encompassing all the analysis
steps, from WSI preprocessing to clinical feature interpretation, integrating topological
concepts with deep architectures. Although currently more an effective proof of concepts
than a fully fledged infrastructure, the novel link established between DL and TDA in DP
can lead to further developments along this research line.

Figure 1. Graphical representation of the full analysis workflow. From the original WSIs, the collection of tiles constituting
the NeSTBG dataset is generated and annotated to obtain the ground truth for the model (Section 4.1). Tiles are then
used as the input for the DL architecture EUNet (Sections 4.2 and 4.3) to predict density maps (Section 4.4), that are then
post-processed and analysed via TDA descriptors to interpret the detected deep features (Section 4.5).
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2. Related Works
2.1. Immunohistochemistry

The immunohistochemistry (IHC) technique is particularly suitable to evaluate the
density of tumor infiltrating immune cells on histology specimens [14]; by employing
the right binding antibody, it is indeed possible to highlight specific immune cells on
the tissue, allowing pathologists to obtain information about their localization within the
tumor microenvironment. Given the importance of the tumor infiltrating lymphocytes
(TILs) in recognizing and neutralizing cancer cells, several studies have been conducted on
different tumor types [15–17], and the key prognostic significance of these cells has been
highlighted. In NB, the study of the immune response can be traced back to more than
50 years ago [18–21]. However, the adoption of IHC to evaluate the role of the immune
infiltration for the prognosis of NB patients has its landmark in the work by Mina and
colleagues [22]. The authors have demonstrated that tumor-infiltrating T cells have a
prognostic value greater than, and independent of, the criteria currently used to stage
NB. In this thorough study, different IHC biomarkers were used, including the Cluster of
Differentiation 3 (CD3). CD3 is a complex of trans-membrane proteins, representing an
appropriate target for T Cells, also used as a representative marker in the present work. As
a major result of [22], a positive correlation is found between the density of CD3 positive
cells (i.e., CD3+ cells) and the overall patient survival.

2.2. Digital Pathology and Artificial Intelligence

The term DP entails the manipulation of pathology information in a digital environ-
ment [23]. In particular, DP studies have digitised tissue glass slides, typically retrieved at
a resolution of 20× or 40× [24]. While a high magnification is important to study relevant
structures in the tissue, it also represents a technical difficulty: a biopsy specimen scanned
with magnification factor 40× has a resolution of ∼0.25 µm/pixel and a color depth of
24 bits. Therefore, approximately 48 MB are needed to represent only 1 mm2 of tissue. As
the typical glass slide is much bigger (around 25 mm2), the corresponding WSI file is a
105 × 105 RGB images (called Gigapixel), which typically exceeds the GB [24], making the
time required for a single human analysis almost prohibitive. Furthermore, even though
many compression techniques exist, their adoption is generally not advised, due to the
potential introduction of artifacts hiding possibly interesting patterns.

Similarly to what happened to several other sectors, the novel DL paradigm has
revolutionized DP, leading to a fast growing flow of publications for a wide range of
pathologies [25–30]. For example, Nagpal et al. [31] develop and validate a DL based
system for automatic Gleason grading of prostate cancer, while in [32], the authors use
artificial neural networks (ANNs) on WSIs to predict the survival of patients in a pan-
cancer study. Although WSI labels usually refer to the whole slide, given their high
complexity, predictions are typically performed at the level of small patches (aka tiles),
extracted from the original WSI: this procedure is known as the weak labelling problem.
An interesting approach to solve the weak labelling problem is used in [33], where a
meaningful WSI compression is proposed to subsequently train a CNN on the whole
compressed image. A similar strategy is also adopted in [34], with the further addition of
an attention mechanism. Working with tiles, however, requires careful planning of the
model training, not to incur in unwanted biases such as the data (or information) leakage:
whenever tiles are extracted from the same WSI in both the training and the validation set,
model results are heavily affected by overfitting [35].

2.3. Lymphocyte Detection and Density Maps

As pointed out in several references [36,37], detecting and quantifying lymphocytes
represent a powerful tool to identify strong prognostic and predictive biomarkers for
evaluating cancer progression and targeting novel therapeutic solutions. Nonetheless,
it is widely acknowledged that the technical challenges to be solved towards the goal
are numerous and difficult, making the aforementioned tasks very difficult to tackle and
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indeed still an open problem. No shared consensus has been reached by the community
on an optimal methodology: automatic localization and quantification of lymphocytes
have represented a major goal in DP in the last decade, resulting in a constant stream of
publications, featuring the emerging solutions in both imaging and learning, together with
dedicated reviews detailing such evolution [38]. Focusing on the methods adopting DL
algorithms, convolution is the natural tool common to many proposals, starting from [39],
where CNNs were combined with a probability map to identify lymphocytes’ centers.
Other approaches have employed CNNs as a classifier to discriminate lymphocytes from
the image background [40], generating a heatmap, representing the probability of each
pixel being a lymphocyte. The strategy to move from the heatmap to the lymphocytes
identification was later improved in [41] through thresholding, while clinical relevance was
made explicit by detecting local spatial features [42]. Further technical improvements on the
same directions were achieved in [43] with the development of a non-maxima suppression
(NMS) algorithm to locate the center of each lymphocyte. Finally, the combination with a
more classical morphologically oriented procedure [44] allowed Li and coauthors [45] to
better identify the center of each candidate cell.

The landscape of solutions is quite rich, even when restricted to the detection of
lymphocytes in IHC-stained WSIs. A first approach combining CNNs with color decon-
volution to produce a probabilistic heatmap [46] was later improved in [47] again via
an NMS procedure. An important breakthrough came when the general YOLO architec-
ture [48] was adapted to the lymphocyte detection task. After the first attempt [49], where
a non-maxima suppression algorithm was used during inference to consider overlapping
bounding boxes as detecting the same lymphocyte, in 2019, Van Rijthoven and colleagues
proposed YOLLO [50], a modified version of YOLO [48], as a fast method to detect lym-
phocytes in IHC-stained WSIs. The proposed modifications to YOLO included a guided
sampling strategy and a simplified architecture, resulting in both a performance gain and
a procedure speed-up. Finally, in [37], YOLLO combined with non-maxima suppression is
compared to other approaches based on U-Net, a fully convolutional neural network, and
locality sensitive method (LSM).

More recently, although alternative approaches are actively pursued [51–54], well
consolidated methodologies derived by CNNs are still being used [55]. In particular, two
families of algorithms deserve a mention for the rather large popularity gained in the
last few years, both stemming from the original R-CNN model [56]. The former set of
architectures is mainly aimed at quick object detection, with fast R-CNN [57] as the first
implementation, followed by its improved version, faster R-CNN [58]. These models still
work as building blocks for recent solutions in DP, as in [59–61]. The latter family of models
stem from the prototypal structure mask R-CNN [62,63], obtained by optimizing the faster
R-CNN for pixel-level segmentation tasks. Use of mask R-CNN and derived models is also
currently quite widespread in the DP community, with several examples published in the
literature [64–67].

At the same time, crowd counting has always been a challenging task in computer
vision. The idea of tackling the counting problem with density maps began with [68].
Then, Zhang and colleagues [69] started using DL models to predict object density maps,
later refined in [70] through a new encoder-decoder CNN for crowd counting in aerial
images. Similar strategies have been recently used in computational biology for yeast
cells detection [71] and in DP [72], where density maps are used to count cells in histology
images of bone marrow tissues.

2.4. Topological Data Analysis

Topological data analysis (TDA) is a recent approach to data analysis, relying on
concepts from algebraic topology [11,73], providing solid qualitative and often also quanti-
tative information about the geometric structure of the considered dataset. In particular,
TDA allows the description of topological properties of data as point clouds, time series
analysis [74], images [75] or even volumetric and time varying data [76]. From a com-
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putational point of view, a great effort has recently been put into building efficient TDA
algorithms, data structures and software libraries, such as Ripser [77], Mapper [12], and
Giotto-TDA [78]). The grounded theoretical framework and the performing implementa-
tions make TDA a powerful data science tool, effectively used nowadays by several labs
worldwide for a wide range of applications: a non-exhaustive list of recent examples in
bioinformatics is [79–83].

A fundamental building block of TDA is persistent homology (PH), the geometric
technique for studying a system at different length scales and discerning noise from actual
topological features, based on the notion of how persistent a feature is throughout all the
possible length scales. A compact representation to efficiently encode PH information is
offered by the persistence diagram (PD), a visual intuitive way to assess the properties
of a dataset and to simultaneously obtain a collection of informative features to be used
as input for learning pipelines, supporting the critical step of model interpretability and
explainability. Hereafter, we briefly outline the construction of a PD, whose starting point
is the geometric concept of a simplex. Consider a finite set of points S = {x0, . . . , xn} that
are in general position with respect to the universe Rd, i.e., S should not be contained in an
affine subspace of Rd. If this condition is satisfied, S can be associated to a simplex σ(S),
the convex hull of S. Define the diameter of a simplex as the maximum distance between
any two points on the simplex itself, or equivalently, between any of the two vertices,
since the set is convex. Given a set of points S with diameter r, we can define the vietoris
rips complex as the set of simplices with diameter d ≤ r. Moreover, given a vietoris rips
complex, it is possible to compute its Betti numbers, where the k-th Betti number is denoted
as βk(X), for a simplicial complex X; in layman’s terms, βk(X) represents the number of
k-dimensional holes on S. For example, consider the vietoris rips complexes shown in the
left panel of Figure 2 (adapted from Figure 5.2 in [84]) for different values of r.

Figure 2. Persistence diagram (right panel) for different vietoris rips complexes on equilateral
hexagons with side length of 1 (left panel). In the left panel, we display the four different categories
of vietoris rips complexes generated by 6 points, forming the vertices of a regular hexagon of side
length 1 in the Euclidean plane: 0-simplices (top left), 0- and 1-simplices (top right), 0-, 1- and
2-simplices (bottom left) and complexes including simplices of degree higher than 2 (bottom right).
In the right panel, each point in the scatterplot represents a specific topological feature of the dataset,
where the axes denote the values of the distance for which topological features appear (“birth” on
the x axis) and vanish (“death” on the y axis).

The four different complexes can be described by Betti numbers as follows:

• The first complex (r = 0) is composed of 0-simplices, i.e., the points. Therefore, β0 = 6
and βk = 0, ∀k > 0. Note that β0 indicates the number of connected components.

• The second complex (r = 1) includes 6 0-simplices and 6 1-simplices, denoted by
dots and lines, respectively. Here β0 = 1 and β1 = 1 as there is one connected
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component and one 1-dimensional hole, namely the circle originated by the connection
of the points.

• In the third step we have six 0-dimensional simplices, six 1-dimensional simplices,
and six 2-dimensional simplices. The 2-dimensional simplices are the triangles, that
is, the connection of 3 points. Thus β0 = 1 and β1 = 1.

• The last complex (r = 2) has simplices of higher degree greater than 2. Here β0 = 1
but β0 = 0: for this choice of r the 1-dimensional hole is filled.

The example in Figure 2 illustrates that features of points arranged, for instance, in a
circular shape can be recovered from their topological descriptors. In particular, β1 = 1 for
a large range of possible distance values: this is thus defined as a persistent feature of the
dataset {A,B,C,D, E,F}. PD provides a compact representation of the topological insights
provided by Betti numbers, as shown in the right panel of Figure 2.

Betti numbers can be encoded into a two-dimensional scatterplot, each point repre-
senting a specific topological feature of the dataset. The x and y coordinates denote the
values of the distance for which topological features appear (“birth” x) and vanish (“death”
y), respectively. Considering (x, y) as coordinates of the scatterplot, only half of the plot is
relevant and, the closer a point is to the diagonal, the shorter its lifetime, and thus the point
may represent topological noise. The k-th Betti number βk is the rank of the k-th homology
group Hk and thus each feature counted by βk belongs to Hk. Considering now the plot
in Figure 2:

• The point at coordinates (0, 1) represents 6 overlapping points. The 6 connected
components (points) appear at r = 0 and vanish at r = 1, the side length of the
equilateral hexagon, when each point is connected to its neighbors by a line.

• There is an H1 point (a 1-dimensional hole) with the same birth value of the death of
the 6 connected components (r = 1), as this topological feature arises from the union
of the 6 features.

• A H0 point (a 0-dimensional hole) lies at ∞; indeed, the connected components
represented by the union of the 6 points persist for every value of r: for every value of
r > 1, there exists only one connected component.

Barcodes represent a different visualization of PD, but encode the same information.
If a PD is a scatterplot with coordinates given by the length scale for which topological
features arise or vanish, a barcode can be regarded as a dumbell plot where each bar
represents a different topological feature, and the start and end values of the bar represent
its life span. Since both PDs and barcodes are difficult to handle in a ML framework,
recently the novel concept of Persistence Landscape was introduced [85] to translate PDs
into standard vector spaces by means of piecewise linear functions.

Finally, Betti curves represent the magnitude of an homology group at different length
scales of the filtration. Betti curves are an intuitive way to visualize the evolution of
topological features within the dataset. Take, as an example, the equilateral hexagon and
its persistence in Figure 2. Recall that, in the persistence diagram, there is only one point
at (0,1), which is the collapse of original connected components. By using a Betti curve, it
is possible to visualize the number of elements belonging to a homology group at every
length scale. In this way, we could have easily observed the Betti curve starting at 6 and
decreasing to 1 for r = 1. A less trivial example is reported in Figure 3. On the top row,
a point cloud with the shape of a lemniscate is created without noise, i.e., the points are
equally spaced. In the top row are also illustrated the persistence diagram and the Betti
curves for homology groups H0 and H1. Similarly, the bottom row contains a lemniscate-
shaped point cloud with a corresponding persistence diagram and Betti curves for H0 and
H1, but the point cloud construction involves some noise. The bottom row shows that it
is still possible to appreciate the same topological structure, but the persistence diagram
is more crowded with points near the diagonal, representing noisy features and thus not
persistent features of the input point cloud. The different spatial organization of the two
point clouds is also reflected by the H0 Betti curve; for the noisy dataset, it indeed has a
slower decay rate.
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Figure 3. Topological descriptors on a lemniscate-shaped synthetic dataset with (top) and without (bottom) noise: dataset
scatterplot (left column), persistence diagram (central column) and Betti curves for homology groups H0 and H1 (right
column). Although it is still possible to appreciate the same topological structure, the persistence diagram for the noisy
lemniscate has a cluster of points near the diagonal, representing non-persistent features of the input point cloud. The
different spatial organization of the two structures is also reflected by the Betti curve for H0, displaying a slower decay rate.

2.5. Umap

Uniform manifold approximation and projection (UMAP) is a novel dimensionality
reduction technique introduced in 2018 by McInnes and colleagues [86,87], with roots in
the fields of algebraic topology and Riemannian geometry. UMAP is a manifold learning
algorithm projecting high-dimensional data in lower spaces. The underlying hypothesis is
that data lie on one or more manifolds, whose structure UMAP tries to approximate. In
detail, UMAP exploits fuzzy simplicial sets in order to create a topological representation
of the manifold. The higher dimensional representation of the manifold is then adapted
to the target lower dimensional space via optimization techniques. In this adaptation, the
exact points coordinates lose their spatial meaning but points that are close together are
more similar than points far apart. In the high dimensional point cloud, UMAP constructs
the Čech complex Čε(X). Čech complex is the nerve of the set of balls centered on each
points and having radius ε. By the nerve theorem [88], from Čε(X) we can thus recover all
the key topological structures of the original data. Notice that the UMAP implementation
constructs the vietoris rips complex VRε(X) (being Čε(X) ⊂ VRε(X) ⊂ Č2ε(X)), which is
computationally easier. UMAP has a strong theoretical foundation as a manifold learning
technique and it is faster than many alternative dimensionality reduction algorithms,
allowing users to work with large or very high dimensional datasets without requiring
excessive computational power. The ability to vary the embedding dimensionality allows
UMAP to be used for more than just data visualization: for instance clustering, when
coupled with the HDBSCAN algorithm. UMAP has also been adopted to investigate ANNs.
One example is the activation atlas by Carter and colleagues [89], using UMAP to explore
the distribution of activation maps from hidden layers of an Inception V1 network [90],
enlightening how different filters of the artificial neural network are correlated. Another



Int. J. Mol. Sci. 2021, 22, 8804 8 of 33

example is [91], where UMAP loss is extended to DL thus improving classifier performance
by better capturing data structure. Nonetheless, initialisation seems to be critical and
deserves special care [92].

2.6. Hdbscan

Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) [93]
is an extension of the classic DBSCAN algorithm [94], improved by providing a hierarchical
structure of clusters found from density estimation and a more intuitive approach for cluster
selection. The density-based approach can identify clusters with arbitrary shapes, thus
overcoming limitations of algorithms that are able to work only with convex clusters such as
K-means. An example of HDBSCAN applied to arbitrarily shaped clusters in R2 is shown in
Figure 4.

Figure 4. HDBSCAN performance (right) on double crescent shaped clusters (left) in R2.

The main advantage of HDBSCAN relies on the simplicity of tuning its key hyperpa-
rameters, namely the minimum cluster size, and the number of neighbors used to estimated
the density for each point in the dataset. The hierarchical, density based approach is also
robust with respect to subsampling. Furthermore, the HDBSCAN algorithm can count on
really fast implementations [95].

2.7. Twonn

In a first attempt to understand deep features, Odena and coworkers [96] used decon-
volution layers to explore the filters learned by a CNN, while few years later Carter and
colleagues [89] used UMAP to explore activation maps coming from different layers of an
Inception network. More recently, the Mapper algorithm has been used in [97] to study
the structure of CNN filters, while Ansuini and colleagues [98] employed TwoNN [99] to
estimate the intrinsic dimensionality of a dataset and how such dimension changes when
the dataset is transformed by the different CNN layers. TwoNN is a recent method that
can be used for the estimation of the intrinsic dimensionality of high-dimensional and
sparse data [99]. TwoNN assumes that the density of points is approximately constant on
the length scale of the distance between a point and its two neighbors. With the former
hypothesis, TwoNN uses information only from a restricted neighborhood of the point to
measure properties of the data manifold [98]. The quantity ρi =

di,2
di,1

is assumed to be a
random variable following a Pareto distribution; if points are uniformly sampled and the
hypothesized manifold has intrinsic dimensionality d ∈ [0,+∞], then p(ρi; d) = dρ

−(d+1)
i .

From this formula, the parameter d can be estimated by fitting the likelihood function to
the data P(d; ρi) = dρ

−(d+1)
i , where ρi is known.

3. Results and Discussion
3.1. Quantification of the Immune Content

To quantify the immune content in NB in terms of lymphocyte detection, a suite of
DL experiments were run on the NeSTBG dataset, employing a U-Net network with an
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EfficientNet-b3 architecture as encoder (EUNet for short). The whole dataset was first
partitioned into training (TR) and test (TS) subsets, with ratio 3/4− 1/4; on the TR portion,
a 5-fold cross validation was run four times (TR-CV), and the model trained on the whole
TR was then evaluated on the left-out TS. The outcome of the prediction on TS was finally
postprocessed (TSp) to enhance the lymphocyte detection: for this model, Precision = 0.73,
Recall = 0.85 and F1−score = 0.75. The complete set of classification performance is
summarized in Table 1.

Table 1. Classification results (in terms of mean and standard deviation mean (st.dev) of the perfor-
mance metrics for repeated experiments) for different EUNet models: in cross-validation on the
training set (TR-CV), in training on the whole TR and inference on the test set, before (TS) and after
(TSp) postprocessing (see Section 4.4). MCC: Matthews correlation coefficient; K: Cohen Kappa;
MAE: Mean absolute error; MSE: Mean-squared error.

Subset MCC K ACC MAE MSE

TR-CV 0.50(0.10) 0.87(0.04) 0.70(0.10) 7.0(5.0) 881(1560)
TS 0.55 0.85 0.69 3.4 47

TSp 0.59 0.84 0.71 3.1 30

The EUNet was later applied to the entire tissue area of the 54 NeSTBG WSIs to
obtain a patient-wise estimate of T-cell density. The tiles already included in NeSTBG
were discarded during the training phase to avoid data leakage effects. Note that, for each
WSI, NeSTBG includes approximately 1/100 of all possible tiles. In Figure 5, the process of
density estimation is graphically summarised on two tiles, while in Figure 6, the effect of
postprocessing on the same two tiles is shown.

To compute the density, the area (mm2) of a single tile of size 512× 512 pixels can be
approximated as Atile = l2 = 0.655 mm2 where ltile = (512 pixel⁄mm ·ρ· 10−3) = 0.256 mm is the
tile side length and ρ = 0.5 µm⁄pixel is the resolution (20×) used for the tile extraction.

As a benchmark, the DL estimate is compared with the manual estimate of a pathol-
ogist through the formula proposed in the reference work [22], expressing the density
estimate L for each slide as the natural logarithm of the number of lymphocytes per mm2:

L = log

(
1
n

n

∑
i=0

ci
Ai

)
,

where n is the number of regions of interest (5 or 10), log is the natural logarithm, ci is
the number of lymphocytes in the i-th selected region of interest, and Ai is the area of
the i-th region of interest expressed in mm2. The two density estimates have a Pearson
correlation coefficient of 0.47 with p-value 3× 10−4: in detail, in Figure 7 the corresponding
correlation plot is shown, together with the residual plot displaying the difference between
DL-predicted density value and pathologist estimation, indicating a positive offset.
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Figure 5. Examples of the density map prediction process on two tiles. First row: original images.
Second row: ground truth density maps. Third row: predicted density maps. Fourth row: predicted
density maps discretized with Otsu threshold overlaid on the original image.
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Figure 6. Examples of lymphocytes detection obtained through postprocessing of predicted density maps on the original
tiles of Figure 5. gt: ground truth after postprocessing, pred: prediction.

Figure 7. Comparison between DL and human expert density estimations computed for the 54 patients of the NeSTBG
dataset. Notice that the pathologist estimation is computed on 10 regions of interest while the DL predicted densities are
computed on the whole slide. Left panel: correlation plot for predicted densities and density estimated by pathologists.
Right panel: residual plot for difference between DL and pathologist density estimation. Yellow line, both panels: perfect
correlation. Red line: average difference between DL and pathologist prediction.

3.2. Clinical Assessment of the Topological Features

Clustering analysis was performed by HDBSCAN on the deep features projected
by UMAP from the deepest (central) layers of the EUNet. Notably, these features are
represented by vectors vi ∈ RD, with dimension D = 524,288, as the output of the feature
maps in the deepest layers has spatial dimensions 128× 128 and 64 feature channels. The
most interesting structure emerged in the second block of the EUNet decoder; Figure 8
shows the cluster assignment using cosine similarity as metric in the higher dimensional
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space, 15 neighbours and zero minimum distance for UMAP, minimum cluster size 5 and
minimum number of samples 16 for HDBSCAN.

The tiles belonging to the 5 clusters identified by HDBSCAN can be clinically charac-
terized according to their spatial arrangement. In particular,

• In cluster 0 (blue), the majority of tiles represents stroma rich areas with low level of
TILs (Figure 9).

• In cluster 1 (orange), the majority of the tiles represents tissue with infiltration inside
septa (Figure 10).

• In cluster 2 (green), the corresponding tiles present infiltration of lymphocytes in
pseudo-necrotic tissue (Figure 11).

• In cluster 3 (red), the corresponding tiles show an intermediate level of lymphocyte
infiltration in stroma poor areas (Figure 12).

• In cluster 4 (purple), the corresponding tiles display a low level of infiltration in
stroma poor areas (Figure 13).

The cosine metric seems to be more effective in detecting sub-structures among
samples described by DL features than alternative distances such as L1 or L2, as shown
in Figure 14.

Figure 8. UMAP 2-dimensional embedding of a deep EUNet layer with cosine metric, and HDBSCAN clustering as-
signments. Gray points (label −1) are classified as noise by the clustering algorithm, while colored points belong to the
clusters 0–4 detailed in Figures 9–13: stroma rich areas with low TILS level (0), tissue with septa infiltration (1), tissue with
pseudo-necrotic tissue infiltration (2), intermediate level of lymphocyte infiltration in stroma poor areas (3) and low level of
infiltration in stroma poor areas (4). In the upper-left corner, the graphical schema of the corresponding layer in EUNet.
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Figure 9. Example of 8 representative tiles with stroma rich areas with low level of TILs, grouped as cluster 0 by UMAP
and HDBSCAN.

Figure 10. Example of 8 representative tiles with infiltration inside septa, grouped as cluster 1 by UMAP and HDBSCAN.

Figure 11. Example of 8 representative tiles with infiltration of lymphocytes in pseudo-necrotic tissue , grouped as cluster 2
by UMAP and HDBSCAN.
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Figure 12. Example of 8 representative tiles with an intermediate level of lymphocyte infiltration in stroma poor areas,
grouped as cluster 3 by UMAP and HDBSCAN.

Figure 13. Example of 8 representative tiles with a low level of infiltration in stroma poor areas, grouped as cluster 4 by
UMAP and HDBSCAN.

Here, sparsity plays a crucial role: data represent activation maps returned by a
rectifier linear unit (ReLU) layer [100] inducing sparsity on the data. Indeed, the extracted
feature vectors are quite sparse, with about 60% of the entries being zero, on average.
Given the high-dimensionality and the sparsity, cosine similarity is more effective than Lp
alternatives [101].

Nonetheless, an interesting pattern emerges also from the UMAP projection of the
second layer of the decoder using the Euclidean distance, shown in the two panels of
Figure 15. In the left panel, colors represent the INRGS stage of the NB patients, while in
the right panel, NB patients are represented according to their MYCN amplification status.
In the left scatterplot, high-risk NB patients from stage M are mostly localized on the left
portion of the point cloud. Tiles from patients in the L1 stage can be mainly found along the
sides of the triangular shape and, finally, most of the tiles from MS patients (with metastases
but with favorable prognosis) lie in the centers spreading to the upper and bottom-right
vertex of the triangle. Notably, patients with MYCN amplification are clustered together in
the upper-left area of the scatter cloud, similarly to high-risk NB patients.
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(a) (b)

Figure 14. Alternative UMAP 2-dimensional embedding on the features extracted from the second layer of the decoder
path of the EUNet network, with L1 (a) and L2 (b) metric. Colors correspond to the detected clusters.

(a) (b)

Figure 15. UMAP 2-dimensional embedding on the second layer of the decoder path of the EUNet, with Euclidean metric,
minimum distance 0.02 and 15 neighbours. (a) Color indicates INRGSS. The red and green ovals mark the plot areas
enclosing the majority of NB patients of stage MS and M, respectively. (b) Color indicates MYCN amplification.

3.3. Topological Analysis of the Deep Features

We computed persistence diagrams (PD) to extract Betti curves from six selected
EUNet blocks at different stages during model training. In Figure 16, Betti curves are
shown for the 0-th homology group H0 from the third decoder block at different epochs
(left panel), with a focus on first three and last three epochs (right panel).
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(a) (b)

Figure 16. Betti curves for the 0-th homology group H0 from the third decoder block (inset) at different epochs (a) and in
particular for the first and last three epochs (b).

Notice that the Betti curves become smoother as the training proceeds, suggesting
that the EUNet is progressively learning a meaningful representation of the data. At earlier
training stages, several groups of connected components are merged together at uniformly
spaced thresholds; later in the process, the curves decrease slower, implying that, from a
set of points lying at uniform distances, there are larger groups at non-uniform mutual
distances. Finally, towards the end of the training, points become less and less uniformly
distributed, as indicated by the smoother profiles of the curves.

3.4. Intrinsic Dimensionality of Datasets

The intrinsic dimensionality (ID) of NeSTBG is computed by the TwoNN algorithm
in the six inner blocks of the EUNet (Figure 17) at different stages of the training process.
Despite the high dimensionality of the deep feature space, the NeSTBG dataset possibly lives
on a manifold of much lower dimension, similarly to the findings in [98]. Specifically, we
computed the activation map from the EUNet model state every six epochs, and we estimated
the dataset ID. Notably, ID = 125 for the original dataset (computed on 20 random tiles
extracted from each patient), while ID = 26 for the predicted density map.

Detailed dynamics of the ID estimates are reported in Figure 18. In the top panel, the
ID is plotted for each inner block for all the training epochs. In (panel b), ID is plotted for
the first three epochs (1,7,13) and for the last epoch (60), which corresponds to the highest
peak of the encoder. During the central epochs (panel c) ID values of the encoder are stable,
while the ID values of the decoder still show some variability; in particular (panel d) a ID
peak on the third block. Thus, ID dynamics share a similar trend in both the encoding and
the decoding phase, at different magnitudes.

Figure 17. Graphical representation of the EUNet architecture. In the red encircling, the 6 inner
blocks computing the Intrinsic Dimensionality at different stages of the training process using the
TwoNN algorithm.
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Figure 18. Intrinsic dimensionality (ID) along different layers of the EUNet network, at different
training stages. (a) ID across layers for all training checkpoints, (b) ID across layers for first three
training checkpoints, (c) ID across layers for intermediate training checkpoints, (d) ID across layers
for intermediate checkpoints, zoomed on the decoder. Legend includes all different epochs; ID curves
corresponding to transparent elements of the legend are not shown.

4. Materials and Methods
4.1. The NeSTBG Dataset

The NeSTBG dataset is a collection of 3782 tiles with annotations for the centers of
lymphocytes for 54 IHC-stained WSIs of as many NB specimens, previously characterized
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for density of tumor infiltrating immune cells, including T cells [22], dendritic cells and
natural killer cells [102], as well as the expression of PD-L1 and PD-1 [103]. CD3 stained
slides were digitalized by the Menarini D-Sight scanner at native magnification 40×
(resolution 0.25 µm⁄pixel) and employed for digital analysis. The 54 patients are reasonably
gender balanced (30 males vs. 24 females), mostly younger than 4 years at diagnosis. INSS,
INRGSS and COG values are quite heterogeneous, as well as the tumour location, with
suprarenal position as the most frequent (24 patients, 44%); less frequent locations include
lymph nodes, aorta, scapula, eye, pharynx, and spleen. The full set of clinical characteristics
of the 54 patients are summarised in Figure 19. Morphologically, the large majority of
the tumours in the cohort are stroma poor (91%), and in particular poorly differentiated
(42 patients, 78%). The remaining 12 samples include 4 differentiated and 3 undifferentiated
stroma poor cases, together with an undifferentiated case and 4 ganglioneuroblastoma
(GNBL), with only a single stroma rich case. Furthermore, at a 40× magnification level, all
samples have about 560 tumoral cells in each sector, while pseudonecrosis areas are mainly
present in Stage 4 samples. Note that the heterogeneity of the stroma in the cohort does not
represent a confounding factor in the analysis: our experience suggests that immune cells
can infiltrate the tumour tissue regardless of the morphology of the stroma, thus yielding
that tissue composition is not directly correlated to the immune content. Furthermore, CD3
staining is extremely clean and specific, and the background noise is reduced by precise
stain tuning and by blocking the non-specific binding sites, with no need for preprocessing
procedures reducing stain variability. Each tile in NeSTBG is a 512 by 512 pixels RGB
image stored in png format, randomly extracted from a WSI at 20×magnification.

Annotations refer to the x and y coordinates of the centers of the lymphocytes found
in each tile. Level 1 in the OpenSlide standard [104], corresponding to 20×magnification
and 0.5 µm⁄pixel resolution, was selected for the images as a trade-off between image details
and computational load, being sufficiently detailed to detect marked cells and to describe
WSIs using a limited number of tiles. Segmentation of the tissue region within the slide
was also needed: a large portion of WSI is background, and restricting computations
only on the tissue area saves both time and resources. However, the original slides in the
NeSTBG dataset included many types of artifacts, for instance different appearances of the
background surrounding the tissue; WSIs presented a wide range of shades, from pure
white to greys with different level of details.

To address the above issues, a sequence of filters were applied to mask out low
frequency areas, and morphological operations were used to refine the result. The extraction
scheme was designed by overlaying a grid on the tissue area detected on each slide, where
each cell of the grid represented a tile. A random number of tiles ranging from 20 to
175 were extracted with random uniform probability, in order to have a representative
sample of tissue per slide. The pre-processing steps have been performed with the histolab
library (https://github.com/histolab/histolab) (accessed on 13 August 2021), a recently
introduced open source Python package for reproducible preprocessing in DP. An example
of the tile extraction procedure is shown in Figure 20.

The point-wise annotations for the centers of the lymphocytes were manually per-
formed using the VIA annotation tool (version 2) [105] by four trained annotators, gen-
erating 73,571 annotations for 3782 tiles extracted from a total of 54 WSIs. Examples of
annotations are reported in Figure 21.

https://github.com/histolab/histolab
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GENDER Male 30 (55%) Female 24 (45%)

INSS 1 18 (33%) 2 10 (19%) 3 5 (9%) 4 16 (30%) 4S 5 (9%)

INRGSS L1 26 (48%) L2 7 (13%) M 16 (30%) MS 16 (9%) 4S 5 (9%)

COG Low 24 (44%) Intermediate 19 (35%) High 11 (20%)

PROGNOSIS Favourable 40 (74%) Unfavourable 14 (26%)

MYTOTIC FREQUENCY Low 24 (44%) Medium 1 (2%) High 24 (44%) Unknown 5 (9%)

MYCN AMPL. Absent 31 (57%) Present 13 (24%) Gain 8 (15%) Unknown 2 (4%)

1P36 DELETION Yes 8 (15%) No 36 (67%) Imbalance 5 (9%) Yes + Imbalance 1 (2%) Unknown 4 (7%)

MORPHOLOGY Stroma poor, poorly differentiated 42 (78%) Stroma poor, differentiated 4 (7%)

Stroma poor, undifferentiated 3 (6%) Other 5 (9%)

Figure 19. Summary of clinical features and age distribution at diagnosis (month) for the 54 patients of the NeSTBG dataset.
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Figure 20. Visualization of the random extraction pattern for the tile extraction in a grid-like fashion. A portion of an CD3+
stained WSI used for the NeSTBG dataset is portrayed (at magnification 1.25×). The size of each tile is representative of the
real portion of tissue captured with a 512× 512 tile at 20×magnification.

Figure 21. Example tiles from NeSTBG with corresponding manual point-wise annotations for the centers of the lymphocytes
by the VIA software.

Given the non-negligible irregularity in the shapes of lymphocytes, the staining
variability, and the presence of really packed clusters of T-cells, a relaxed constraint for
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the annotations was chosen, following the strategy introduced in [68] for object counting
in crowded scenes; the authors defined a density map of the objects in a crowded scene
by centering at each annotated point a Gaussian curve, and normalizing such that the
integral over the whole scene would result in the number of objects. When used for
lymphocyte detection, the density map approach associates to the annotated centers the
highest confidence of objectness [106], a measure that decreases with radial distance from
the center.

The point-like annotations were used to build targets to train the deep learning
model to reproduce the density maps instead of bounding boxes typically used in an
object detection task. This approach allows the model to encode the confidence of the
annotation during the training phase, and also to leverage the surrounding context for the
prediction. To define a density map, let T be an RGB tile of shape (N × N × 3), and A its
set of annotations

A = {ck = (xk, yk)|k ∈ [0, n], xk ∈ [0, N−1], yk ∈ [0, N−1] for n ∈ N, n ≤ ∞}

The density map is then computed as following:

1. Assign a value d to each annotated pixel and define M̂ as:

M̂(i, j) =

{
d if (j, i) = ck f or k ∈ [0, n]
0 otherwise

2. Define a Gaussian kernel

G(x, y; σ) =
1

2πσ2 e−
x2+y2

2σ2

and a squared structuring element GK, with side length l << N and values given by
G centered on the midpoint of GK;

3. Convolve M̂ with GK to obtain the target density map M = M̂ ∗ GK.

4.2. EUNet Architecture

EUNet, the chosen architecture for the predictive model, is based on the fully convo-
lutional U-Net [107] in its encoder-decoder version. The aim of the encoder is to extract
feature maps at different depth; the corresponding decoder blocks will up-sample feature
maps from preceding layers and use feature maps of the encoder to refine the spatial
information. Specifically, for each layer of the decoder:

1. The feature map from the preceding layer is up-sampled with standard up-sampling
operations, without any trainable parameter.

2. The up-sampled feature map is concatenated with the feature map from the symmetric
level of the encoder path on the depth dimension (i.e., adding more feature channels).

3. The concatenated feature map is fed to convolution operations to refine the spatial
information and reduce the number of feature channels.

In this work, we leveraged the PyTorch [108] U-Net implementation provided by
Yakubovskiy in [109], which includes several encoder architectures and provides pretrained
ImageNet weights [110–112].

EfficientNet [113] (b3 version) was chosen as encoder; moreover, the spatial and
channel squeeze and excitation blocks (scSE) [114] were also introduced in the decoder
to improve model performance. The proposed framework is illustrated in Figure 22
and includes:

• encoder and decoder each composed of five blocks;
• scSE blocks at the end of each decoder block;
• Decoder blocks with output feature channels of size: 256, 128, 64, 32, 16;
• Identity function as activation map in the output layer.
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Figure 22. The full EUNet analysis pipeline.

The squeeze and excitation blocks (SE), originally introduced in [115], implement a
self-attention mechanism to make the network focus on the most relevant feature channels,
by first squeezing the spatial dimensions, and then using global information on feature
channels to learn a vector of coefficients used as weights for each channel in the input
feature map. See Figure 2 in [115] for a graphical scheme of the SE block. In particular, SEs
exploit the global average pooling to resize the input feature map MCxHxW to a vector zCx1x1,
where C is the number of feature channels, H and W the height and the width, respectively.
The vector zC×1×1 is processed through a pipeline including a linear layer that halves its
size, a ReLU activation layer, a second linear layer that recovers the original number of
channels C, and finally a sigmoid activation feeding the vector of weights to the channels
of the input feature map. Two different versions of SE were later introduced in [114,116],
aimed at improving segmentation models by introducing spatial attention components. The
former, named squeeze and excitation, works by first learning a mapping that reduces the
number of channels in the input feature map from C to 1, hence summarizing information
from the C input channels to a single number for each pixel, resulting in a two dimensional
feature map. A sigmoid activation function is applied to each pixel of the two-dimensional
feature map, providing weights in the range [0,1] for each pixel of the original feature map.
The latter is called scSE block and shown in ([114], Figure 1), had the goal of combining the
benefits of learning weights for spatial locations and feature channels. The two approaches
work in parallel on the input feature map: a 1× 1 convolution kernel is applied to obtain
a two-dimensional one-channel matrix CM, while preserving the spatial dimensions. A
pixel-wise sigmoid activation function is then applied to CM, finally obtaining the weight
matrix, then multiplied by the input feature matrix on each channel. Two coefficients are
obtained for each entry in the input feature map, and choosing their maximum value leads
to best results in terms of performance and complexity added to the model [114].

EfficientNets have been introduced in [113], where the authors exploited the network
scaling practice, namely, developed a novel baseline network, which can then be scaled up
to obtain a more powerful model. Typically, there are 3 main dimensions, along which it is
possible to scale a network: depth, width and image resolution. ResNet is a good example
of the first two cases: depth ranges from basic ResNet-18 with 18 layers to architectures
with 1000+ layers, while width scaling allows reaching the same accuracy as very deep
ResNets with reduced training time [117]. Scaling the third dimension, image resolution,
is based on the idea that better resolution of input images implies learning patterns that
were not discernible at low-res; however, there is a fundamental technical limit in the
memory available on the machine used for training. EfficientNets, based on MnasNet [118],
implement a novel strategy—called compound scaling—for scaling base neural network
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architectures by depth, width and resolution, together using a set of coefficients for each
dimension. Compound scaling has been validated also on common ResNet architectures
and MobileNets, and can improve network performances, provided the existence of a strong
baseline model. The available architectures range from the EfficientNet-b0 to the biggest
EfficientNet-b7, achieving top performance on ImageNet with many fewer parameters, thus
improving in efficiency. In particular, EfficientNet-b3 has 12× 106 parameters [113] and,
tested on ImageNet for a 1000-class classification task, EfficientNet-b3 scores 81.6% in top-1
accuracy, computed as the comparison between the ground truth and the most confident
prediction of the model. Furthermore, because of compound scaling, EfficientNets models
support interpretability, since they focus on relevant regions when making predictions, as
verified by the Class Activation Map [119]. Therefore, using EfficientNets as the encoder in
a U-net architecture, allows the decoder to take advantage of the improved spatial attention
mechanism of the encoder, and ultimately to improve the reconstruction of high-resolution
density maps.

4.3. EUNet Training and Evaluation

The lymphocyte counting task was censored as a classification task, by manually
defining classes of lymphocyte density. The density classes used can be represented by the
set C = {0, 1, 2, 3, 4, 5, 6}, as shown in Table 2.

Table 2. Lymphocyte count binning in ordinal classes.

Class 0 1 2 3 4 5 6

No. of Lymphocytes 0 1–5 6–10 11–20 21–50 51–200 > 200

Let D be a dataset represented by a collection of n tiles: then, γ ∈ Nn is the vector
of ground truth class for the target lymphocytes in each tile and γ̂ ∈ Rn is the vector
containing class predictions. As model performance metrics we used the mean absolute
error (MAE), the mean-squared error (MSE), the accuracy (ACC), the Cohen’s Kappa and
the Matthews correlation coefficient (MCC). MAE and MSE are the L1 and L2 averaged
difference between predicted counts and ground truth counts, respectively, while ACC is
the averaged matching between the predicted class and the ground truth class.

MAE =
∑n

i=1 |γi − γ̂i|
n

MSE =
∑n

i=1 (γi − γ̂i)
2

n

ACC =
∑n

i=1 δγi ,γ̂i

n
,

where δ is the Kronecker delta δγi ,γ̂i =

{
1 if γi = γ̂i

0 otherwise.
The Cohen Kappa K [120] is a statistic measure used to evaluate agreement between

two classifier, and it is defined as: K = ACC−pe
1−pe

, where pe is the sum of the probabilities
of the two classifiers agreeing on each class by chance. K takes values in [−1,1] where
1 means perfect agreement between classifiers and 0 or lower values mean that the two
classifier are agreeing by chance. In this work, K has quadratic weights for non agreeing
values, thus attributing less importance to errors among nearby classes, in accordance with
our classes having ordinal values.

Matthews correlation coefficient (MCC) is useful to evaluate classification perfor-
mance when classes are imbalanced [121]. MCC ranges in [−1,1], where 1 and −1 mean
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perfect classification and complete misclassification respectively, while 0 indicates random
predictions. MCC’s multiclass formula reads as follows [122,123]:

MCC =

N
∑

k,l,m=1
(CkkCml − ClkCkm)√

N
∑

k=1
[

N
∑

l=1
Clk

N
∑

f ,g=1 f 6=k
Cg f ]

√
N
∑

k=1
[

N
∑

l=1
Ckl

N
∑

f ,g=1 f 6=k
C f g]

,

where Ca,b is the number of elements in class a incorrectly predicted in class b.
The loss function used for training is the MSE between the ground truth and the

predicted density map, computed pixel-wise. Since the L2 metric penalizes large differences
between pixels according to their magnitude, the larger the values of the peaks in the
constructed density maps, the higher the relevance: as a result, pixels in proximity of the
lymphocyte centers (where the peaks are located) are more easily predicted than pixels of
lymphocyte boundaries. Coupling the Gaussian kernel density maps with the MSE loss
drives the network to focus on lymphocytes centers using the context in close proximity,
but without great penalty for the exact margin reconstruction.

Hyperparameter optimization is done by the Ranger algorithm [124,125], combining
the Lookahead procedure [126], and the Radam stabilization strategy [127]. The rectifica-
tion strategy of [127] works by tuning the variance parameters of adaptive learning rate
optimizers (e.g., Adam [128]) for the first iterations, until variance stabilizes with data
from a sufficient number of iterations, thus avoiding the optimizer to remain stuck in
local minima. The Lookahead strategy [126] improves parameter exploration speed and
stability by using two sets of weights for the optimizer. One set of weights is used for fast
exploration of the loss landscape, the other set of weights updates with smaller speed and
serves as a stabilizing mechanism if the state of the the optimizer get stuck in unwanted
local minima of the loss function. Overall, Ranger proved to be more robust and fast with
respect to Adam, warranting a stable optimization, providing a high optimal learning rate
η = 10−2, resulting in a faster training phase, especially for the ResNet50, whose training
could be reduced from more than 300 epochs to about 80 epochs.

Networks were initialized by using pretrained weights from ImageNet [110–112];
alternative strategies such as using weights from fine-tuned ResNet50 pretrained on the
public DP dataset Lysto (https://lysto.grand-challenge.org/, accessed on 13 August 2021),
did not lead to a significant performance improvement.

To guarantee robustness and reproducibility to the modeling, a preliminary train-
ing/test split with ratio 3/4 − 1/4 was operated and on the training set a 4 × 5−cross
validation resampling strategy was employed, following the guidelines recommended by
the US-FDS in their MAQC/SEQC initiatives [129,130]. Metrics are reported indicating
average and standard deviation. Moreover, throughout the model training a particular
care has been devoted into avoiding overfitting effects such as data (or information) leak-
age [35]: tiles extracted from the same WSI were not distributed in different training/test
data subsets, a careful approach which is now becoming standard in the most recent works
being published [131]. Finally, we adopted a plateau learning rate scheduler acted by
monitoring metrics on validation set and reducing the learning rate if no improvements
occurred for at least ten epochs: the new learning rate was computed as ηt+1 = αηt with
α = 0.2.

4.4. Lymphocytes Spatial Identification

The predicted lymphocytes density map is post-processed through a 3-step pipeline
in order to refine the coordinates of the lymphocytes’ centers:

1. First, the predicted density map values are corrected by setting to zero all pixels
with negative values. Indeed, the model learns to predict near-zero values for pixels
not belonging to lymphocytes, but the prediction may tend to zero in both positive

https://lysto.grand-challenge.org/
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and negative direction, and for the prediction to be a valid density map the negative
values should be removed.

2. Secondly, Otsu thresholding algorithm [132] is used to find an optimal value to
discretize the density maps in two levels: lymphocytes and background. The Otsu
algorithm is the de facto standard for discriminating foreground and background
pixels within an image. In detail, the optimal threshold is identified by minimizing
intra-class intensity variance (equivalent to maximizing inter-class variance). Since
the Otsu algorithm is the one-dimensional discrete analog of Fisher’s discriminant
analysis, this procedure coincides with globally optimizing k-means clustering on
the intensity histogram. Pixels with values under the threshold are assigned to
the background, while pixels with values over the threshold are assigned to the
lymphocyte class.

3. Thirdly, in crowded scenarios, the simple segmentation may still result in connected
components including more than one pixel. To split connected components on the
Otsu mask, the Watershed segmentation algorithm [133] is used to effectively separate
a dense single connected component into multiple sub-components. The result of the
Watershed technique is a matrix with n connected components with different labels.

Finally, in order to obtain the coordinates of the center, for each connected component
in the mask, the coordinates of the center of mass are computed and used as a proxy for
the coordinates of the predicted lymphocytes. The goodness of the detection is evaluated
by the three metrics Precision, Recall and F1-score, using as input the two sets of points T
and P, defined for each tile as:

T = {tk = (xk, yk)|k ∈ [0, n1], xk ∈ [0, N−1], yk ∈ [0, N−1] f or n1 ∈ N, n1 ≤ ∞}
P = {pk = (xk, yk)|k ∈ [0, n2], xk ∈ [0, N−1], yk ∈ [0, N−1] f or n2 ∈ N, n2 ≤ ∞} ,

corresponding to the ground truth and the predicted center’s coordinates, respectively.
The Hungarian algorithm [134] is used to find the best assignment between ground truth
points and predicted lymphocyte centers. Since optimal assignment can fail if the matched
points are too far away, each possible match is accepted only if the distance between points
is lower than a given threshold t, with Θ(t) = sl for sl ' 4µm, i.e., the average size of a
lymphocyte [50], corresponding to 8 pixels. Accepted matches are labeled as true positive,
while unmatched ground truths are considered false negatives and unmatched predictions
false positives. The performance measures are defined as follows:

Precision =
|True Positives|

|True Positives|+ |False Positives|

Recall =
|True Positives|

|True Positives|+ |False Negatives|

F1 =
Precision · Recall

Precision + Recall
,

being the F1-score the harmonic mean of precision and recall, and thus providing a unique
measure to describe the overall goodness of predictions.

4.5. Deep Features Interpretation

To explore the hidden layers of the model, a subset SN of 1080 tiles was extracted
from the NeSTBG dataset, 20 tiles for each available WSI, and then analysed by three
different methods, namely UMAP-HDBSCAN clustering, TDA representation and TwoNN
dimensionality estimation. First, UMAP is used to project data into a low b-dimensional
space with b ∈ [2, 12], where the upper bound is recommended in [95] for later feeding the
projection into the HDBSCAN algorithm without falling into a computationally intractable
task. Indeed, feature maps from raw images or from hidden layers of the network can be
up to 106 dimensions. For instance, in an intermediate step of the trained U-Net the feature
map has height and width 128 and 64 feature channels, resulting in a flattened vector
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of length 128× 128× 64 = 1,048,576 elements, for each tile. Estimating densities in 106

dimensions with approximately 103 data points would not be feasible without the UMAP
dimensionality reduction step. Value of b needs to be a trade-off between computational
constraints (lower b) and the effort of preserving most of the original structure of the dataset
(higher b): for the current tasks, b = 4 was chosen. Furthermore, the UMAP minimum
distance parameter was set to zero to let the embedding be free of arranging points close
together; the number of neighbors parameter was set to 25 so that at each iteration UMAP
is forced to compare tiles from more than one patient, since at most 20 tiles are extracted
from the same WSI; finally, L2, L1 and cosine norm were used as the distance in the original
feature space.

The obtained 4-dim projection was thus used as the input for HDBSCAN to extract
the dense regions of the embeddings; the clustering was subsequently visualized using a
different 2-dim UMAP projection for a qualitative analysis of its global structure.

Next, Betti curves are used to highlight the topological dynamics of the deep features
and finally the estimate of the intrinsic dimensionality of SN as a point cloud is provided
by the TwoNN algorithm.

Ansuini et al. [98] experimented standard convolutional neural network architectures
for classification tasks (VGG, AlexNet, ResNet) and observed a characteristic pattern of
intrinsic dimensionality of the deep features along layers in a well trained model. However,
EUNet is more complex, with connections across multiple layers and two main branches
with inherently different behaviors (encoding and decoding).

5. Conclusions

WSI data from DP are leveraged here to design a human-in-the-loop ML framework
that could aid clinicians in NB risk assessment. As a major novelty in the pipeline, cloud
computing is used to train a DL model with state-of-the-art architectures to predict density
maps, an approach rarely found in DP for IHC-stained specimens. The predictive model
is trained on the task of counting lymphocytes, while a post processing pipeline able to
detect nuclei is implemented from the predicted density maps, with results aligned with
pathologist’s estimates.

Furthermore, novel TDA approaches are employed to study the hidden representation
of data as processed by the network. As future developments, different strategy for data
augmentation (such as elastic transformations) or different techniques to construct the
predicted target density maps can be explored, as well as possible optimization of the
model architecture, and different activation and loss functions. Moreover, the current work
focused on the CD3 T-cell marker as a proof of principle that can be extended to other
immune cell markers to gain a deeper understanding of the role played by the immune
system on NB progression.

Finally, the ML framework would strongly benefit from the ability to simultaneously
recognise the tumour regions where lymphocytes are localized, e.g., septa, or tumoral nests,
and to observe tiles within a larger portion of the slides, in order to gain a higher level
of information.

Overall, the promising results emerging from the the current study pave the way
towards the development of an effective learning tool aimed at timely and precisely
quantifying the immune content within tumoral cells. Building on the awareness raising
from the experience gained by previously published works [22,102,103], such a tool can
work as a precious support for the pathologist, with an effective impact on the daily routine
in clinical setting.

As a future development, we plan to complement the current methodological work by
deepening the reported analysis through the study of the contribute of additional markers
such as PD-1 and PDL-1, investigating their correlation level with both cell infiltration and
patients outcome to strengthen the derived biological insights on NB.
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