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Cervical cancer (CC) is a common gynecological malignancy for which prognostic and therapeutic biomarkers are urgently needed.
The signature based on immune-related lncRNAs (IRLs) of CC has never been reported. This study is aimed at establishing an IRL
signature for patients with CC. A cohort of 326 CC and 21 normal tissue samples with corresponding clinical information was
included in this study. Twenty-eight IRLs were collected according to the Pearson correlation analysis between the immune
score and lncRNA expression (p < 0:01). Four IRLs (BZRAP1-AS1, EMX2OS, ZNF667-AS1, and CTC-429P9.1) with the most
significant prognostic values (p < 0:05) were identified which demonstrated an ability to stratify patients into the low-risk and
high-risk groups by developing a risk score model. It was observed that patients in the low-risk group showed longer overall
survival (OS) than those in the high-risk group in the training set, valid set, and total set. The area under the curve (AUC) of
the receiver operating characteristic curve (ROC curve) for the four-IRL signature in predicting the one-, two-, and three-year
survival rates was larger than 0.65. In addition, the low-risk and high-risk groups displayed different immune statuses in GSEA.
These IRLs were also significantly correlated with immune cell infiltration. Our results showed that the IRL signature had a
prognostic value for CC. Meanwhile, the specific mechanisms of the four IRLs in the development of CC were ascertained
preliminarily.

1. Introduction

Cervical cancer (CC) is a malignant gynecologic tumor
threatening the health of women. The morbidity and mortal-
ity for CC rank fourth worldwide among women [1].
Infection with high-risk human papillomavirus (HPV), espe-
cially HPV16 and HPV18, is the main etiologic risk factor for
CC and plays an important role in diagnostic tests [2]. Sur-
gery is the main treatment method for CC in early stages
while advanced-stage CC can be treated with radiotherapy,
chemotherapy, or concurrent chemoradiation, thereby
improving the survival rate of CC patients [3]. However, a
considerable number of CC patients have poor prognosis
due to metastasis or recurrence within two years after treat-

ment [4]. Hence, effective prevention to reduce morbidity
and individual treatments to improve the prognosis of CC
are important for obstetricians and gynecologists.

The immune system can recognize tumor antigens
expressed on the surface of tumor cells. It generates an
immune response via the activation of effector cells and trig-
gers the release of a series of effector molecules to attack and
eliminate tumor cells and to inhibit tumor growth [5]. The
immune imbalance in the tumor microenvironment plays
an important role in the occurrence and development of can-
cer. With the development of cellular molecular biology and
immunology, immunotherapy has become a new treatment
approach for cervical cancer [6]. Tumor immunotherapy acts
mainly by increasing the immunogenicity of tumor cells and
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the effect of cell damage sensitivity and stimulates and
enhances the antitumor immune response, with the aid of
biological agents; doping effects of immune cells and mole-
cules into the body, together, the body’s immune system
can not only kill cancer cells remaining small but also can
prevent tumor metastasis and recurrence [7].

Long noncoding RNAs (lncRNAs), defined arbitrarily as
transcripts lacking protein-coding potential, are RNAs with
more than 200 nucleotides [8]. lncRNAs are not only associ-
ated with the invasion, migration, and proliferation of CC
but also are involved in autophagy and epithelial-
mesenchymal transition (EMT) [9]. Emerging studies have
demonstrated that lncRNAs also modulate the immune
response to tumors. For instance, the downregulated lncRNA
AGER has been demonstrated to be closely related to T cell
status in lung cancer [10]. lncRNA GM16343 is regulated
by interleukin 36β to strengthen the antitumor immune
response of CD8+ T cells [11]. lncRNA LINK-A has been
demonstrated to downregulate antigen presentation and
intrinsic suppression in triple-negative breast cancer [12].
lncRNAs can also affect the development of cancer by regu-
lating NK cells. lncRNA GAS5 can inhibit tumor growth,
and the overexpression of GAS5 can regulate miR-
544/RUNX3 to enhance the killing effect of NK cells in liver
cancer [13]. lncRNAs can also modulate tumor immunity by
regulating Treg cells. The expression of miR-448 can be
increased by interfering with lncRNA SNHG1, which down-
regulates the expression of indoleamine 2,3-dioxygenase
(IDO), inhibits the differentiation of Treg cells, and reduces
the immune escape of breast cancer cells [14]. EGFR is an
important member of the tyrosine kinase receptor family.
By binding to EGFR specifically, LNC-EGFR promotes Treg
cell differentiation and promotes the immune escape of liver
cancer cells [15]. lncRNAs can affect the tumor microenvi-
ronment and thus play an important role in immunotherapy.
Nonetheless, the effect research on immune-related lncRNAs
in CC is rarely reported.

The purpose of our research was to identify an IRL signa-
ture, which might serve as prognostic and therapeutic bio-
markers in CC. We developed a prognostic signature and
mechanisms of IRLs using single-sample gene set enrichment
analysis (ssGSEA), survival analysis, a Cox regression risk
model, gene set enrichment analysis (GSEA), ceRNA net-
work, and other analysis methods.

2. Materials and Methods

2.1. Datasets and Preprocessing. The RNA sequencing pro-
files associated with CC were obtained from The Cancer
Genome Atlas (TCGA) [16] (https://toil.xenahubs.net),
which consisted of 306 CC and 13 normal tissue samples.
The low-expression genes were filtered, and the genes whose
expression level was greater than 0 in more than a third of the
samples were retained. Additionally, the RNAs were identi-
fied as mRNAs or lncRNAs based on their annotation infor-
mation in the GENCODE database [17] (https://www
.gencodegenes.org/). GPL570 (HG-U133_Plus_2) Affyme-
trix Human Genome U133 Plus 2.0 Array platform was used
to obtain the microarray dataset GSE6791 from the Gene

Expression Omnibus (GEO) repository (Gene Expression
Omnibus (GEO), http://www.ncbi.nlm.nih.gov/geo/) [18],
of which twenty CC and eight normal tissue samples were
included. All 326 CC samples and 21 normal tissue samples
were contained with corresponding clinical information.
For the RNA sequencing profiles obtained from TCGA TAR-
GET GTEx, empirical Bayes and linear regression along with
Benjamini and Hochberg multiple comparison methods
from the limma package [19] (version 3.10.3, http://www
.bioconductor.org/packages/2.9/bioc/html/limma.html)
were performed to gain adjusted p value and |logFC|
(adj:p:value < 0:05, ∣logFC ∣ >0:585). For GSE6791, GEO2R
(http://www.ncbi.nlm.nih.gov/geo/geo2r/) was used with
the SeqMap [20] tool to map probes to mRNA and lncRNA
sequences. The immune-related genes (IRGs) were down-
loaded from the InnateDB database (http://www.innatedb
.com) [21]. Foc`using on screening genes that were up- and
downregulated consistently, we used Venn analysis to select
the intersection genes of the aforementioned datasets.
Single-sample gene set enrichment analysis (ssGSEA) [22]
was used to identify the immune scores (IS) of each sample.
Pearson’s correlation coefficient between lncRNAs and IS
was calculated for each corresponding samples to identify
immune-related lncRNAs (IRLs) (p < 0:01).

2.2. Signature Development of IRLs. Univariate Cox regres-
sion analysis with hazard ratio (HR) was gained from overall
survival (OS) and OS time from the candidate IRLs. HR > 1
indicated that expression was higher and the risk and the sur-
vival rate were lower. lncRNAs that are upregulated in the
tumor should, in principle, have an HR greater than 1. The
Kaplan–Meier analysis was generated by survminer (version
0.4.3) in the R package based on the expression value, sur-
vival time, and survival status to determine the optimal cut
point. The log-rank test was performed based on survival
(version 2.42-6) in the R package to sort the IRLs with a sig-
nificant prognostic value (p < 0:05); then, the survival curves
were drawn. Multivariate Cox regression analysis was per-
formed based on the expression value, OS, and OS time of
IRLs in each sample. Subsequently, the individual prognostic
risk model for corresponding samples was established.
Exprgene indicated the expression of corresponding IRL for
each sample. All the samples were divided into the low-risk
and high-risk groups according to the median of risk scores
of the following study. All the samples in TCGA were
regarded as a total set. Training and valid sets were

Table 1: Differential mRNAs and lncRNAs.

mRNA lncRNA

TCGA

Up 3305 472

Down 4163 733

Total 7468 1205

GSE6791

Up 4680 95

Down 3133 695

Total 7813 790
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constructed by dividing the total set equally into two parts to
validate the risk score formula. The Kaplan–Meier survival
curves of all three sets were drawn to determine the prognos-
tic difference between the risk groups. The one-year, two-
year, and three-year survival receiver operating characteristic
(ROC) curves predicted by the risk model were drawn.

2.3. Clinical and Pathological Characteristics of the Risk Score
Model. Clinical and pathological characteristics, including
age, pathologic M, pathologic N, pathologic T, clinical stage,
neoplasm histologic grade, neoplasm cancer status, primary
therapy outcome success, radiation therapy, tobacco smok-
ing history, along with the risk score, the immune score,
and the expression of IRLs in each sample were included in
the analysis for illustration of a heat map. We observed the
differences in clinical pathological characteristics in risk
groups or the risk score of clinical pathological characteristics
using Student’s t-test. A scatter plot was drawn using Graph-
Pad Prism 5 [23] based on significant clinicopathological
characteristics.

2.4. Nomogram Model Construction and Visualization. Uni-
variate Cox regression analyses were performed, respectively,
based on the risk groups and clinicopathological factors
including age, cancer type (adenocarcinoma and squamous
cell carcinoma), FIGO stage, TNM stages, histologic grade,
radiation therapy, and smoking history. Multivariate Cox
regression analysis was conducted on the factors with p <
0:05. Using the IRL signature along with the factors with p
< 0:05, a nomogram was constructed to visualize the results
of multivariate Cox regression analysis more clearly.

2.5. Gene Set Enrichment Analysis. To elucidate the biological
differences between risk groups, a gene set enrichment anal-
ysis (GSEA) [24] of “c5.bp.v7.1.symbols.gmt” background
was carried out using GSEA (version 4.0.3) software. A nom-
inal p value < 0.05 (NOM p val < 0.05) was considered signif-
icant. We focused on selecting immune-related terms for
display.

2.6. Evaluation of Infiltrating Immune Cells. To further
observe the differences in the abundance of infiltrating
immune cells of the risk groups, we used the CIBERSORT
algorithm, a deconvolution method [25], coupled with
LM22 that distinguished 22 immune cell subpopulations
from CIBERSORT (a web server), and a heat map for all
the samples was drawn using ggplot2 (version 3.2.1). Stu-
dent’s t-test was applied to find significant immune cell sub-
populations in risk groups to chart violin plot by boxplot
(version 0.3.2) in the R package.

2.7. Construction of an IRL-Associated ceRNA Network. The
ceRNA network was constructed to explore the association
among IRLs, miRNAs, and mRNAs based on the ceRNA
hypothesis [26]. First, the Pearson correlation coefficient
analysis between the IRLs and immune-related DEGs was
performed to obtain lncRNA-mRNA pairs (r > 0 and adj:p:
value < 0:01). The target miRNAs of IRLs were predicted
using DIANA-LncBase v2 [27] (http://carolina.imis
.athenainnovation.gr/diana_tools/web/index.php?r=lncbase
v2%2Findex-experimental). The mRNAs targeted by miR-
NAs were predicted by integrating miRWalk2.0 [28] (ver-
sion:3.4.0, http://chianti.ucsd.edu/cytoscape-3.4.0/), miRanda,
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Figure 1: Venn analysis. (a) Venn diagram of differential lncRNAs. (b) Venn diagram of differential mRNA and immune-related genes.

Table 2: K-M analysis, univariate Cox regression analysis, and Pearson correlation analysis of 4-IRLs.

lncRNA
K-M analysis Univariate Cox regression analysis

Pearson correlation
analysis

Differential expression analysis

p value HR Lower.95 Upper.95 p value r p.adj.value Up_down

BZRAP1-AS1 0.0002 0.82 0.72 0.93 0.00 0.32 2.84E-08 Down_lnc

EMX2OS 0.0010 0.91 0.82 1.00 0.05 -0.25 3.01E-05 Down_lnc

ZNF667-AS1 0.0019 0.87 0.77 0.99 0.03 -0.17 0.007 Down_lnc

CTC-429P9.1 0.0159 0.93 0.82 1.06 0.27 -0.24 5.15E-05 Down_lnc
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RNA22, and TargetScan databases. Only miRNA-mRNA
pairs recognized by all four databases were considered can-
didate targets. Subsequently, the ceRNA network based on
the same miRNA of the lncRNA-miRNA and miRNA-
mRNA pairs was established and visualized using Cytoscape
(version:3.4.0, http://chianti.ucsd.edu/cytoscape-3.4.0/) [29].

Sorting the mRNA with a significant prognostic value
(p < 0:05) in the ceRNA network, the Kaplan–Meier analy-
sis was generated using survminer (version 0.4.3) to deter-
mine the optimal cut point, and the log-rank test was
performed based on survival (version 2.42-6) in the R
package.
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Figure 2: Kaplan–Meier curve of 4 IRLs.
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3. Results

3.1. Differential Analysis of Genes. In the aggregate, 1995 dif-
ferentially expressed lncRNAs, with corresponding clinical
information, were extracted from the TCGA and GSE6791
databases mentioned above. Of these, 567 lncRNAs were
highly expressed and 1428 lncRNAs were expressed at low
levels in the CC samples (Table 1). A total of 64 lncRNAs
were obtained from the intersection of the two databases
(Figure 1(a)), among which 10 lncRNAs were consistently
upregulated and 54 lncRNAs were consistently downregu-
lated in the two databases. A total of 1040 IRGs were identi-
fied from the InnateDB. The ssGSEA analysis was based on
201 IRGs obtained from the intersection of the TCGA and
InnateDB databases (Figure 1(b)) to compute IS. Finally, a
cohort of 28 IRLs was obtained based on the Pearson corre-
lation coefficient analysis between the 64 lncRNAs and IS
of 201 IRGs (p < 0:01).

3.2. Univariate Cox Regression and Kaplan–Meier Survival
Analysis. Univariate Cox regression and Kaplan–Meier sur-
vival analysis were performed for the cohort of 28 IRLs. Four
IRLs (BZRAP1-AS1, EMX2OS, ZNF667-AS1, and CTC-
429P9.1) with low expression were found to be in accordance
with our expectation and were then included in the signature
development. The results are shown in Table 2. The Kaplan–
Meier survival analysis revealed that four IRLs were related to
OS in CC significantly (p < 0:05) (Figure 2). The four IRLs
were defined as protective factors due to their HR value < 1,
which showed that the high expression of the four IRLs was
associated with lower OS.

3.3. Construction of the Prognostic Risk Model and Validation
Using Four IRLs.A total of 304 TCGA samples were regarded
as the total set so that there were both 152 samples in the
training set and the valid set as described in the methods.
The regression coefficient β was first generated from the
training set (βZNF667−AS1 = −0:152565, βEMX2OS = −0:019887,
βBZRAP1−AS1 = −0:17831, and βCTC−429P9:1 = 0:0096755;
Table 3) to establish the risk score (RS) formula. Hence, the
prognostic risk model for corresponding samples was estab-
lished using the following formula:

risk score RSð Þ = exprBZRAP1−AS1 ∗ −0:152565ð Þ + exprEMX2OS ∗
� −0:019887ð Þ + exprBZRAP1−AS1 ∗ −0:17831ð Þ
+ expr CTC − 429P9:1 ∗ 0:0096755:

ð1Þ

Exprgene indicated the expression value of the corre-
sponding IRL for each sample. An RS higher than the median
was identified as a high-risk group while an RS lower than the
medium was identified as a low-risk group. Using this
approach, a risk model signature based on four IRLs was con-
structed, which was further validated in the total set and valid
set using the same β to confirm the prediction potential of the
4-IRL signature. The Kaplan–Meier survival curves based on
the log-rank test revealed that OS in the low-risk group was
markedly longer than that in the other group in all three sets

(pTraining−set = 0:0068, pValid−set = 0:02, and pTotal−set = 0:0015;
Figures 3(a)–3(c)). The one-year, two-year, and three-year
survival ROC curves predicted by the risk model indicated
that the AUCs were larger than 0.65 (0.695, 0.66, and 0.676;
Figure 3(d)), thus predicting that the risk score model could
efficiently forecast over 65% of OS for CC patients. Therefore,
the risk model signature based on four IRLs was accurate in
predicting OS of CC patients.

3.4. Clinicopathological Characteristics of the Risk Score
Model. A heat map was constructed by combining the
expression values of four IRLs and their clinicopathological
characteristics (Figure 4(a)). The higher the RS, the lower
the IS. RS and IS values showed a significant negative corre-
lation based on the scatterplot of the correlation coefficient
(r = −0:14, p = 0:01631; Figure 4(b)). The scatterplot for the
distribution of IS in risk groups showed that the IS of the
high-risk group was significantly lower than that of the
low-risk group (Figure 4(c)). Furthermore, the high expres-
sion of the four IRLs could be seen with low RS, which sug-
gested that the upregulation of the four IRLs were
associated with better prognosis. In contrast, the low expres-
sion of the four IRLs had the opposite consequence. An RS
contrast of the neoplasm histologic grade showed that the
RS in stages IIB-III-IV was significantly greater than that in
stages I-II-IIA (Figure 4(c)). This part of the result suggests
that a high-risk score has an adverse effect on prognosis,
which may be caused by a decrease in immune score.

3.5. Nomogram Model Construction and Visualization. The
univariate and multivariate Cox regression analyses of clini-
copathological characteristics and the four-IRL signature
for the total TCGA dataset demonstrated that the four-IRL
signature was an independent risk factor for CC patients
(p < 0:05, Table 4). In univariate Cox analysis, FIGO stage
and TNM stages were risk factors for CC patients (p < 0:05
), whereas their prognostic values were not validated in the
multivariate Cox analysis. Nonetheless, radiation therapy
and a history of tobacco smoking were not correlated with
prognosis independently. To better predict prognosis at
one-, three-, and five-year OS of CC patients, we constructed
a nomogram of variables such as the four-IRL signature, age,
and FIGO stage (Figure 5).

3.6. Gene Set Enrichment Analysis. GSEA analysis of the two
risk groups was carried out to predict enrichment status dis-
parities of molecular mechanism functions. The enrichment
analysis showed that 118 biological functions were markedly
enriched in the low-risk group, whereas only one biological
function (GO_ATP_SYNTHESIS_COUPLED_ELECTRON_

Table 3: β of each of the 4 IRLs.

Ensemble_ID lncRNA β

ENSG00000166770.10 ZNF667-AS1 -0.152565

ENSG00000229847.8 EMX2OS -0.019887

ENSG00000265148.5 BZRAP1-AS1 -0.17831

ENSG00000269427.1 CTC-429P9.1 0.0096755
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TRANSPORT) was enriched in the high-risk group. In the
enrichment status enriched in the low-risk group, we sought
out couple immune-related responses as shown in Figure 6.

3.7. Evaluation of Infiltrating Immune Cells. Previous studies
have shown that infiltrating immune cells are closely related

to the prognosis and treatment of malignant tumors [29].
From the GSEA analysis in our study, we discovered that
the four-IRL signature was associated with many immune
characteristics. Hence, the abundance of twenty-two infiltrat-
ing immune cells (Figure 7(a)) were estimated which showed
that the abundance of nine infiltrating immune cells (B cell
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Figure 3: The 4-IRL prognostic risk model and validating. (a) Kaplan–Meier survival curves of OS among CC patients from different groups
stratified by the signature in the training set, the valid set, and the total set. (b) Time-dependent receiver operating characteristic (ROC) curve
for predicting overall survival (OS) of the risk model.
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naïve, B cell memory, T cell CD4 memory resting, NK cells
resting, macrophages M1, dendritic cells activated, mast cells
resting, mast cells activated, and neutrophils) was signifi-
cantly different (p < 0:05) between the risk groups
(Figure 7(b)). The abundance of four infiltrating immune
cells (B cell naïve, T cell CD4 memory resting, macrophages
M1, and mast cells resting) in the low-risk group were signif-
icantly higher than that in the high-risk group as shown by
Student’s t-test (p < 0:05).

3.8. Construction of an IRL-Associated ceRNA Network.
Four-IRLs, forty-five hub mRNAs, and thirty-eight miR-
NAs were involved in the ceRNA network (Figure 8). A
total of 46 lncRNA-miRNA pairs, 232 miRNA-mRNA
pairs, and 55 lncRNA-mRNA pairs were identified. The
downregulation of 12 mRNAs in the ceRNA network was
significantly related to OS in CC. Among them, the down-
regulation of seven mRNAs (CXCL12, FREM1, IGF1, IRF4,
NFATC2, NTN1, and STAT6) had an adverse effect on

Table 4: Univariate and multivariate Cox regression analyses of clinical parameters.

Variables
Univariate Multivariate

Coeff HR (95% CI) p value Coeff HR (95% CI) p value

Risk score 0.854 2.349 (1.317-4.191) 0.004 0.819 2.268 (1.101-4.674) 0.026

Age 0.014 1.014 (0.996-1.032) 0.117 -0.003 0.997 (0.973-1.022) 0.812

Cancer type 0.040 1.041 (0.531-2.041) 0.907 0.049 1.050 (0.452-2.438) 0.910

FIGO stage 0.362 1.436 (1.141-1.806) 0.002 0.159 1.173 (0.834-1.648) 0.359

Tumor grade 0.216 1.241 (0.969-1.589) 0.087 0.093 1.098 (0.82-1.47) 0.530

M stage 0.419 1.520 (1.130-2.044) 0.006 0.237 1.268 (0.89-1.806) 0.188

N stage 0.674 1.962 (1.406-2.738) <0.001 0.362 1.436 (0.881-2.341) 0.146

T stage 0.398 1.488 (1.222-1.813) <0.001 0.171 1.186 (0.872-1.613) 0.277

Radiotherapy 0.289 1.335 (0.735-2.426) 0.343 -0.256 0.774 (0.368-1.629) 0.500

Smoke 0.130 1.139 (0.696-1.862) 0.605 -0.031 0.970 (0.484-1.943) 0.930

Points
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Figure 5: A nomogram based on the signature and clinical information.
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prognosis, which was in line with what was expected
(Figure 9).

4. Discussion

In this study, a cohort of 326 CC and 21 normal tissue
samples from two datasets (TCGA, GSE6791) were
included to identify the differential lncRNAs for patients

with CC. A total of 1040 IRGs were collected from the
InnateDB. Four IRLs (BZRAP1-AS1, EMX2OS, ZNF667-
AS1, and CTC-429P9.1) were identified after ssGSEA anal-
ysis, Pearson correlation coefficient analysis, univariate
Cox regression analysis, and Kaplan–Meier survival analy-
sis between the lncRNAs and IS. The prognostic risk
model based on the four IRLs could divide CC patients
into two risk groups according to the median RS, which
was validated by dividing the total samples equally. The
univariate and multivariate cox regression analyses of clin-
icopathological characteristics showed that age, AJCC
stage, and the four-IRL signature were all independent
prognostic factors. A nomogram was constructed based
on age, AJCC stage, and four-IRL signature to predict
OS for CC patients more clearly. We also found that RS
and IS showed significant negative correlation, which indi-
cated that high RS had an adverse effect on prognosis due
to a decrease in IS.

In our study, the four IRLs (BZRAP1-AS1, EMX2OS,
ZNF667-AS1, and CTC-429P9.1) were identified to be
protective against CC; only ZNF667-AS1 had been previ-
ously reported in CC. In the existing literature, ZNF667-
AS1 with low expression has been identified to be nega-
tively correlated with the OS, tumor size, and FIGO stage
in CC [30]. Additionally, ZNF667-AS1 can competitively
bind to miR-93-3p, which targets PEG3, to regulate the
progression of CC [31]. Recent research has shown that
inhibiting PEG3 would promote the immune escape of
cancer cells [32]. BZRAP1-AS1 was found to be a novel
biomarker associated with prostate cancer (PC), being
downregulated in PC samples [33]. It was shown, however,
to be highly expressed in hepatocellular carcinoma and
inhibited the transcription of THBS1 by recruiting
DNMT3b to its promoter region [34]. Previous research
has revealed that the downregulation of EMX2OS in clas-
sical papillary thyroid cancer might independently predict
shorter recurrence-free survival [35], while the overexpres-
sion of EMX2OS in ovarian cancer and EMX2OS/miR-
654/AKT3 axis may target PD-L1 (programmed cell death
protein 1) to suppress the initiation and progression of
cancer [36]. Accumulating evidences have suggested that
Thrombospondin-1 (THBS1) may affect tumor immunity
[37]. PD1-PDL1 (PD1 ligand) has already been shown to
be an important immune checkpoint pathway, which can
be used by cancer cells to evade immune attacks [38].
Thus, BZRAP1-AS1 and EMX2OS may play a dual role
in cancer and directly or indirectly regulate tumor immu-
nology. By contrast, no reports concerning CTC-429P9.1
in cancer have been published, and therefore, the role of
CTC-429P9.1 remains unclear.

In recent years, a small number of researches have
reported that lncRNAs can directly or indirectly affect
the tumor microenvironment of cervical cancer.
LOC105374902 induced by TNF-α, a multiple functional
cytokine which can regulate inflammation and immunity
of cancer, was found to promote the malignant behavior
of cervical cancer cells by acting as a sponge of miR-
1285-3p [39]. lncRNA SNHG14 was shown to be associ-
ated with the activation of the JAK-STAT pathway in
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Figure 6: Immunologic characteristics regulated via the GSEA.
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Figure 7: Evaluation of tumor-infiltrating immune cells. (a) The landscape of immune infiltration in risk groups. (b) The difference of 22
tumor-infiltrating immune cells among risk groups.

10 BioMed Research International



cervical tumor cells [40]. STAT3-binding sequence in the
enhancer region of lncRNA MALAT1 was demonstrated
to be crucial for the IL-6- or STAT3-induced MALAT1
promoter activation in cervical cancer HeLa cells [41].
HOTAIR was identified to promote the overactivation of
the Wnt/β-catenin signaling pathway by the downregula-
tion of PCDH10, SOX17, AJAP1, and MAGI2 and also
TET [42]. lncRNA HIPK1-AS has been proved to regulate
the inflammatory process of cervical cancer [43]. Gener-
ally, there are still relatively few immune-related lncRNAs
in CC.

Our GSEA analysis showed that certain immune-
related enrichment statuses were dramatically enriched in
the low-risk group. Noncanonical WNT signaling has been
demonstrated to be closely associated with cancer stem cell
survival, bulk tumor expansion, and invasion/metastasis,
which have the potential for tumor immunology [44].
Ubiquitination has been shown to be crucial for tumor
immunity [45].

The ceRNA network was established to explore specific
mechanisms in the development of CC based on the com-
peting endogenous RNA theory. Combining the mRNAs
of the most outstanding prognosis with the connectivity
of miRNAs, the following ceRNA relationships have been
established, which should be used as a follow-up verifica-
tion: EMX2OS/hsa-miR-3153/CXCL12, EMX2OS/hsa-mi
R-3928-3p/FREM1, BZRAP1-AS1/hsa-miR-30b-3p/IGF1,

EMX2OS/hsa-miR-92a-2-5p/IRF4, BZRAP1-AS1/hsa-miR-
30b-3p/NFATC2, BZRAP1-AS1/hsa-miR-30b-3p/NTN1,
and BZRAP1-AS1/hsa-miR-541-3p/STAT6. CXCL12 binds
primarily to CXCR4 which can cause a mass of signal
routing including the immunity [46]. FREM1 has been
authenticated as an immune-related gene which may be
a potential target for immunotherapy in breast cancer
and clear cell renal cell carcinoma [47, 48]. The insulin-
like growth factor 1 (IGF1) pathway has been proven to
contribute to the suppression of immune tumor microen-
vironment (TME) in gynecologic cancers [49]. IRF4+

Tregs have been confirmed to be correlated with poor
prognosis in patients with multiple cancers [50]. NFATC2
regulates IL-21 expression in human CD4+ CD45RO+ T
lymphocytes [51]. STAT6 is a factor converge on intracel-
lular determinants of cell functions and drives the recruit-
ment and polarization of tumor-associated macrophages
(TAMs) [52]. Thus, our IRLs need to be further
investigated.

Compared to a certain number of studies carried out to
explore IRL signatures in several human malignancies [53–
59], this was the first study based on a comprehensive analy-
sis that focused on IRL signature in CC. However, our study
has some limitations. Additional datasets are needed to vali-
date our study. The specific molecular mechanisms in which
these genes may be involved should be verified through
in vitro and in vivo experiments.
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Figure 9: Kaplan–Meier curve of 7 mRNAs.
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5. Conclusions

We established a four-IRL-based signature with a prognostic
value for CC, which could stratify CC patients into the low-
and high-risk groups. Meanwhile, the specific mechanisms
of the four IRLs in the development of CC were preliminarily
ascertained. This may provide the basis for tumor prevention
and immunotherapy in the future.
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