
RESEARCH ARTICLE

Development of near real-time wireless image

sequence streaming cloud using Apache

Kafka for road traffic monitoring application

Aung Myo Htut, Chaodit AswakulID*

Wireless Network and Future Internet Research Unit, Department of Electrical Engineering, Faculty of

Engineering, Chulalongkorn University, Bangkok, Thailand

* chaodit.a@chula.ac.th

Abstract

In this paper, the authors have designed and implemented the prototype for a near real-time

wireless image sequence streaming cloud with two-layered restoration for a road traffic

monitoring application of a small-scale network. Since the proposed design is targeted to

implement outdoors where the link or node failure could occur, the fault-tolerant capability

must be considered. Having only one layer restoration may not provide a good quality of ser-

vice. Therefore, a two-layer restoration framework is designed in the proposed system by

restoring the network layer with the underlying software-defined wireless mesh network

capability and at the local broker selection over the Apache Kafka framework. The monitor-

ing application performance has been investigated for the end-to-end average latency and

image loss percentage by outdoor testing for 13 hours from 5:40 P.M. 17th November 2020

to 6:40 A.M. 18th November 2020. The end-to-end average latency and image loss percent-

age have been found to be within the acceptable condition i.e. less than 5 seconds on aver-

age with approximated 10% image losses. The proposed system has also been compared

with the traditional ad-hoc network, running the OLSR-based network layer, in terms of the

rerouting time, restoration time and end-to-end average latency. Based on the emulated

wireless network in controllable laboratory environments, the proposed SDWMN-based sys-

tem outperforms the conventional OLSR-based system with potentially faster rerouting/res-

toration time due to SDN central controllability and with only marginally increased end-to-

end average latency after re-routing/restoration completion. Algorithm complexity analysis

has also been given for both the systems. Both the experimental and complexity analysis

results thus suggest the practical applicability of the proposed system. Given this promising

result, it is therefore recommended as the future research in further developing from the pro-

totype design into the actual deployment for daily traffic monitoring operations.

Introduction

Bangkok has been recorded as the tenth-ranking most congested road traffic condition glob-

ally [1]. The main reasons for that problem are the insufficient road capacity, and the random

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 1 / 34

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Htut AM, Aswakul C (2022) Development

of near real-time wireless image sequence

streaming cloud using Apache Kafka for road traffic

monitoring application. PLoS ONE 17(3):

e0264923. https://doi.org/10.1371/journal.

pone.0264923

Editor: Ahmed Mancy Mosa, Al Mansour

University College-Baghdad-Iraq, IRAQ

Received: March 17, 2021

Accepted: February 19, 2022

Published: March 17, 2022

Copyright: © 2022 Htut, Aswakul. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All files are available

from the IoTcloudServe@TEIN project’s public

repository at github.com/IoTcloudServe/Smart-

Mobility-Chula.

Funding: This research project is supported by

Second Century Fund (C2F), Chulalongkorn

University; and the Asi@Connect’s Data-Centric

IoT-Cloud Service Platform for Smart Communities

(IoTcloudServe@TEIN) project (GRANT Number:

ACA 2016/376-562). https://www.research.chula.

ac.th/the-second-century-fund-chulalongkorn-

https://orcid.org/0000-0003-2604-3933
https://doi.org/10.1371/journal.pone.0264923
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264923&domain=pdf&date_stamp=2022-03-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264923&domain=pdf&date_stamp=2022-03-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264923&domain=pdf&date_stamp=2022-03-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264923&domain=pdf&date_stamp=2022-03-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264923&domain=pdf&date_stamp=2022-03-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264923&domain=pdf&date_stamp=2022-03-17
https://doi.org/10.1371/journal.pone.0264923
https://doi.org/10.1371/journal.pone.0264923
http://creativecommons.org/licenses/by/4.0/
https://www.research.chula.ac.th/the-second-century-fund-chulalongkorn-university-c2f/
https://www.research.chula.ac.th/the-second-century-fund-chulalongkorn-university-c2f/


events (abnormal events) that can cause the increasing traffic flow [2, 3]. Due to network com-

plexities, automatic controls of traffic signal light become ineffective. This is particularly evi-

dent in developing countries where necessary control sensors are hardly available. By trials-

and-errors, the problem of short-term traffic flow management must be tackled. In Bangkok,

like many other big cities, traffic police can mitigate the congestions by controlling the traffic

signal light only when they know the real-time or near real-time road traffic network informa-

tion [4].

In practice, having equipment for road traffic monitoring can give advantages, i.e. reducing

risks [5]. To have the traffic monitoring system (TMS), the camera sensor has the advantage

for the traffic police to evaluate, to understand and really to know the actual road traffic condi-

tion. Camera sensors also play an essential role in analysing the data in intelligent transporta-

tion systems (ITS).

To use the camera sensor nodes, nowadays, optical fiber is often used for closed-circuit tele-

vision (CCTV) surveillance monitoring systems. This CCTV surveillance monitoring systems

is the current standard practice in many cities. As a result, the losses and the latency for video

streaming are low. However, there are challenges in such standard CCTV deployment when

one needs to send the images or video from the roadside camera to the traffic police controller

box where traffic police can control traffic signal lights. The main challenge is the service

deployment cost, which is high because of the very long-distance wired communication line

installation.

To reduce the cost of the wired connection, a wireless connection has been recently adopted

worldwide. With expected cost reduction, however, the service experience in terms of loss and

latency must still be provisioned within the acceptable condition. To satisfy with the desired

service experience, one solution is streaming the video to the control center via the 4G Internet

connection [5]. However, using only 4G Internet connection directly from every camera is not

cost-effective. Therefore, the hybrid wireless connection, both Wi-Fi and 4G Internet connec-

tion, has been investigated. However, for the hybrid wireless connection with the installation

of the medium-range distance (with per-hop coverage of 200 to 300 meters), there are other

challenges. The main challenges are low quality of service (low throughput and low band-

width) and randomly occurring wireless line-of-sight blockage. Because of these challenges,

achieving a cost-effect wireless ad-hoc network streaming application with a satisfactory ser-

vice experience becomes non-trivial. With the Wi-Fi connection, throughput is low, and each

hop with wireless line-of-sight between ad-hoc network nodes can be temporally randomly

blocked. Therefore, there is a need for effective re-routing, referred in this paper as the lower-

layer network restoration. However, in serious physical network decomposition events, such

network rerouting would at times become impossible. Therefore, in this paper, another resto-

ration mechanism at the application layer running the Apache Kafka [6] message brokerage

has been proposed. The resultant mechanism forms the so-called two-layered restoration

framework i.e. at the network layer and the application layer.

The overall design is as follows. To reduce the cost, a cost-effective computing board, i.e.,

Raspberry Pi and Raspberry Pi camera, have been used as the image sending node. Road traffic

images are sent periodically from Raspberry Pi’s to an adaptively selectable local broker at the

nearest local traffic police controller box with Apache Kafka (hereinafter called Kafka) frame-

work [6]. Incoming image sequences are also forwarded to the traffic data cloud, enabling the

traffic police command center to monitor the overall road traffic conditions and for the local

traffic police at the neighboring areas to pull relevant traffic data for operating area-coordi-

nated traffic controls. External broker at the traffic data cloud and local brokers at local traffic

police controller boxes store the log file for future data analysis and also subsequent data pull-

ing requests.

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 2 / 34

university-c2f/ http://www.tein.asia/ The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0264923
https://www.research.chula.ac.th/the-second-century-fund-chulalongkorn-university-c2f/
http://www.tein.asia/


In the remainder, this paper reports on the real-world prototype implementation of near

real-time wireless image sequence streaming cloud using the Apache Kafka for the road traffic

monitoring application. At the application layer, an automatic switching mechanism has been

proposed to select the best Kafka broker for image streaming. Such automation would be trig-

gered upon the failure to restore the current primary best path of operations at the underlay

network layer. Additionally, at the network restoration layer, the concept of software-defined

networking has been deployed to develop a sufficiently fault-tolerant system for near real-time

usage, and this system must achieve an end-to-end streamed image sequence delivery to the

target users. The fault-tolerance concern is because of the node or link failure, which results in

the images not arriving successfully at the nearest local traffic police controller box. With the

constructed outdoor testbed, and the constructed laboratory-based emulated testbed, the pro-

posed system has then been thoroughly evaluated in this paper.

Background and related work

Software-Defined wireless mesh network

As mentioned in Section “Introduction,” to reduce the cost for the communication medium,

in this work, the wireless mesh network (WMN) is used. However, the traditional WMN has

limitations at the centralized control layer. To solve that limitation, there are emerging tech-

nologies such as software-defined networking (SDN). The concepts of SDN and WMN are

merged in [7, 8] and the result is Openflow enabled software-defined wireless network

(SDWMN). This network must be designed by considering topology robustness with self-heal-

ing characteristics as enabled by a proper mesh network routing using the enhanced network

programmability. A typical type of SDWMN network is demonstrated in Fig 1 SDN controller

is added in the traditional WMN to control the data routing from each mesh node to the mesh

gateway.

Fig 1. Typical architecture of SDWMN [7, 8].

https://doi.org/10.1371/journal.pone.0264923.g001

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 3 / 34

https://doi.org/10.1371/journal.pone.0264923.g001
https://doi.org/10.1371/journal.pone.0264923


Apache Kafka distributed messaging system

Kafka is designed to have high-throughput, and low-latency [6]. The typical architecture of

Kafka is shown in Fig 2.

Kafka can provide the delivery guarantee [9]. In the delivery, there are three variants as

follows:

• “At most once” does not guarantee a successful delivery because the message is sent to the

broker, not more than once. The producer does not care whether the sent message is success-

fully stored inside the broker or not. Therefore, there is no guarantee that the sent messages

to be successfully stored by the broker. This kind of streaming message can be useful when

the message loss is not essential, and the transmission delay is needed to be low enough.

• “At least once” delivery guarantee ensures that every sent message is stored at least once at

every device in the cluster. The duplication of received and stored messages can occur due to

the message re-transmission by a sender when the sender receives too late message reply

acknowledgment. Therefore, messages are stored at every broker successfully. This variant

can guarantee no losses. However, this variant has the disadvantage that the message sender

needs time to get the reply message from every intended receiver device.

• “Exactly once” delivery guarantee ensures that the intended receiving device successfully

stores the incoming message. The delivery is guaranteed for each message to be stored suc-

cessfully exactly once, even when the received message duplication occurs.

In this work, “at most once” and “exactly once” are chosen for streaming the images

because the successful image storage inside the broker and a slight transmission delay are

essential to send the images from the cameras to the traffic police controller boxes. Messages

Fig 2. Typical architecture of Kafka [6].

https://doi.org/10.1371/journal.pone.0264923.g002

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 4 / 34

https://doi.org/10.1371/journal.pone.0264923.g002
https://doi.org/10.1371/journal.pone.0264923


are sent in batches. Within each batch, image messages are sent in “at most once” mode to

reduce the transmission delay except the last message sent with“exactly once” mode to check

whether the messages are arriving at the broker.

Apart from the delivery guarantee, Kafka has long-term message storage as the Kafka mes-

sages are stored at the local storage system. Kafka and other systems can have the reliable

streaming of data via a framework called Kafka connect. For stream processing, Kafka steam

can be used. Because of these Kafka features, we decided to use the Kafka framework in our

proposed TMS.

Related work on data sources and communication technologies in existing

TMS

In addition to the intended near real-time road TMS in this work, the system needs to be

implemented along the targeted congested road. In this regard, the past TMS approaches have

first been reviewed in Table 1 to understand state-of-the-art.

In Table 1, there are two categories of sensor data types. In the first category, the sensor

returns numerical output results e.g. vehicle counted number for each lane [10], magnetic field

intensity value to detect vehicle presence [11], road density in terms of traffic flow rate [12],

average velocity for each lane [13], number of vehicles inside the sensing area [14] and sur-

rounding vehicle detection with Bluetooth [15]. These outputs are most useful for statistical

data analytics that would give insightful strategies in managing traffic flows on the road. How-

ever, for daily operations of traffic flow management by traffic police, such numerical output

results from the sensor nodes are usually too difficult to understand especially for the busy on-

duty traffic police who control the traffic signal light. Therefore, these sensors become unuseful

for the traffic police who would like to watch the actual condition of the road traffic rather by

themselves with their own eyes. In the second category, the sensor returns directly the video or

image of surrounding road traffic conditions. This is also the main focus of this paper concern-

ing video or image streaming. In this regard, the past works include e.g. [16–18]. In [16], road-

side video and in-car videos have been delivered with 3.5G/WiMAX. In [17], the use of optical

fiber to stream MPEG-4 videos from 600 cameras has been introduced in Valencia, Spain. The

video quality and resolution are good by using optical fiber since video can be streamed on the

high throughput link. Work in [18] reports that the low frame-rate video enough should be

Table 1. Summary of reviewed data sources and communication link using in TMS.

Paper Real-time or near real-

time

Communication link Data type Mobile or fixed

[16] Yes 3.5G/WiMAX In-car video and roadside videos Mobile

[17] Yes Optical fiber 1 Gigabit Ethernet 384 x 288 resolution MPEG-4 format

video

Fixed

[12] Yes GPRS and GSM GPS on the bus Mobile

[13] Yes ZigBee and GSM Probe vehicle with RFID tag RFID reader is

fixed

[14] Yes Wireless sensor network Probe vehicle with RFID tag and GPS RFID reader is

fixed

[11] Not mentioned ZigBee Magnetic sensor Fixed

[10] Yes Wireless sensor network and Internet Ultrasonic sensors Mobile

[15] Not mentioned Bluetooth mobile ad-hoc network Probe vehicle with Bluetooth device Mobile

[19] No Not mentioned Snapshot image Fixed

[18] Yes Wi-Fi with backbone optical network and WiMAX with optical

backbone network

Low frame rate video Fixed

https://doi.org/10.1371/journal.pone.0264923.t001

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 5 / 34

https://doi.org/10.1371/journal.pone.0264923.t001
https://doi.org/10.1371/journal.pone.0264923


sufficient for the traffic police to know the road traffic condition. The work has also compared

the system between the Wi-Fi with backbone optical network and WiMAX with backbone

optical network. These wireless systems with a backbone optical network would also need a

high installation, operation, and maintenance cost.

The main difference between our work and those summarized works with video-sensor

type is that we propose the near real-time wireless image sequence streaming cloud with the

network-layer rerouting that is combined together with the application layer of local broker

re-selecting application for TMS application. In this testbed, SDWMN developed by the author

in [20] is used as a network layer for streaming the image sequences of the road traffic from

the Raspberry Pi’s. On top of the network layer, the Apache Kafka is used at the application

layer for streaming, storing, and playing back the captured traffic image sequences to the traffic

police. To the best of our knowledge, none of the past works in Table 1 has investigated the

usage of restoration mechanisms in both the network layer and the application layer before.

Proposed simple fault-tolerant near real-time wireless image

sequence streaming cloud

The proposed architecture is designed on foundations obtained previously from the prelimi-

nary testbed designs in [21]. To cover the road segment of the Phaya Thai road between Rama

1 road and Rama 4 road and to capture both movement directions of the road, more cameras

are needed to be installed. A 1km length of the road segment is tested to stream the image

sequences to develop a prototype. To test on the 1km of road length, the Phaya Thai road seg-

ment between Rama 4 and Chulalongkorn Soi 12 are chosen.

Design of underlying SDWMN in-band architecture

The network layer for the proposed architecture is based on the network architecture designed

in [20]. SDWMN in-band architecture is used in this testbed, and the Ryu controller is located

in the cloud. Two separated devices are used at the traffic data cloud, one for the Ryu controller

and one for the external broker to have a clear point of view and control. SoftEther virtual pri-

vate network (VPN) [22] is used to connect between the local brokers and the traffic data

cloud. The two local brokers are connected to the Ryu controller via the VPN bridges. The rest

mesh nodes are connected to the Ryu controller via the local brokers to be the in-band archi-

tecture. The detailed information for the underlying SDWMN network is explained in [20].

Design of interworking between application-layer and SDWMN

The proposed architecture includes cameras, local brokers, an external broker, and a Ryu con-

troller, as shown in Fig 3. To have a clear view for the traffic police user and the proper net-

working in the SDWMN network, Raspberry Pi’s are installed at the fence of the crossover

bridges of Phaya Thai Road, Bangkok.

At the physical locations of the target testbed, which is the Phaya Thai road segment near

Chulalongkorn University, Bangkok, the actual distance is from 200 to 300 meters in-between

adjacent crossover bridges. Therefore, the per-hop wireless ad-hoc reachable distance must be

between the adjacent two crossover bridges and the distance from the crossover bridge to the

nearest traffic police controller box. With this distance, traffic police can know the actual con-

dition of the Phaya Thai road segment. The location of local broker 1 is at the junction of the

Phaya Thai road and Rama 4 road. Local broker 2 is at the intersection of the Phaya Thai road

and Chulalongkorn soi 12. Both locations are chosen because the distance between the local

brokers and the nearest Raspberry Pi’s is 200 to 300 meters apart. This distance is also met

with the per-hop wireless ad-hoc reachable distance. Traffic police in those locations play

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 6 / 34

https://doi.org/10.1371/journal.pone.0264923


critical roles in controlling the road traffic flows along the Phaya Thai road and other neighbor

road segments.

Certainly, for other cities with a relatively longer stretch of road than in our scenario, we

believe our proposed design is directly extensible at the physical layer, e.g. increasing the

antenna amplification gain or directionality, or at the network-layer simply by installing SDN

flow rules to accommodate needed route plans.

Six mesh nodes are separated into two groups according to their distance to reach the near-

est local traffic police controller boxes as shown in Fig 3. Mesh node names are given accord-

ing to the location of the camera. For PhayaThai-1, 2, and 4, the default local broker is local

broker 1. For PhayaThai-3, 5, and 6, the default local broker is local broker 2. Each mesh node

publishes captured-image messages to the local broker with the Kafka topic, defined as the

sending mesh node’s name. Based on the result of [21], 320 × 180 resolution JPEG image is

chosen since the latency is acceptable with the smallest image size and the view is clear enough

for traffic police.

Intel1NUC7i7BNHs are used as local brokers, and each of the local brokers is installed at

the local traffic police controller boxes. In the local traffic police controller box, a Kafka broker

receives the incoming Kafka messages from the mesh nodes. The Kafka consumers show the

incoming Kafka messages as the image sequences to the traffic police. Another Kafka producer

forwards the incoming Kafka messages from the mesh node to the external broker with the

same topic name.

The external broker, Ryu controller, and VPN server are installed at the telecommunication

system research laboratory, engineering building 4, faculty of engineering, Chulalongkorn

University. The external broker receives the forwarded Kafka messages from the local brokers,

and these messages are stored as a log file for each topic. Ryu controller assigns the flow rule of

Fig 3. Proposed architecture for road traffic morning application.

https://doi.org/10.1371/journal.pone.0264923.g003

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 7 / 34

https://doi.org/10.1371/journal.pone.0264923.g003
https://doi.org/10.1371/journal.pone.0264923


mesh nodes. VPN server serves the VPN service to connect between the Ryu controller and

local brokers.

For the networking part, mesh nodes and local brokers are connected with the SDWMN

network. Based on the SDWMN network test by authors in [7], mesh nodes are network-

unreachable at times. When that happens, SDWMN will try to restore the network with the

pre-planned re-routing scenario as shown e.g. in Fig 3, when PhayaThai-1 and PhayaThai-6

nodes are inoperable. If PhayaThai-1 node is unreachable, then PhayaThai-2 node will be re-

routed to local broker 1 with the alternative route (PhayaThai-2—PhayaThai-5—Phaya

Thai-4—local broker 1) as shown in Fig 4. Likewise, if PhayaThai-6 node is unreachable,

then PhayaThai-5 node will be re-routed to local broker 2 with the alternative route

(PhayaThai-5—PhayaThai-2—PhayaThai-3—local broker 2) as shown in Fig 5. The Ryu con-

troller periodically checks whether the mesh nodes are still alive. When the Ryu controller can-

not get the reply message from the mesh nodes, the re-routing scenario occurs to re-connect

all reachable mesh nodes to the default local brokers. This re-routing scenario needs a few sec-

onds to check and re-assign the Open vSwitch (OVS) flow rule inside the mesh nodes. During

the re-routing attempts of SDWMN in the network layer, the Kafka producer application at

each mesh node would wait and not attempt any application-layer restoration mechanism. To

solve this problem, Kafka producer at PhayaThai-2 and 5 can have a local broker switching

mechanism at application-layer, and the detail is explained in the next Section.

Fig 4. PhayaThai-1 unreachable case.

https://doi.org/10.1371/journal.pone.0264923.g004

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 8 / 34

https://doi.org/10.1371/journal.pone.0264923.g004
https://doi.org/10.1371/journal.pone.0264923


Local brokers to the external broker have been connected via the VPN. Each local broker

connects to one VPN bridge, and therefore the local broker can communicate with the external

broker, which is the same network as the Ryu controller. VPN bridge is attached with a 4G

wireless modern to use 4G Internet connection via a public telecommunication service

provider.

Operational flow charts of Kafka producer and consumer applications in

simple fault-tolerant near real-time wireless image sequence streaming

cloud

The flow chart of publishing the images as Kafka messages from PhayaThai-2 and 5 to the

local brokers is shown in Fig 6. Mesh node first instantiates the Kafka producer for both local

brokers. Raspberry Pi assigns the initial condition as explained in Fig 6. Raspberry Pi camera

captures a new image and sends it to the current_used_broker with the Kafka topic defined as

the name of that mesh node, e.g., PhayaThai-1. A new image is sent to that local broker period-

ically from the mesh node until the sent_images_in_batch reaches max_images_in_batch.

After sending the last image in the batch, the mesh node waits for at most n sec(s) to get the

reply message from the current_used_broker confirming that the last image in the batch is suc-

cessfully stored at the local storage system of current_used_broker. To reduce the processing

time in waiting for the reply message from the current_used_broker, to confirm successful

Fig 5. PhayaThai-6 unreachable case.

https://doi.org/10.1371/journal.pone.0264923.g005

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 9 / 34

https://doi.org/10.1371/journal.pone.0264923.g005
https://doi.org/10.1371/journal.pone.0264923


Fig 6. Operational flow chart of Kafka producer application with local broker switching mechanism inside the

mesh node.

https://doi.org/10.1371/journal.pone.0264923.g006

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 10 / 34

https://doi.org/10.1371/journal.pone.0264923.g006
https://doi.org/10.1371/journal.pone.0264923


delivery of message batch transmission, the mesh node waits for only the reply message of the

last image in the batch. If the mesh node does not receive the reply message from the curren-

t_used_broker within a maximum threshold for waiting time n sec(s), then the mesh node

switches to another local broker. Subsequently, Raspberry Pi camera captures a new image

sequence. It sends the newly captured sequence with the number of images of max_image-

s_in_batch to another local broker instead of the current one with the same one Kafka topic

name. Since the default local broker is nearest to the mesh node, we limit the number of

batches that can be used for the alternative local broker to max_batches. If the sent_batches

reach max_batches, the algorithm will force the mesh node to switch back to the default local

broker. At this time, if the wireless link or mesh node between the Raspberry Pi and the default

local broker has already been restored, then the mesh node will continue subsequently sending

to the default local broker. Otherwise, after losing one batch, the mesh node will switch back to

the alternative local broker. Sending to the default local broker is the best way because that

default local broker is the nearest local broker for the mesh node.

At each local traffic police controller box, the local broker is used with three functions. The

first one is to serve as a local Kafka broker that receives the incoming Kafka messages from

mesh nodes. The second function serves as a Kafka consumer from both the local Kafka broker

and external Kafka broker. The third function is to relay the locally received messages from the

local Kafka broker to the external broker.

The second function here is depicted in Fig 7. At first, the monitoring application instanti-

ates the Kafka consumers for the local brokers. After that, the wxPython frame is created with

the pre-configured resolution of the monitoring screen. A background image is read from the

local storage and shown on that wxPython frame. Multi-threading is used for reading and

showing image sequences from all the Kafka topics published by mesh nodes. Each thread is

used to read and display the messages in parallel from each Kafka topic. The image message is

shown at the specified location for that camera location of the created wxPython frame. Sup-

pose the monitoring application does not get the reply message from the local broker for the

requested Kafka message within t1 sec(s). In that case, the monitoring application will switch

to the external broker. Likewise, in the local broker, the monitoring application waits for t2 sec

(s) to read the last incoming message from the external broker. t2 should be greater than t1

because a longer time is needed to connect to the external broker than to the local broker. If

the monitoring application cannot find the new incoming Kafka message, the last received

image is displayed instead at the created wxPython frame. This process of reading and display-

ing images is repeated for all subsequent messages.

The third function of our application is forwarding the locally received messages to the

external broker, and the operational flow chart is shown in Fig 8. This program instantiates

another Kafka consumer for the local broker and another Kafka producer for the external bro-

ker. The last incoming image message from the local broker is read and published to the exter-

nal broker with the same Kafka topic name.

Another Intel1NUC is used as the external cloud facility considered as the central traffic

police command center. An external broker serves two functions. The first one is to serve as an

external Kafka broker that receives the incoming Kafka messages from local brokers. Another

function is to serve as the Kafka consumer by reading and displaying image sequences from

the Kafka messages from the external broker, and the flow chart of function is shown in Fig 9.

The function here for the monitoring application is operable, similarly to the monitoring

application of the local brokers. The only difference is that all the messages are read from the

external Kafka broker.

For the storage system, Kafka brokers at both local and external brokers store the incoming

Kafka messages as a log file for each mesh node. This storing is needed when traffic police

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 11 / 34

https://doi.org/10.1371/journal.pone.0264923


users may need to re-watch the previously recorded image sequences. Those further analyses

can be done easily in Kafka by reading the log files stored in the external broker of the traffic

data cloud.

Dell laptop latitude E6400 is used as the Ryu controller. At the Ryu controller, the re-rout-

ing application is running as the northbound interface application. This application checks the

mesh nodes’ reachability status. If an unreachable case occurs, the re-routing scenario occurs

to re-route the data plane and control plane traffic from the mesh nodes to the default local

brokers.

Fig 7. Operational flow chart of Kafka consumer application in local traffic controller box.

https://doi.org/10.1371/journal.pone.0264923.g007

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 12 / 34

https://doi.org/10.1371/journal.pone.0264923.g007
https://doi.org/10.1371/journal.pone.0264923


Outdoor testing

Setting of actual testbed component installation on target Phaya Thai Road

In this Section, the steps of actual implementation for the real outdoor testbed at the target

road segment as discussed in Section “Proposed Simple Fault-Tolerant Near Real-Time Wire-

less Image Sequence Streaming Cloud”. Fig 3 shows the topology of the real outdoor testbed.

The locations of the local brokers and external broker are mentioned in Section “Proposed

Simple Fault-Tolerant Near Real-Time Wireless Image Sequence Streaming Cloud.” The

Fig 8. Operational flow chart of traffic controller box application to relay locally received messages to external

Kafka broker.

https://doi.org/10.1371/journal.pone.0264923.g008

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 13 / 34

https://doi.org/10.1371/journal.pone.0264923.g008
https://doi.org/10.1371/journal.pone.0264923


locations of the local broker 1 and 2 are shown in Figs 10 and 11 respectively. Figs 12 and 13

show the installation of local brokers 1 and 2 inside the traffic police controller boxes respec-

tively. Mesh nodes are installed inside the waterproof boxes as shown in Fig 14. These boxes

are attached to the fence of the crossover bridges on Phaya Thai road.

Zookeeper and Kafka broker are installed at the local brokers and external broker as we

mention in Section “Proposed Simple Fault-Tolerant Near Real-Time Wireless Image

Sequence Streaming Cloud.” In the beginning, the Zookeepers and Kafka brokers are needed

to be up and running. A real-time clock (RTC) module ds1307 is attached to each Raspberry

Pi to synchronize the clock.

For the underlay SDWMN network, the detail information is mentioned in [20]. Before

running the Kafka producer application at the Raspberry Pi’s, the message forwarding applica-

tion mentioned in Section “Operational Flow Charts of Kafka Producer and Consumer Appli-

cations in Simple Fault-Tolerant Near Real-Time Wireless Image Sequence Streaming Cloud”

is needed to run first. After setting the forwarding application and the Kafka producer

Fig 9. Operational flow chart of external Kafka consumer application in central traffic command centre.

https://doi.org/10.1371/journal.pone.0264923.g009

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 14 / 34

https://doi.org/10.1371/journal.pone.0264923.g009
https://doi.org/10.1371/journal.pone.0264923


Fig 10. Location of local broker 1 at the junction of Phaya Thai road and Rama 4 road (near Sam Yan).

https://doi.org/10.1371/journal.pone.0264923.g010

Fig 11. Location of local broker 2 at the junction of Phaya Thai Road and Chulalongkorn Soi 12 (near Mahboonkrong).

https://doi.org/10.1371/journal.pone.0264923.g011

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 15 / 34

https://doi.org/10.1371/journal.pone.0264923.g010
https://doi.org/10.1371/journal.pone.0264923.g011
https://doi.org/10.1371/journal.pone.0264923


Fig 12. Installation of local broker 1 at specific traffic police controller box in (a) and (b).

https://doi.org/10.1371/journal.pone.0264923.g012

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 16 / 34

https://doi.org/10.1371/journal.pone.0264923.g012
https://doi.org/10.1371/journal.pone.0264923


application, the monitoring application mentioned in Section “Operational Flow Charts of

Kafka Producer and Consumer Applications in Simple Fault-Tolerant Near Real-Time Wire-

less Image Sequence Streaming Cloud” is run at each local broker and an external broker. The

resolution of each JPEG format image is chosen to be 180p which is 320 x 180 resolution. This

180p resolution is clear enough for the policeman to know the condition of the road.

The image capturing and sending interval time is set to 10 secs, and the maximum thresh-

old of waiting time is set to 15 secs (image capturing and sending interval time + extra 5 secs).

Fig 13. Installation of local broker 2 at specific traffic police controller box.

https://doi.org/10.1371/journal.pone.0264923.g013

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 17 / 34

https://doi.org/10.1371/journal.pone.0264923.g013
https://doi.org/10.1371/journal.pone.0264923


The image capturing and sending interval time and the maximum waiting time threshold is

large because of the obstacles, which can block the wireless link.

Kafka producer applications at PhayaThai-1, 3, 4, and 6 produce images to the default local

broker only because the local broker switching mechanism at these mesh nodes can have a

large delay since these nodes are 3-hop away from other local brokers. Kafka producer applica-

tion with local broker switching mechanism is run at PhayaThai-2 and 5.

Fig 14. Components for wireless mesh node inside waterproof box.

https://doi.org/10.1371/journal.pone.0264923.g014

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 18 / 34

https://doi.org/10.1371/journal.pone.0264923.g014
https://doi.org/10.1371/journal.pone.0264923


The testing has started from 5:40 P.M. 17th November 2020 (Tuesday) to the next day at

6:40 A.M. 18th November 2020 (Wednesday). Since the testing has started around the rush

hours of road traffics, there is traffic congestion during the starting period. This congestion

can affect the wireless link between the mesh node and local brokers. The big vehicles, e.g. bus,

trucks, can temporarily block the line-of-sight of wireless links between the local brokers and

mesh nodes. The snapshot examples of monitoring application is shown in Fig 15.

Measurement result of end-to-end average latency and image loss

percentage

To measure the end-to-end average latency, the RTC time of all Raspberry Pi’s are synchro-

nized before the streaming application starts. The latency is calculated with the subtraction of

mesh node sending time from image message reading time at the monitoring application of

each local broker and an external broker. To measure the image loss, an additional frame num-

ber counter is added to the Kafka message. Therefore, the image loss can be measured at the

monitoring application by looking up the frame number inside the Kafka message. The end-

to-end average latency and image loss percentage have been collected for 13 hours of the test-

ing result of the outdoor testbed.

The result of the graph of end-to-end average latency with 95% confidence interval and the

image loss measurement by traffic monitoring application at local brokers and external broker

are shown in Figs 16 and 17 respectively. One-hop distance wireless nodes to local brokers

give a smaller delay compared to the two-hop distance nodes. It is because increasing the hop

results in the increasing delay. Therefore, the middle node (PhayaThai-2 and 5) has a larger

delay time than the one-hop node (PhayaThai-1, 3, 4 and 6). For the PhayaThai-1 and 4, there

Fig 15. Snapshot example of monitoring application at external broker.

https://doi.org/10.1371/journal.pone.0264923.g015

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 19 / 34

https://doi.org/10.1371/journal.pone.0264923.g015
https://doi.org/10.1371/journal.pone.0264923


is the obstacle such as some big car between the mesh nodes and the local broker 1. Because of

the local broker 1 location, the line-of-sight wireless link can be blocked when congestion

occurs in front of the traffic police controller box. However, this is only is temporarily only,

and therefore, the image loss percentages of these two nodes are small (less than 1%) compared

to other mesh nodes. For PhayaThai-3 and 6, due to the location of the local broker 2, there

are much more obstacles near local broker 2. The traffic police controller box for the local bro-

ker 2 is located on the pavement as shown in Fig 11. Trees grow along the pavement, and tree

leaves can block the wireless link between local broker 2 and PhayaThai-3 and 6. Line-of-sight

Fig 16. End-to-end average latency of image messages received at each broker for each wireless node (Phaya Thai

road test).

https://doi.org/10.1371/journal.pone.0264923.g016

Fig 17. Image message loss percentage measurement by traffic monitoring application at local brokers and external broker (Phaya Thai road

test).

https://doi.org/10.1371/journal.pone.0264923.g017

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 20 / 34

https://doi.org/10.1371/journal.pone.0264923.g016
https://doi.org/10.1371/journal.pone.0264923.g017
https://doi.org/10.1371/journal.pone.0264923


wireless links can also be temporarily blocked when congestion occurs near the traffic police

controller box. Therefore, the image loss percentage of these two nodes is large compared to

other one-hop distance mesh nodes (PhayaThai-1 and 4).

Fig 18 shows the local broker switching time. Here, the x-axis means testing period in sec-

onds, and one at the y-axis means the mesh node switches the local broker and sends image

messages. 0 at the y axis means that the mesh node sends image messages to the

Fig 18. Local broker switching time of PhayaThai-2 and PhayaThai-5 in seconds (Phaya Thai road test).

https://doi.org/10.1371/journal.pone.0264923.g018

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 21 / 34

https://doi.org/10.1371/journal.pone.0264923.g018
https://doi.org/10.1371/journal.pone.0264923


current_used_broker. Fig 18 shows that PhayaThai-5 node switches the local broker too fre-

quently during the beginning of the testing period. This is because of the line-of-sight blockage

between the local broker 2 and PhayaThai-6 node. As a result, the image loss percentage is

increased at PhayaThai-5 node. However, the end-to-end average latency is kept around

desired limit which is less than 5 seconds. According to the traffic police suggestion, 5-second

late information of the road traffic condition can be acceptable to control the traffic signal

light. End-to-end average latency is kept around this amount because of the local broker

switching scenario. When the current_used_broker is not reachable, the Kafka producer appli-

cation at the PhayaThai-5 node will switch to the local broker of the other side. This is in addi-

tion to the re-routing algorithm of the SDWMN underlay network. Having only the re-

routing algorithm provided by the underlay SDWMN network will keep trying to get to the

same destination. For PhayaThai-5 case, the reachability from the local broker 2 is unreliable.

As shown in Fig 19, the reachability status of the SDWMN control plane to the PhayaThai-3, 5

and 6 from the local broker 2 is fluctuating a lot. This SDWMN uses the in-band control sce-

nario. The data packet and control packet are sent with only one interface. The node reachabil-

ity means that the SDN controller is disconnected from the mesh nodes in the control plane in

[20]. During the operation, when mesh nodes are disconnected from the SDN controller, Fig

19 shows 0 at each graph. When the node reconnects to the SDN controller, Fig 19 shows one

at each graph. The reachability is measured via the default gateway in the local broker. There-

fore, unreachability of PhayaThai-5 means local broker 2 and PhayaThai-5 are not connectable

via the primary route or alternative route. This does not mean the PhayaThai-5 is not reach-

able to the local broker 1. Therefore, having only one layer restoration cannot maintain the sat-

isfactory service experience. Because of this disadvantage of having only one layer restoration,

in this paper, we proposed the two layer restoration framework for network as well as applica-

tion layer.

Fig 19. Practical operation status of SDWMN control plane for 13 hours testing (Phaya Thai road test).

https://doi.org/10.1371/journal.pone.0264923.g019

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 22 / 34

https://doi.org/10.1371/journal.pone.0264923.g019
https://doi.org/10.1371/journal.pone.0264923


In Fig 19, the connection between the SDN controller and PhayaThai-3, 5 and 6 have fluc-

tuated a lot. This is because of the local broker 2 location and the temporary blockage of the

line-of-sight wireless link between the local broker two and mesh nodes. Because of the con-

nection between the local broker 2 and PhayaThai-6, PhayaThai-5 connection to the local bro-

ker 2 is also not good, as we can see in Fig 18. However, this Fig 18 shows only the control

plane reachability. The data plane traffic can go to an alternative local broker e.g., PhayaThai-5

can successfully switch the destination, local broker, to an alternative local broker. Because of

this switching capability of the local broker, end-to-end average latency and the image loss per-

centage can be reduced. However, such losses can be reduced even further in future work by

sending the flag to signal the switch back to the local broker instead of sending the whole batch

of the image sequence. Another reason for the high image loss percentage is that PhayaThai-5

switches the local broker too often as shown in Fig 18. PhayaThai-5 switches the local broker

when the reply message for the last image message from the current_used_broker does not

arrive within the maximum waiting time threshold.

Although PhayaThai-5 switches to the alternative local broker (local broker 1), the wireless

link between PhayaThai-5 and local broker 1 is not good. Despite switching to the alternative

local broker (local broker 1), the maximum waiting time threshold is not long enough.

PhayaThai-5 switches to the default local broker (local broker 2). Therefore, in Fig 18, the local

broker switching time for PhayaThai-5 has occurred twice most of the time, which means

Kafka producer for PhayaThai-5 is switching the local brokers back and forth after reaching

the max_images_in_batch by the current_used_broker. Because of local brokers switch too

often, the image loss percentage has increased. It is noticeable from Fig 17 for the outdoor test-

ing that the image loss percentage can be huge for PhayaThai-5 with the two-hop route to

reach its destined local broker. Such high image losses would indeed be considered not negligi-

ble when applied in reality. And that is why the system architecture proposed in this paper also

tries to include redundancies. Here, we have designed the camera angles to overlap for the

nodes installed on the same crossover bridges, for instance, for PhayaThai-2 and PhayaThai-5

nodes. So, when an active path from one node is disrupted by recurrent line-of-sight obstacles

like big-bus passing, that node’s intended camera view angle is erroneous. However, should

the other node with its installed position at the opposite roadside still function correctly, the

traffic police could still see the overall road traffic congestion in that area. It should also be

noted that despite such inherently included equipment redundancy, the cost of engineering

the proposed system remains far lower than the cost of building the currently used wire-based

CCTV system in the city of Bangkok. Hence, if one could demonstrate the feasibility of using

this wireless ad-hoc basis to design our near real-time road traffic monitoring application, we

believe the practical deployment should be justified easily.

Switching the local broker too often can result in high image loss because both local brokers

cannot receive the entire image sequence. This result thus depicts the applicability range

boundary of the proposed system. That is, the local broker switching can cause the image loss

because a batch of the image sequence is transmitted to the default local broker to check

whether the default local broker is reachable from the PhayaThai node or not. This checking

results in high image loss during the network traffic congestion condition. Another boundary

is that during the increased network traffic congestion or low bandwidth condition, the image

sending node is trying to stream the images by sending the image sequence to the local brokers

back and forth. During that time, the image sequences from the node are lost and causing a

high image loss percentage.

At the external broker, the image message loss percentage is similar to at the local brokers

because the local brokers forward image messages received at the local brokers. Therefore, the

additional image message loss has occurred because of the Internet connection only. However,

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 23 / 34

https://doi.org/10.1371/journal.pone.0264923


the image loss percentage is under the acceptable condition at both local brokers and external

broker.

In this testbed, the testing period is from 5:40 P.M. 17th November 2020 to 6:40 A.M. 18th

November 2020 which is night time. During the night time, the traffic congestion is less than

the daytime road traffic congestion. However, the beginning of the testing period is the most

congested period of the whole day which is from 6 P.M. to 9 P.M. During that period, the sys-

tem performance of the left side network (local broker 1, PhayaThai-1, 2 and 4) is under the

acceptable condition. For the right side of the network (local broker 2, PhayaThai-3, 5 and 6)

the system performance of PhayaThai-3 and 6 is under the acceptable condition except the

PhayaThai-5 node whose image loss percentage is higher than the other nodes. However,

because of the local broker switching scenario, the end-to-end average latency is under the

acceptable condition. Apart from that switching scenario, the cameras are pointed to the simi-

lar road condition, the loss of information from one camera is acceptable for the traffic police

to know the road condition. Since the tested period has already included the most congested

period (i.e. during evening rush hours) of the whole day, the daytime testing result value

should be similar to or better than the result of this testing period.

There are limitations to the proposed framework. One of the limitations of the proposed

framework is that the restoration of network layer and application layer are not cooperated

with each other. This might lead to the unnecessary restoration occurrences. Another limita-

tion is that the whole batch of image sequence is sent and checked for the reachability at the

application layer by only the last message of the batch. This might lead to a Kafka producer try-

ing to send its generated images an unreachable local broker. All these limitations could poten-

tially give the high image message loss percentage. However, in practical operations of traffic

monitoring, the traffic police on-duty would not be always attentive to the traffic monitoring

dashboard. So, losing some images would merely cause the latest updated images to be frozen

on the monitoring screen. And especially when the traffic is congested, information would not

be lost much because an image of stopping vehicles in queue would remain relatively

unchanged. And once the new images of the same location have been later on retrieved, the

traffic police would be able to get the new information eventually. So, performance in terms of

image losses can still be rationally traded-off with the improved cost effectiveness of the pro-

posed system.

Comparison between OLSR and proposed system

In this Section, the proposed system with the SDWMN network is compared with a well-

known wireless ad-hoc network protocol, OLSR [23]. To be fair, the comparison is made

under the controllable emulated network built at the laboratory. The emulated network has a

physical topology that has been recalibrated to match topologically with that of the outdoor

testbed. For the outdoor testbed, the longest per-hop range of the wireless mesh nodes is 200

to 300 meters apart along the road length at the location of crossover bridges where the nodes

can be installed. However, at the laboratory-based emulated network, the physical inter-spac-

ing range of the wireless mesh nodes must be shrunk to the workbench dimension inside the

laboratory. Therefore, the antenna gain effect must be reduced to have a miniaturized coverage

area. The physical installation of the emulated testbed is shown in Fig 20. In the emulated

testbed, the wireless mesh nodes are 50 centimeters apart along the table length instead of 200

to 300 meters along the road length. Aluminum foil has been used to wrap in required multiple

layers around the plastic box in which the wireless mesh nodes are installed to reduce the

antenna gain effect. The wireless nodes are placed carefully to have the desired throughput and

coverage area that match the real outdoor SDWMN network testbed topology.

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 24 / 34

https://doi.org/10.1371/journal.pone.0264923


Parameter setting

SDWMN underlay network is compared with OLSR in terms of the restoration time when one

node is down. The middle nodes must be re-routed to the desired destination nodes, e.g.,

PhayaThai-2 and 5, to the local broker 1 and 2, respectively, when the primary route fails.

When the primary route is available, the route should be restored to the primary route. There-

fore, in this comparison, the time needed for re-routing to the alternative route and the time

needed for restoration to the primary route is compared using the OLSR and SDWMN net-

work. In this comparison, the left side of the wireless mesh nodes has been used because the

network topological configuration is the same for the left side (local broker 1, PhayaThai-1, 2

and 4) and for the right side (local broker 2, PhayaThai-3, 5 and 6).

In the experiment, the interface of PhayaThai-1 node is up and down for a certain amount

of time (here 3 minutes) to trigger the re-routing event to the alternative route and restoration

Fig 20. Laboratory-based emulated outdoor network.

https://doi.org/10.1371/journal.pone.0264923.g020

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 25 / 34

https://doi.org/10.1371/journal.pone.0264923.g020
https://doi.org/10.1371/journal.pone.0264923


event to the primary route during the testing period. The primary route and alternative route

for the OLSR network and SDWMN network are shown in Figs 21 and 22. The throughput of

PhayaThai-4 node is limited to have controllably different end-to-end capacity for the primary

route and alternative route. With the OLSR protocol, the route is determined by the link state.

By having the throughput limitation at PhayaThai-4, the routing for PhayaThai-2 will be

under control. Therefore, the primary route for PhayaThai-2 to local broker 1 with the OLSR

underlay network is PhayaThai-2, 1 and local broker 1 while the alternative route for the same

destination as the primary route is PhayaThai-2, 4 and local broker 1. For the SDWMN under-

lay network, the primary route for PhayaThai-2 to local broker 1 is the same as the OLSR

underlay network. However, the alternative route for PhayaThai-2 to the same destination as

the primary route is PhayaThai-2, 5, 4, and local broker 1. The reason to use this as an

Fig 21. Routing of OLSR network.

https://doi.org/10.1371/journal.pone.0264923.g021

Fig 22. Routing of SDWMN network.

https://doi.org/10.1371/journal.pone.0264923.g022

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 26 / 34

https://doi.org/10.1371/journal.pone.0264923.g021
https://doi.org/10.1371/journal.pone.0264923.g022
https://doi.org/10.1371/journal.pone.0264923


alternative route for PhayaThai-2 with SDWMN underlay network is to achieve the same net-

work routing mechanism as the outdoor testbed.

For the OLSR protocol, discovering the network and link state is done by broadcasting

HELLO messages to neighboring mesh nodes. With the HELLO message, the information of

neighboring nodes is exchanged, and the route is set up for the data plane. The default interval

time for broadcasting HELLO messages is 6 seconds. The control message sending interval

time from the SDN controller at SDWMN underlay network is thus set to be the same as

HELLO message interval time, which is 6 seconds. To have the faster data rate than the out-

door testbed, the resolution of the image is reduced to 144p resolution. Image resolution is

reduced by around half compared to 180p resolution, and the image interval time can be thus

proportionally reduced to 6 seconds, where the data rate remains similar to the data rate dur-

ing the outdoor testbed. To reduce the high end-to-end latency, the buffer memory size of the

Kafka producer is set to 1 MBytes instead of 32 MBytes that is the default value. With the

reduced buffer size, the image messages unsent during the re-routing and restoration time are

cleared. The latency value is more important than the image message loss percentage to have

the near real-time image sequence streaming application. This is because messages arriving

too late become useless for real-time traffic flow management operations by traffic police.

To measure the re-routing time and restoration time, a one-byte ICMP packet sent to local

broker 1 every 0.1 seconds. By looking at the MAC address of the ICMP packets, the current

route during that time period can be traced. If the MAC address of the ICMP packet is the

PhayaThai-1 address, the current route is the primary route, and if the MAC address of the

ICMP packet is the PhayaThai-4 address, the current route is the alternative route for OLSR

underlay network. For the SDWMN case, If the MAC address of the ICMP packet is the

PhayaThai-1 address, the current route is the primary route, and if the MAC address of the

ICMP packet is the PhayaThai-5 address, the current route is the alternative route for

SDWMN underlay network. Since this testing aims to compare the re-routing and restoration

time of the OLSR underlay network and SDWMN underlay network, the local broker switch-

ing scenario is disabled to have a clear comparison, but all the other operations of Kafka pro-

ducers and consumers are kept exactly the same as in the real outdoor testbed.

Three different comparison cases have been carried out, and the detail of the cases have

been mentioned in Table 2.

Result and discussion

Each case mentioned in Table 2 has been carried out for five times for both the OLSR underlay

network and SDWMN underlay network. Re-routing time here means that the time needed to

Table 2. Different cases tested for the comparison.

Case 1 Case 2 Case 3

No throughput limitation at PhayaThai-1, 2 and

local broker 1

No throughput limitation at PhayaThai-1, 2 and

local broker 1

No throughput limitation at PhayaThai-1, 2 and local broker 1

Limit maximum throughput of PhayaThai-4 to

be 100kbps during the testing

Limit maximum throughput of PhayaThai-4 to

be 50kbps during the testing

Limit maximum throughput of PhayaThai-4 to be 50kbps

during the testing

PhayaThai-1 interface is up for first 3 minutes

and after that down for 3 minutes and recovered

and up for 3 minutes

PhayaThai-1 interface is up for first 3 minutes

and after that down for 3 minutes and recovered

and up for 3 minutes

PhayaThai-1 interface is up for first 3 minutes and after that

down for 3 minutes and recovered and up for 3 minutes when

PhayaThai-1 interface is recovered, PhayaThai-4 interface is

down

When PhayaThai-1 interface is down,

PhayaThai-2 rerouted with alternative route

When PhayaThai-1 interface is down,

PhayaThai-2 rerouted with alternative route

When PhayaThai-1 interface is down, PhayaThai-2 rerouted

with alternative route

When PhayaThai-1 interface is recovered,

PhayaThai-2 restored the primary route

When PhayaThai-1 interface is recovered,

PhayaThai-2 restored the primary route

When PhayaThai-1 interface is recovered, PhayaThai-2 restored

the primary route

https://doi.org/10.1371/journal.pone.0264923.t002

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 27 / 34

https://doi.org/10.1371/journal.pone.0264923.t002
https://doi.org/10.1371/journal.pone.0264923


change the route to the alternative route when the PhayaThai-1 interface is down. Therefore,

the time has been measured after 3 minutes of initial normal running time without any failures

incurred. Restoration time here means that the time needed to change the route to the primary

route after PhayaThai-1 interface is recovered. Therefore, the time has been measured after 6

minutes of running time. End-to-end latency has been also measured during the experiment.

End-to-end latency of particular interest in the experiment here is from PhayaThai-2 to the

local broker 1. End-to-end average latency is reported for each primary route and alternative

route of OLSR and SDWMN underlay network. The end-to-end average latency is reported

then in separated time intervals respectively after re-routing and restoration.

Figs 23–25 show the example of each case for OLSR underlay network and SDWMN under-

lay network. In each figure, the experiment running time is 9 minutes for each test. Each test

has been performed for 5 times and the final result is concluded at Figs 26 and 27 and the aver-

age end-to-end image latency in ms with 95-percent confidence intervals is shown in Fig 28.

As expected, mesh nodes running OLSR and SDWMN network need time to detect the fail-

ure of the primary route and re-route to the alternative route. Therefore, the image latency is

increased when the produced image sequence from PhayaThai-2 is re-routed to the alternative

route. SDWMN needs a similar amount of time to assign the flow rule from the Ryu controller

to other up-running mesh nodes for re-routing to the alternative route. For the OLSR case, the

Fig 23. Example of case 1 for OLSR and SDWMN.

https://doi.org/10.1371/journal.pone.0264923.g023

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 28 / 34

https://doi.org/10.1371/journal.pone.0264923.g023
https://doi.org/10.1371/journal.pone.0264923


HELLO message is broadcasted to the neighboring nodes to re-select the multi-point relay

(MPR) node. For case 1, the maximum throughput limitation of PhayaThai-4 is set to 100

kbps. Therefore, the HELLO messages can be broadcasted faster than in case 2 and case 3

because of different throughput limitation values. The result is that the time needed for re-

routing to the alternative route is less than the SDWMN case. For case 2 and case 3, the maxi-

mum throughput limitation of PhayaThai-4 is set to 50 kbps. Image sequence streaming also

uses the same interface as ICMP packet sending. The throughput of PhayaThai-4 is limited at

50 kbps. Therefore, the bandwidth left for HELLO message broadcasting is less than in case 1.

This results in much more time than SDWMN case 2 and case 3 for re-routing to the alterna-

tive route.

For restoring to the primary route when the PhayaThai-1 interface is recovered, SDWMN

needs much less time than OLSR for every case. This is because the time for the flow rule

assigned by the Ryu controller is set to 10 seconds. After 10 seconds, the SDN controller

knows of the already restored node status, and hence PhayaThai-2 node path can immediately

from the central SDN controller be restored to the default route, which is the primary route.

However, for case 3, more control messages are needed to be transmitted to check the node

reachability than in case 1 and case 2. This results in more time than case 1 and case 2 to

restore the primary route. For the OLSR cases, the MPR node must be re-selected to be

Fig 24. Example of case 2 for OLSR and SDWMN.

https://doi.org/10.1371/journal.pone.0264923.g024

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 29 / 34

https://doi.org/10.1371/journal.pone.0264923.g024
https://doi.org/10.1371/journal.pone.0264923


PhayaThai-1 to restore the primary route. If PhayaThai-4 can offer enough throughput for the

data transmission, then PhayaThai-2 will keep the PhayaThai-4 as the MPR for a certain time.

When the maximum throughput limit is reduced, the restoration time will also be reduced.

Case 3 is the best case for restoring the primary route because PhayaThai-4 interface is shut

down when PhayaThai-1 is recovered. Even in the best case for the OLSR, the restoration time

is still higher than most of the SDWMN cases, due to the lack of central controllability of

OLSR.

Since the buffer memory size of the Kafka producer is set to 1 MBytes, the unsent image

messages are lost if there is no route to go to the destination, here local broker 1. Therefore, in

some cases shown in Figs 23–25, the image message losses can be noticeable particularly right

after the first failure event. Here, immediately after the failure, one can notice that there is no

incoming image message until the image with large end-to-end latency values has started to

re-arrive at local broker 1. For the end-to-end average latency, the OLSR can provide better

performance than the SDWMN network in this particular small-scale network. This is because

of the processing delay for the OVS and the in-band SDWMN control message overhead.

However, such end-to-end average latency difference is marginal, i.e. less than 300 millisec-

onds as seen in Fig 28 for all routes. Further, this performance gap is at the best network-size

scenario for OLSR protocol. The OLSR’s HELLO message packet size depends on the network

Fig 25. Example of case 3 for OLSR and SDWMN.

https://doi.org/10.1371/journal.pone.0264923.g025

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 30 / 34

https://doi.org/10.1371/journal.pone.0264923.g025
https://doi.org/10.1371/journal.pone.0264923


size. For this small-scale network, the HELLO message packet is smaller than the SDWMN

control messages. and that is why, for small-scale network experiment in this paper, the resul-

tant latency of the standard OLSR case is better than that of the proposed SDWMN case. How-

ever, for large scale networks, the HELLO message packet size is increased quickly because

each HELLO message includes the neighboring nodes’ information, which results in the

Fig 26. Time needed to re-route to alternative route.

https://doi.org/10.1371/journal.pone.0264923.g026

Fig 27. Time needed to restore to primary route.

https://doi.org/10.1371/journal.pone.0264923.g027

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 31 / 34

https://doi.org/10.1371/journal.pone.0264923.g026
https://doi.org/10.1371/journal.pone.0264923.g027
https://doi.org/10.1371/journal.pone.0264923


nominal payload size of these HELLO messages in the order of n(n − 1) which equates to O
(n2), where n is the number of nodes in the network. In OLSR, the number of hops per route

using a minimum spanning tree for those messages is O(logn) and therefore, the complexity of

OLSR routing overhead becomes O(n2 logn). However, for the SDWMN underlay network,

control messages are sent from the SDN controller directly to the wireless mesh nodes. The

number of transmissions for assigning the flow rule is O(n) to reach all the n nodes with the

payload size per message carrying only the information of each target node (and hence requir-

ing the space complexity in O(1)). And recall the deepest route from the central SDN control-

ler for the proposed in-band SDWMN approach is simply upper-bounded by the network’s

longest route dimension i.e. with O(n). So we deduce that the number of hops per route is also

O(n). Therefore, the complexity of SDWMN routing overhead is O(n2). The conventional

OLSR routing overhead becomes higher than that of our proposed SDWMN as the number of

nodes n representing the scale of the network increases.

Based on that theoretical analysis, the comparison of this small-scale network can provide

a better advantage for the OLSR protocol than the SDWMN network. Even in such worst-

network scenario for SDWMN, the large control message traffic for the SDWMN results in

only marginally increased end-to-end latency than that of OLSR. Also, due to the SDN central

controllability, the re-routing and restoration times of the proposed system using SDWMN

are significantly smaller than that of OLSR. The experimental results herein reported thus sug-

gest the practical applicability of the proposed system.

Conclusion and future work

In this work, we have designed and implemented the prototype for near real-time wireless

image sequence streaming cloud with Apache Kafka for road traffic monitoring application

for small-scale network at the target road network. This system is designed to be cost-effective

Fig 28. End-to-end average latency for PhayaThai-2 node for primary route and alternative route after re-

routing/restoration completion.

https://doi.org/10.1371/journal.pone.0264923.g028

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 32 / 34

https://doi.org/10.1371/journal.pone.0264923.g028
https://doi.org/10.1371/journal.pone.0264923


by considering systematic options to reduce operational and implementation costs. The pro-

posed design can have the fault-tolerant capability in the data flow at the level deliverable by

the Apache Kafka framework. This is in addition to the re-routing capability provided by the

underlying SDWMN proposed in the earlier work [20]. The testing for monitoring application

performance has been investigated for the end-to-end average latency and image loss percent-

age by running the 13 hours of testing time from 5:40 P.M. 17th November 2020 to 6:40 A.M.

18th November 2020. Based on the result of the practical outdoor testbed, the end-to-end aver-

age latency and image loss percentage are within the acceptable condition, which is less than 5

seconds on average with around 10% image losses. The proposed system has also been com-

pared with the traditional ad-hoc network, running the OLSR-based network layer, in terms of

the rerouting time, restoration time and end-to-end average latency. Based on the emulated

wireless network in controllable laboratory environments, the proposed SDWMN-based sys-

tem outperforms the conventional OLSR-based system with potentially faster rerouting/resto-

ration time due to SDN central controllability and with only marginally increased end-to-end

average latency after re-routing/restoration completion. An algorithm complexity analysis has

also been given for both systems. The overhead complexity of the SDWMN used in the pro-

posed system is O(n2), which is smaller than that required by OLSR at O(n2 logn), where n is

the number of nodes in the network. Both the experimental and complexity analysis results

thus suggest the practical applicability of the proposed system. Given this promising result, it

is recommended as the future research in further developing from the prototype design into

the actual deployment for daily traffic monitoring operations.

Author Contributions

Conceptualization: Aung Myo Htut, Chaodit Aswakul.

Formal analysis: Aung Myo Htut, Chaodit Aswakul.

Funding acquisition: Chaodit Aswakul.

Investigation: Aung Myo Htut.

Methodology: Aung Myo Htut, Chaodit Aswakul.

Project administration: Chaodit Aswakul.

Resources: Chaodit Aswakul.

Software: Aung Myo Htut.

Supervision: Chaodit Aswakul.

Validation: Aung Myo Htut, Chaodit Aswakul.

Visualization: Aung Myo Htut.

Writing – original draft: Aung Myo Htut.

Writing – review & editing: Chaodit Aswakul.

References
1. Tomtom.com. 2020. [online] Available at: https://www.tomtom.com/en_gb/traffic-index/bangkok-traffic

[Accessed 2020].

2. Djahel S, Doolan R, Muntean GM, Murphy J. A communications-oriented perspective on traffic man-

agement systems for smart cities: Challenges and innovative approaches. IEEE Communications Sur-

veys & Tutorials. 2014; 17(1):125–51. https://doi.org/10.1109/COMST.2014.2339817

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 33 / 34

https://www.tomtom.com/en_gb/traffic-index/bangkok-traffic
https://doi.org/10.1109/COMST.2014.2339817
https://doi.org/10.1371/journal.pone.0264923


3. Papageorgiou M, Diakaki C, Dinopoulou V, Kotsialos A, Wang Y. Review of road traffic control strate-

gies. Proceedings of the IEEE. 2003 Dec; 91(12):2043–67. https://doi.org/10.1109/JPROC.2003.

819610

4. Nellore K, Hancke GP. A survey on urban traffic management system using wireless sensor networks.

Sensors. 2016 Feb; 16(2):157. https://doi.org/10.3390/s16020157 PMID: 26828489

5. Qureshi KN, Abdullah AH. A survey on intelligent transportation systems. Middle-East Journal of Scien-

tific Research. 2013 Dec; 15(5):629–42.

6. Goodhope K, Koshy J, Kreps J, Narkhede N, Park R, Rao J, et al. Building LinkedIn’s Real-time Activity

Data Pipeline. IEEE Data Eng. Bull. 2012; 35(2):33–45.

7. Htet, S., Leevangtou, K., Kawila, K., Thet, P. and Aswakul, C., 2018. Design of medium-range outdoor

wireless mesh network with open-flow enabled raspberry pi. In: 33rd international technical conference

on circuits/systems, computers and communications (itc-cscc). 2018;192-195.

8. Huang H, Li P, Guo S, Zhuang W. Software-defined wireless mesh networks: architecture and traffic

orchestration. IEEE network. 2015 Jul 24; 29(4):24–30. https://doi.org/10.1109/MNET.2015.7166187

9. Dobbelaere P, Esmaili KS. Kafka versus RabbitMQ: A comparative study of two industry reference pub-

lish/subscribe implementations: Industry Paper. InProceedings of the 11th ACM international confer-

ence on distributed and event-based systems 2017:227-238.

10. Jo Y, Choi J, Jung I. Traffic information acquisition system with ultrasonic sensors in wireless sensor

networks. International Journal of Distributed Sensor Networks. 2014 May 21; 10(5):961073. https://

doi.org/10.1155/2014/961073

11. Wang Q, Zheng J, Xu B, Huang Y. Analysis and experiments of vehicle detection with magnetic sensors

in urban environments. In2015 IEEE International Conference on Cyber Technology in Automation,

Control, and Intelligent Systems (CYBER) 2015 Jun 8 (pp. 71-75). IEEE.

12. Widyantara IM, Sastra NP. Internet of things for intelligent traffic monitoring system: a case study in

denpasar. computing. 2015; 2:3.

13. Mandal K, Sen A, Chakraborty A, Roy S, Batabyal S, Bandyopadhyay S. Road traffic congestion moni-

toring and measurement using active RFID and GSM technology. In2011 14th International IEEE Con-

ference on Intelligent Transportation Systems (ITSC) 2011 Oct 5 (pp. 1375-1379). IEEE.

14. Mbodila M, Obeten E, Bassey I. Implementation of novel vehicles’ traffic monitoring using wireless sen-

sor network in South Africa. In2015 IEEE International Conference on Communication Software and

Networks (ICCSN) 2015 Jun 6 (pp. 282-286). IEEE.

15. Sawant H, Tan J, Yang Q, Wang Q. Using Bluetooth and sensor networks for intelligent transportation

systems. InProceedings. The 7th International IEEE Conference on Intelligent Transportation Systems

(IEEE Cat. No. 04TH8749) 2004 Oct 3 (pp. 767-772). IEEE.

16. Hsu CY, Yang CS, Yu LC, Lin CF, Yao HH, Chen DY, et al. Development of a cloud-based service

framework for energy conservation in a sustainable intelligent transportation system. International Jour-

nal of Production Economics. 2015; 164:454–61. https://doi.org/10.1016/j.ijpe.2014.08.014

17. Esteve M, Palau CE, Catarci T. A flexible video streaming system for urban traffic control. IEEE Multi-

Media. 2006; 13(1):78–83. https://doi.org/10.1109/MMUL.2006.1

18. Zhou Y, Evans GH Jr, Chowdhury M, Wang KC, Fries R. Wireless communication alternatives for intelli-

gent transportation systems: a case study. Journal of Intelligent Transportation Systems. 2011 Jul 1; 15

(3):147–60. https://doi.org/10.1080/15472450.2011.594681

19. Liu Y, Ou G. A traffic monitoring stream-based real-time vehicular offence detection approach. Journal

of Intelligent Transportation Systems. 2018 Jan 2; 22(1):53–64. https://doi.org/10.1080/15472450.

2017.1389650

20. Tun, P., 2020. Design, implementation and cost comparison of road network traffic monitoring system

based on SDWMN in-band, out-of-band and hybrid architectures. Master of Engineering. Chulalong-

korn University.

21. Htut, A., Htet, S., Leevangtou, K., Kawila, K. and Aswakul, C. Testbed design of near real-time wireless

image streaming with Apache Kafka for road traffic monitoring. In: 33rd international technical confer-

ence on circuits/systems, computers and communications (itc-cscc). 2018;181-191.

22. Softether.org. 2020. SoftEther VPN Project—SoftEther VPN Project. [online] Available at: https://www.

softether.org/ [Accessed 2020].

23. Clausen T, Jacquet P, Adjih C, Laouiti A, Minet P, Muhlethaler P, et al. Optimized link state routing pro-

tocol (OLSR). 2003.

PLOS ONE Near real-time wireless image sequence streaming cloud using Apache Kafka

PLOS ONE | https://doi.org/10.1371/journal.pone.0264923 March 17, 2022 34 / 34

https://doi.org/10.1109/JPROC.2003.819610
https://doi.org/10.1109/JPROC.2003.819610
https://doi.org/10.3390/s16020157
http://www.ncbi.nlm.nih.gov/pubmed/26828489
https://doi.org/10.1109/MNET.2015.7166187
https://doi.org/10.1155/2014/961073
https://doi.org/10.1155/2014/961073
https://doi.org/10.1016/j.ijpe.2014.08.014
https://doi.org/10.1109/MMUL.2006.1
https://doi.org/10.1080/15472450.2011.594681
https://doi.org/10.1080/15472450.2017.1389650
https://doi.org/10.1080/15472450.2017.1389650
https://www.softether.org/
https://www.softether.org/
https://doi.org/10.1371/journal.pone.0264923

