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Transcription factors are proteins that bind to DNA sequences to regulate gene transcription.The transcription factor binding sites
are short DNA sequences (5–20 bp long) specifically bound by one or more transcription factors.The identification of transcription
factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study,
by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription
factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer
HeLaS3 cell and HelaS3-ifn𝛼4h cell (interferon treatment on HeLaS3 cell for 4 hours), we present a model-based computational
approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10
predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family
and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional
activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result
of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors
in gene regulation.

1. Introduction

Inmolecular biology and genetics, transcription factors (TFs)
are proteins that bind to DNA sequences specifically, thereby
regulating the transcription of genetic information from
DNA to messenger RNA [1]. Once bound to DNA, these
proteins can promote or block the recruitment of RNA
polymerase to specific genes, making genes more or less
active. Transcription factors are essential for the regulation
of gene expression. Under the effect of transcription factors,
the various cells of the body can function differently though
they have the same genome. Transcription factors bind to one
or more sequence sites, which are called transcription factor
binding sites (TFBSs), attaching to specific DNA sequences
of the genes they regulate [2]. Transcription factor binding
sites can be defined as short DNA sequences (5–20 bp long)

specifically bound by one or more transcription factors [3].
The transcription regulation is carried out by the interplay
between transcription factors and their binding sites in
DNA sequences; thus the prediction of TFBS is a vital step
to understand the mechanism of transcription regulation
and construct the network of transcription regulation. With
the development of DNA microarrays and fast sequencing
technique, many transcription factor binding sites have been
identified by using experimental methods such as ChIP-
chip and ChIP-Seq [4–6]. Because these methods will con-
sume many experiment materials and many TFs have no
corresponding antibodies, biological experimental methods
cannot identify all TFs in the genome. Hence, many different
computational methods have been proposed to search for
additional members of a known transcription factor binding
motif or discover novel transcription factor binding motifs.
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In recent years, many computational methods such as
regression based approaches have been proposed to discover
transcription factor binding sites based on gene expression
data.Thesemethods canmodel the relationship between gene
expression and transcription factor binding motifs in the
promoter regions [7–9]. Bussemaker et al. proposed a simple
linear model between gene expression and transcription
factors using the TFBSs counts in the promoter region [10].
Based on this model, instead of the counts of TFBSs, Conlon
et al. used position weight matrices (PWMs) to identify
the motif candidates on upstream of genes [11]. In these
previous methods, the whole promoter regions were always
used as transcriptional regulatory regions that include TFBSs.
As we all know, promoter regions are much longer than
TFBSs; therefore, it will be better for TFBS prediction if we
can narrow down the potential transcription factor binding
region.

As early as the 1980s, the gene transcription was found
to be related with the sensibility to DNase I (deoxyribonu-
clease I) of chromatin [12]. The sensibility to DNase I of
chromatin which contains the actively transcribed genes is
100 times stronger than the one of the chromatin which
does not contain the actively transcribed genes [13]. In 2013,
Sheffield et al. [14] found that TFBSs were correlated with
the DNase I hypersensitive (DHS) sites. The structure of the
chromatin that contains DHS sites is looser, so that gene
regulatory proteins can bind to these regions preferentially
to exert biological functions [15–18]. Within the DHS sites,
the regions are not digested easily and protected by specific
proteins which probably are gene regulatory proteins such
as transcription factors. In this study, the DHS sites were
combined with gene expression data to deduce the target
genes, and it was found that approximately 71 percent of DHS
sites associated with at least one gene and some of these
DHS sites associated with up to 44 genes, and among these
genes the protein-coding genes were more than RNA genes.
UsingEncodeChIP-Seq data, the transcription factor binding
sites were compared to the DHS sites, which showed highly
overlapping percentage.Hence, theDHS sites in the promoter
region can be used to identify TFBSs [19].

In our previous study, a model-based procedure has
been developed to predict the functional TFBSs. The model
utilized known position weight matrix to identify potential
TFBSs in the gene promoter regions and built quantitative
relationship between the TFBSs and gene expression levels.
The transcriptional regulatory region was arbitrarily defined
as the upstream region of transcription start site. In this study,
we proposed a modified method that combined the DNase
I hypersensitive sites with promoter regions to promote the
accuracy of TFBS identification and recognize the regulatory
function of transcription factors.

2. Methods

2.1. BiologicalModel System. The cervical cancer HeLaS3 cell,
which is a clonal derivative of the parent HeLa cell, has been
very useful in the clonal analysis of mammalian cell popula-
tions relating to chromosomal variation, cell nutrition, and

plaque-forming ability. In recent years, as a tier of 2 cell types
of ENCODE project, large sets of genome-wide study used
the next generation sequencing technology to investigate
gene expression, transcription factor binding sites, histone
modification, and DNase I hypersensitive sites in HeLaS3 cell
line. In this study, using genome-wide gene expression profile
combined with DNase I hypersensitivity data, we developed
a newmethod to predict themost important transcript factor
in interferon alpha treated HeLaS3 cell line.

2.2. Gene Expression and DNase I Data Set. The gene expres-
sion profiles of HeLaS3 and HeLaS3 treated by interferon
alpha for 4 hours were downloaded from Gene Expres-
sion Omnibus Database (GEO number: GSE15805), where
Affymetrix Human Exon 1.0 ST Array was used to access
the global gene expression patterns in 3 and 2 replicates. The
DNase I data set of HeLaS3 used in this study was freely avail-
able for downloading from the uniform DNase I HS track
of UCSC NCBI37/hg19 ENCODE (http://genome.ucsc.edu/
encode/).

2.3. Differential Expressed Gene Identification. Each gene
expression array of 3 HeLaS3 replicates and 2 HelaS3-
ifn𝛼4h replicates has been done the RMA normalization
used Affymetrix Power Tools (APT) and removed the batch
effects using ComBat in the previous study [20]. We utilized
the Quantile Normalization [21] to eliminate the difference
among the parallel experiments and then used the Scaling
Normalization [22] to eliminate the difference between two
cell types. The genes not reliably detected in at least one
of the two cells were removed and only the protein-coding
genes were picked up. After 𝑡-test calculation, we selected 197
probe sets by 𝑃 < 0.05 and fold change > ±2; the expres-
sion levels of them were altered significantly. Removing the
probe sets that were not reliably detected and that had absent
annotation; finally, 181 differentially expressed genes [23]
were left for analysis, in which 121 were upregulated and 60
were downregulated.

2.4. TFBS Prediction in DHS Sites. For the 181 differentially
expressed genes, the DHS sites which located in the 1,000 bp
upstream and 500 bp downstream of transcription start sites
were picked up as transcriptional regulatory regions. Human
RefSeq transcript annotation (hg19 genome assembly) and
regulatory sequence were retrieved from the UCSC Genome
Browser. 2188 position weight matrices (PWMs) in the
TRANSFAC database were used to predict the transcription
factor target genes. For each TF-DHS pair, the similarity
scores were calculated by scanning the PWM of the tran-
scription factor along the sequence of DHS site and the
maximum score was selected as the binding affinity between
the transcription factor and DHS site. For each PWM, we
selected top 5000 DHS sites with highest similarity scores in
genome-wide as potential TFBS.

2.5. The Prediction of Functional Transcription Factor. In
order to describe the correlation between the genes expres-
sion levels and the binding affinity of transcription factors in



BioMed Research International 3

DHS sites, a simplified quantitative relationship is established
using a linear model:

𝑔𝑘 = ∑

𝑖∈𝑇𝑘

(∑

𝑚

𝑑 [𝑚, 𝑖]) 𝑥𝑖, (1)

where 𝑔𝑘 is the logarithmic ratio of mRNA expression levels
of the 𝑘th gene in the treatment group comparing to control
group, 𝑑[𝑚, 𝑖] is the matching score of 𝑖th PWM in the 𝑚th
DHS sites within transcriptional regulatory region of the 𝑘th
gene,𝑇𝑘 is the number of all the TFBSs having occurrences in
the regulatory region of the 𝑘th gene, and 𝑥𝑖 is the functional
level of the 𝑖th PWM. The biological implication of this
equation is that the measured gene expression level 𝑔𝑘 is
modeled by the effect of transcription, controlled by 5󸀠 cis-
acting elements. Because the expression level of genes we
used in this study was Log2 RMA expression value, 𝑔𝑘 was
calculated according to the following formulation:

𝑔𝑘 = 𝑠𝑘,Treatment − 𝑠𝑘,Control, (2)

where 𝑆𝑘,Treatment is the logarithmic ratio of mRNA expression
levels of the 𝑘th gene in the treatment group (HelaS3-ifn𝛼4h)
and 𝑆𝑘,Control is the logarithmic ratio of mRNA expression
levels of the 𝑘th gene in the control group (HelaS3).

The linearmodel only described the quantitative relation-
ship between gene expression levels and PWMs of one differ-
entially expressed gene. Thus, the model can be rewritten in
a matrix formulation:

𝑍 = (𝐶𝐷)𝑋,

𝑋 = ([𝐶𝐷]
𝑇
[𝐶𝐷])

−1

[𝐶𝐷]
𝑇
𝑍,

(3)

where 𝑍 = (𝑔𝑘); 𝑋 = (𝑥𝑖) and 𝐶 is the marking matrix
recording whether the DHS sites are within the transcrip-
tional regulatory regions of differentially expressed genes or
not. If the 𝑗thDHS site iswithin the transcriptional regulatory
region of the 𝑖th gene, 𝐶[𝑖, 𝑗] = 1; otherwise 𝐶[𝑖, 𝑗] = 0. 𝐷
is the score matrix representing the maximum score of each
motif candidate in each DHS site. The model error based on
a given selection of TFs will be defined as the sum square
of the differences between observed and predicted mRNA
expression levels:

𝑒 =

𝑛

∑

𝑘=1

(𝑔𝑘 − ∑

𝑖∈𝑇𝑘

(∑

𝑚

𝑑 [𝑚, 𝑖]) 𝑥𝑖)

2

, (4)

where 𝑒 is the error of this model and 𝑛 is the total number of
differentially expressed genes.This equation can be rewritten
in a matrix formulation:

Err = ‖𝑍 − (𝐶𝐷)𝑋‖

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑍 − (𝐶𝐷) ([𝐶𝐷]
𝑇
[𝐶𝐷])

−1

[𝐶𝐷]
𝑇
𝑍

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

.

(5)

In this study, we iteratively computed the model error of
each PWM for 𝑁𝑝 = 100,000,000 times. In each iteration,
the program selected 𝑛𝑡 = 5 PWM candidates randomly.

The model error of each set of PWMs was calculated. Mean-
while, we assigned a score value, transcription factor’s contri-
bution value (TFCV), for each PWM candidate. The TFCV
can be calculated by the following formulation:

TFCV = ∑

𝑁

1

Err2
, (6)

where Err is the model error and𝑁 is the number of selected
PWM candidates in each iteration. If Err is smaller, namely,
TFVC score is higher, the transcriptional function of PWM
corresponding transcription factor will be more significant.
Meanwhile, the cumulative TFs’ functional levels (TFL) were
calculated by the sum of 𝑥.

The programof functional transcription factor prediction
can be summarized as follows.

(1) Calculate the matrix 𝑍 of expression levels of all the
genes in the HelaS3-ifn𝛼4h comparing to the HelaS3.

(2) Extract the DNA sequences of DHS sites of HelaS3
and calculate the score matrix 𝐷 using PWM. For
each PWM, the threshold value (ts) is set as the
5000th highest score.

(3) Construct the matrix 𝐶 by comparing the position of
DHS site and gene’s regulatory region coordinate in
the genome.

(4) Randomly pick 𝑛𝑡 PWMs from all 2188 PWM candi-
dates.

(5) Calculate the predicted model error Err.
(6) Calculate the TFCV and TFL of each PWM which is

randomly picked in this iteration.
(7) Add the current transcriptional contribution score to

the cumulative TFs’ contribution value (TFCV) and
add the current function level to the cumulative TFs’
functional levels (TFL).

(8) Repeat the program (4–7)𝑁𝑝 times.

3. Results

3.1. Overlapping between DHS Sites and TFBS of HelaS3. The
transcription factors ChIP-Seq data [16, 17] and DNase I
hypersensitivity sites of HelaS3 cells were downloaded from
the UCSC Genome Browser. After filtering out the ChIP-
Seq experiments with poor quality, 42 TFBS profiles were
considered the overlapping analysis with DHS sites in HelaS3
cells (Figure 1). Notably, we found that the binding sites of
26 transcription factors had more than 90% overlap and only
5 factors had less than 70% overlap with DHS sites. Among
these 5 factors, CTCF which often acts as a chromatin “insu-
lator” creates boundaries between topologically associating
domains in chromosomes. Therefore, transcription factors
tend to bind to the DHS sites and we can utilize the DHS sites
to improve the accuracy of transcription factor binding sites
prediction.

3.2. Functional Transcription Factor Identification. Potential
PWMs which corresponded to the binding sequence of
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Figure 1: Overlapping between transcription factors binding regions and DHS sites. The blue bar and red bar represent the percentage of
transcription factors that overlap and do not overlap with the DNase I hypersensitive sites, respectively.

a specific transcription factor were selected based on the
binding affinity within DHS sites in the gene promoter
region, as detailed in the methods. In order to predict the
transcription factor binding sites, we calculated the score
matrix 𝐷 which stored the maximum scores as the binding
affinity between the transcription factors and DHS sites. For
each PWM, we selected top 5,000 matching positions with
the highest similarity scores in the DHS sites genome-wide
as potential TFBSs. After calculating our model iteratively,
potential PWMs were selected based on the TFCVs of all
PWM candidates. The histogram of TFCVs score of PWMs
candidates is shown in Figure 2. In these PWM candidates,
not all of them are real functional transcription factor binding
sites. According to the methods, if the TFCV scores of
PWMs are higher, their contributions to the alteration of
gene expression are more significant. We selected the top
10 PWMs with the highest TFCV scores. The TFCV scores
and the TFL values of these 10 PWM candidates are shown
in Table 1. Significantly, 6 out 10 PWMs, including IRF,
IRF-2, IRF-9, IRF-1, and IRF-3, ICSBP, belong to interferon
regulatory factor family and upregulate the gene expression
levels responding to the interferon treatment. ISGF-3 is also a
transcriptional activator induced by interferon alpha. Among
10 PWMs, 9 received positive TFL values. This implies the
increased capability of the 5󸀠-end promoters in initiating
transcription after treatment with interferon alpha.

3.3. Comparison of the Different TFBS Selection. To verify
the accuracy of our model, we repeatedly run our model by
changing the number of TFBSs to top 1000, 2000, 3000, or
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Figure 2: The histogram of TFCV scores for 2182 known PWMs.
The 𝑥-axis is TFCV score and the 𝑦-axis is the frequency of the
occurrence of TFCV for all known PWM.

4000 highest scores for eachPWM.TheTFCVprofiles of each
repeat computation are shown in Figure 3. We found that the
distributions of TFCVs of all the PWM candidates in these 5
results were very similar. The Pearson correlation coefficient
between the TFCV scores of each pair of predicted results
was calculated. A heatmap corresponding to the Pearson
correlation coefficient is shown in Figure 4. Obviously,
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Table 1: Transcription factor’s contribution value (TFCV) and estimated TFs’ functional levels (TFL) of top 10 selected PWMs.

Index ID TF name PWM description TFCV TFL
1 M00772 IRF Interferon regulatory factor family 326.928 14830.189
2 M01882 IRF-2 Interferon regulatory factor 2 325.779 14680.555
3 M02771 IRF-9 Interferon regulatory factor 9 322.969 15127.858
4 M00258 ISGF-3 Interferon-stimulated response element 320.613 9914.496
5 M01881 IRF-1 Interferon regulatory factor 1 320.501 15363.707
6 M02767 IRF-3 Interferon regulatory factor 3 317.408 11305.011
7 M00699 ICSBP Interferon consensus sequence-binding protein 314.717 7242.987
8 M00248 Oct-1 Octamer factor 1 313.642 6287.612
9 M01235 IPF1 Homeodomain-containing transactivator 310.253 6593.312
10 M01857 AP-2 alpha Activating enhancer binding protein 2 alpha 309.403 −3725.557
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Figure 3: TFCV profile of 5 selected highest TFBS candidate models. The spectra of TFCV of all the PWMs while the threshold of potential
TFBS is the 5000th, 4000th, 3000th, 2000th, or 1000th highest similarity score for each PWM. The 𝑥-axis corresponds to 2188 PWMs and
the 𝑦-axis corresponds to TFCV scores.

the correlation between the prediction of top 1000 and top
5000 is the lowest (0.88), and the correlation between the
prediction of top 4000 and top 5000 is the highest (0.96).The
top 10 predicted PWMs with the highest TFCV score in all 5
calculations are shown in Table 2. Most of the top 10 PWMs
are the same among these five prediction results, and most of
them belong to interferon regulatory factor family.

4. Discussion

In this study, we modified the previous procedure Modif-
Modeler to identify functional transcription factors. In the
previous procedure, the transcription factor binding regions
were set as the promoter regions [24]. To improve the
accuracy of the identification of transcription factor binding
sites, we reduced the searching space of transcription factor

Table 2: The top 10 transcription factors with the highest TFCV
score in 5 selected highest TFBS candidate model.

Index Top 1000 Top 2000 Top 3000 Top 4000 Top 5000
1 ICSBP IRF-9 IRF-2 IRF-2 IRF
2 IRF IRF IRF IRF IRF-2
3 IRF-3 ICSBP IRF-9 IRF-9 IRF-9
4 ISGF-3 IRF-3 IRF-1 ISGF-3 ISGF-3
5 IRF-9 IRF-2 IRF-3 IRF-1 IRF-1
6 IRF-1 ISGF-3 ISGF-3 IRF-3 IRF-3
7 IRF IRF-1 ICSBP ICSBP ICSBP
8 EAR2 IRF-7 EAR2 Oct-1 Oct-1
9 IRF-5 IRF-1 IRF-1 IPF1 IPF1
10 RREB-1 EWSR1-FLI1 Lim1 AP-2 alpha AP-2 alpha



6 BioMed Research International

5000

1000

2000

3000

4000

1000 2000 3000 4000 5000

1.00

0.98

0.96

0.94

0.92

0.90

0.88

Figure 4:The cross-correlation coefficients of TFCV score among 5
selected highest TFBS candidate models.

binding regions. We have known that transcription factors
tended to bind to DNase I hypersensitive sites; thus we
combined the DNase I hypersensitive sites with promoter
regions to construct a new model. In our model, using
DHS sites within transcriptional regulatory region of each
differentially expressed gene to replace all promoter regions,
the binding regions of transcription factors were shortened
and the accuracy of predicting transcription factor binding
sites was improved. In this study, our model predicted some
transcription factor binding sites whose functions differed as
a result of interferon-𝛼 treatment.

Our modified model predicted that 9 of the top 10 tran-
scription factors showed upregulatory effects on gene expres-
sion after interferon-𝛼 treatment which was clearly shown in
Table 1. These predicted top 10 transcription factors with the
largest TFCVsmade significant contribution to the alteration
of gene expression after interferon treatment. After being
treated by interferon, some mechanisms of HelaS3-ifn𝛼4h
have changed compared with HelaS3 and some transcription
factors responding to the interferon treatment have shown
significant contribution to the alteration of gene expression.
Obviously, most of the predicted TFs belong to interferon
regulatory factor family, such as IRF-1, IRF-2, IRF-3, and IRF-
9, ICSBP, and upregulate gene expression under interferon
treatment [25–27]. Meanwhile a factor named interferon-
stimulated response element (ISGF-3) also contributes to the
alteration of gene expression significantly. It also indicates
that our modified model can identify transcription factors
which induced the gene expression change.

The identification of transcription factor binding sites is
still a challenging and meaningful area. In the future, the
identification of transcription factor binding sites will be very
important and helpful for the understanding of the gene
regulation mechanism [28]. Gene expression is regulated by
many different elements synthetically. To predict different
regulatory elements and understand their function, we also
need tomodify ourmodel to adapt to various gene regulatory
elements, such as microRNA and RNA binding proteins.
In summary, focusing on the integration with DNase I
hypersensitive sites allows high accuracy in our prediction

procedure. As we all know, the identification of transcription
factor binding sites can be used in clinic to find the change
of regulatory elements in damaged or diseased cells and then
help with the therapy of disease in the gene expression level
[29]. We believe that our optimized method will contribute
to an existing analytical network of gene expression.
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