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Abstract

Progress in decoding neural signals has enabled the development of interfaces that translate cortical brain activities into
commands for operating robotic arms and other devices. The electrical stimulation of sensory areas provides a means to
create artificial sensory information about the state of a device. Taken together, neural activity recording and
microstimulation techniques allow us to embed a portion of the central nervous system within a closed-loop system,
whose behavior emerges from the combined dynamical properties of its neural and artificial components. In this study we
asked if it is possible to concurrently regulate this bidirectional brain-machine interaction so as to shape a desired dynamical
behavior of the combined system. To this end, we followed a well-known biological pathway. In vertebrates, the
communications between brain and limb mechanics are mediated by the spinal cord, which combines brain instructions
with sensory information and organizes coordinated patterns of muscle forces driving the limbs along dynamically stable
trajectories. We report the creation and testing of the first neural interface that emulates this sensory-motor interaction. The
interface organizes a bidirectional communication between sensory and motor areas of the brain of anaesthetized rats and
an external dynamical object with programmable properties. The system includes (a) a motor interface decoding signals
from a motor cortical area, and (b) a sensory interface encoding the state of the external object into electrical stimuli to a
somatosensory area. The interactions between brain activities and the state of the external object generate a family of
trajectories converging upon a selected equilibrium point from arbitrary starting locations. Thus, the bidirectional interface
establishes the possibility to specify not only a particular movement trajectory but an entire family of motions, which
includes the prescribed reactions to unexpected perturbations.
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Introduction

In a recent demonstration [1], Schwartz and coworkers decoded

neural activities from the motor area of a monkey’s cerebral cortex

to control the movement of a robotic arm. The monkey learned to

activate the recorded neurons and to guide the arm for

transporting food to the mouth. This is an undisputed milestone

in Neural Engineering, highlighting the potential of neural

interfaces (NIs) as a means to restore a connection with the world

for people with severe paralysis. In addition to their clinical

impact, NIs have the potential to revolutionize our ways to study

the nervous system, by connecting live neural populations with

external devices, both physical and simulated. This constitutes a

leap forward with respect to current paradigms, in which

physiological experiments and computational analyses are carried

out separately.

Both the clinical and the basic science applications of NIs call

for the possibility to close the sensory-motor loop, by combining a

decoding interface – mapping neural activities into inputs to the

external device – with an encoding interface – mapping the state of

the device into a direct input to the brain, such as an electrical

stimulus. In this study we addressed the challenge to create a

coordinated bidirectional brain-machine interaction by concur-

rently setting up a decoding and an encoding interface, which

combined generate a dynamic control policy in the form of a force

field. In this approach, we aimed at emulating the operation of the

spinal cord, as the prime biological interface between the brain

and the musculoskeletal apparatus.

Ascending tracts of the spinal cord inform the brain about the

state of motion of the limbs and about physical properties of the

environment. Descending tracts distribute motor commands

across groups of muscles both by direct connections with the

motoneuronal pools and by connections with spinal interneurons

that activate multiple muscles spanning one or more joints [2,3].

Earlier studies in frogs [4–6], rats [7], and cats [8] have revealed

that the electrical stimulation of the grey matter in the lumbar

spinal cord results in a field of forces acting on the ipsilateral hind

limb. This finding has a simple biomechanical basis. The force
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generated by a muscle varies depending on the state of motion of

the muscle – i.e. its instantaneous length and shortening rate. In

addition, variety of other factors, such as fatigue and hysteresis,

and environmental variable, such as temperature, affect muscle

force. While the detailed analysis of these factors is beyond the

scope of this work, we may simply state that when the spinal cord

activates an ensemble of muscles in response to a cortical

command, the net mechanical outcome is a spatial pattern of

forces – a force field – that sets the limb in motion. The above

mentioned studies have highlighted the presence of convergent

patterns of forces, but evidence from other investigations [9] have

suggested more complex spatio-temporal structures of the

underlying force fields.

Our study aimed at reproducing in an artificial interface this

basic control mechanism. We considered the problem of

generating by function approximation a force field that converges

to a central equilibrium point. This is a very particular

instantiation out of a much larger repertoire of possible

mechanical behaviors, which may be represented as a functional

map from the state of motion of a limb, i.e. its position and

velocity, and the ensuing force generated by the musculoskeletal

apparatus.

Results

General scheme of the dynamic Neural Interface
In the language of control theory, the spinal cord establishes a

policy [10] by specifying the forces to be generated throughout the

reachable space in response to unexpected perturbations. We have

adopted this perspective for developing a new type of neural

interface called dynamic Neural Interface (dNI), which borrows a

local portion of cortical tissue to emulate the generation of force

fields by the spinal cord [4].

The dNI has 4 components, as illustrated in Figure 1. We

performed all tests on anesthetized Long-Evans rats. The rats’

brain interacted with a dynamical system through a sensory

interface and a motor interface. On the brain side, one microwire

array delivered the microstimulation to the vibrissal representation

of primary somatosensory cortex (S1) and a second microwire

array recorded the neural signals from vibrissal motor cortex (M1).

On the other side of the interface there was a simple and well-

understood dynamical system: a simulated point mass moving over

a horizontal plane within a viscous medium.

We began each experiment by collecting a ‘‘training’’ set of

neural population responses to repeated presentations of different

electrical stimulation patterns. We used these training data to

implement a calibration procedure for establishing concurrently

the encoding function of the sensory interface and the decoding

function of the motor interface. Following the calibration

procedure, we tested the competence of the interface (test phase)

to drive the simulated point mass towards a goal location, which

was defined by the central equilibrium point of a radial force

field.

Sensory-motor mapping
The purpose of the sensory-motor mapping is to set the

parameters of the sensory and motor interfaces so as to

approximate the desired force field. While force fields are

continuous maps from position to force, the interface has a finite

number of stimuli. Therefore, the mapping procedure must

construct an approximation of the desired field with only a small

number of vectors. To this end, we construct a cascade of three

mappings: 1) a mapping from the position of the external device to

one of selected stimuli; 2) a mapping from each stimulus to the

evoked neural activity, and 3) a mapping from the evoked neural

activity to the force acting on the external device. The first and last

mappings are established by the interface software (i.e. sensory and

motor interfaces), the second mapping is established by the

properties of the neural structures that connect the stimulation and

recording arrays.

In this first implementation, the sensory interface established a

map from the position of the point mass to one of 4 stimulation

electrodes (Figure 1A). The sensory mapping procedure (as

detailed below) divided the workspace into 4 contiguous regions

corresponding to a small ‘‘vocabulary’’ of 4 stimuli. At each

iteration step, the interface algorithm selected the stimulus based

on the region in which the point mass was located. The electrode

delivered a train of 10 biphasic pulses (150 mA, 100 ms/phase) at

333 Hz [11,12]. Larger vocabularies of stimuli can be generated

by using a greater number of electrodes and by including electrode

combinations. With a greater number of distinct stimuli, the

workspace would be divided into smaller and denser regions, thus

increasing the quality of the approximation of the desired

continuous field. In a physiological system, the region of space

that can activate a sensory neuron is called a ‘‘receptive field’’.

Here, the workspace of the sensory interface is divided into regions

that are analogous to receptive fields: the mechanical system

triggers an electrode when it passes by the region corresponding to

that electrode.

The motor interface transformed recorded neural activities into

force vectors applied to the simulated point mass (Figure 1B–D). A

commercial spike-sorting algorithm (Rasputin, Plexon Inc.)

decomposed the recorded neural signals into single-unit activities.

We sorted 5–20 single units in each session from a 16 channel

microwire array (average 6 SEM across sessions was 13.6960.48

units). The single trial responses of each neuron to the stimulation

pattern consisted of a time series of spike counts computed in time

bins of size Dt over a window of duration T?Dt, starting from the

end of the stimulus. The neural population response was

quantified as an array of such binned spike sequences. We found

that post-stimulus windows of duration in the range between 100

and 600 ms binned at a resolution of Dt = 5 ms led to best

Author Summary

Brain-machine interfaces establish new communication
channels between the brain and the external world with
the goal of restoring sensory and motor functions for
people with severe paralysis or sensory impairments.
Current methodologies are based on decoding the motor
intent from the recorded neural activity and transforming
the extracted information into motor commands to
control external devices as robotic arms. We developed a
novel computational approach, based on the concept of
programming dynamical behaviors trough the bi-direc-
tional sensory-motor interaction between the brain and
the connected external device. This approach is based on
the emulation of some control features of a biological
interface, the spinal cord. The first prototype of our
interface controls the state of motion of a simulated point
mass in a viscous medium. The position of the point mass
is encoded into a stimulus to the somatosensory cortex of
an anesthetized rat. The evoked activity of a population of
motor cortical neurons is decoded into a force vector
applied to the point mass. The parameters of the encoder
and of the decoder are set to approximate a desired force
field. In the first test of the interface, we obtained a family
of trajectories that converged upon a stable attractor.
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performance of the interface (see below). Unless otherwise stated,

in the following we present results obtained by running the

interface using Dt = 5 ms and T?Dt = 600 ms. In this case, the

input to the motor interface was a matrix with N rows and 120 (i.e.

600/5) columns (Figure 1B). During the test phase, the single-trial

neural population response matrix was linearly mapped into the

two components of a planar force vector.

Dynamic shaping algorithm
In the following we describe the ‘‘dynamic shaping’’ algorithm

for the concurrent calibration of the sensory and motor maps. The

algorithm is defined by a set of 4 key parameters:

N N: number of recorded neurons as established by spike sorting

N T: number of time-intervals (bins) recorded on each neuron

Figure 1. Experimental setup of the dynamic neural interface. We placed two 16-channel microwire arrays (recording and stimulating arrays)
in the vibrissa motor (M1) and sensory areas (S1) of a rat brain cortex. (A) In this example 4 electrical stimulation patterns are set by specifying the pair
of electrodes in the 16-channel microwire stimulating array placed in area S1. (B) The activity of a small population of single neurons (11 in this
illustration) of area M1 is recorded in response to each electrical stimulation pattern. The activity of each neuron is plotted on a row over a
rectangular frame, whose color indicates the correspondence with a stimulation pattern. (C) The motor interface generates a force vector from the
first two principal components of the response of the M1 neurons. (D) The obtained force vector is applied to a simulated point-mass moving in a
viscous medium. The interaction with such dynamical system aims to emulate a reaching movement creating a convergent force field similar to the
force fields observed during microstimulation of the spinal gray matter. (E) The sensory interface maps each point in the field into the corresponding
stimulation pattern.
doi:10.1371/journal.pcbi.1002578.g001
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N S: number of stimulation patterns (the stimulus vocabulary)

N R: number of repetitions of each stimulus pattern during the

calibration procedure.

During the calibration each stimulation patterns was repeated R

times and, accordingly, R6N neural responses were recorded.

Each response was an array of T values: the number of spikes in

each bin. The calibration responses were then represented as S6R

N-dimensional vector functions:

yr
s(t)~

yr
s,1(t)

yr
s,2(t)

:::

yr
s,N (t)

2
6664

3
7775 s~1,:::,S; r~1,:::,R; t~1,:::,Tð Þ ð1Þ

From these calibration responses, we averaged the responses

obtained from the repetitions of each stimulus, to extract S mean

responses

Qs(t)~
1

R

XR

r~1

yr
s(t) ð2Þ

Following the same notation, a neural response vector is an N-

dimensional vector function

v(t)~

v1(t)

v2(t)

:::

vN (t)

2
6664

3
7775(t~1,::,T) ð3Þ

The inner product of two neural responses is defined by extension

over time bins and units of the Euclidean inner product:

Sn D gT~
XN

n~1

XT

t~1

nn(t):gn(t) ð4Þ

The S mean calibration responses form a set of basis fields – a

direct extension of the concept of basis vectors – that were used to

approximate all recorded neural responses. In particular, each

calibration response was approximated as a sum of mean

responses:

yr
s(t)&

XS

i~1

dr
s,i
:Qi(t) ð5Þ

To derive the combination coefficients dr
s,i, one takes the inner

product of each side of Equation (5) with each basis function. This

leads to S vector/matrix equations

Yr
s~W:dr

s ð6Þ

where

Yr
s

� �
i
~SQi D yr

sT

W½ �i,j~SQi D QjT

(i,j~1,:::,S):

ð7Þ

Equation (7) can be solved for dr
s provided that det(W)=0 (if the

projection matrix is singular, one can use a pseudo-inverse. But

this does not seem to be a likely situation and was not encountered

with any of our datasets).

With this, each calibration response was mapped respectively

into an S-dimensional vector

dr
s~

dr
s,1

dr
s,2

:::

dr
s,S

2
6664

3
7775 ð8Þ

Each response corresponds to a d-vector and vice-versa, each d-

vector corresponds to a unique approximation of the response (the

likelihood that two distinct signals map onto the same d-vector is

vanishingly small). Therefore, we took the S-dimensional dr
s

vectors as representations of the individual neural responses

obtained after applying each stimulus.

Motor interface
To calibrate the motor interface, we used principal component

analysis (PCA) and extracted the two principal components that

capture the greatest amount of variance in the set of the S6R

calibration vectors, dr
s. These two components are two S-

dimensional arrays that form the rows of the 26S projection

matrix

W~
w1,1 w1,2 � � � w1,S

w2,1 w2,2 � � � w2,S

� �
ð9Þ

This operator defines the two-dimensional plane with maximum

variance over the set of S stimuli. The next step of the calibration

procedure involved stretching the matrix so as to match the range

of variation of the x and y components of the force vectors over the

desired force field domain:

�WW~s:W ð10Þ

The gain s is a 262 diagonal matrix that scales the two-

dimensional projections of the calibration recordings to cover the

range of the desired force field, F~K(r). The field establishes a

correspondence between the position, r~½x,y�T , of the controlled

object – in this first implementation a point mass – and a resulting

force F~½Fx,Fy�T . Here, we make the additional hypothesis that

this field is invertible, which means that there is a function

r~K{1(F ) mapping force vectors to corresponding positions.

This is obviously the case if the field is linear, as in F~K :(r{ro)
and the ‘‘stiffness’’ matrix is non-singular. The requirement of

invertibility can be relaxed to a local and continuous form.

The two projection matrices, W and W , and the mean

calibration responses, Qi(t), to all the stimuli generate a map

from the data collected during the experiment to a corresponding

two-dimensional force vector

F~W :W{1‘:

SQ1 D nT
SQ2 D nT
� � �

SQS D nT

2
6664

3
7775 ð11Þ
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This is a linear filter that operates in real time.

Sensory interface
The sensory interface maps the instantaneous position of the

controlled object onto one of the stimulation patterns in the

calibration vocabulary.

This sensory interface performs a look-up operation:

ŝs~ arg min
i[ 1,::,Sf g

( r{jik k) ð12Þ

that picks up the stimulus, ŝs, corresponding to the ‘‘calibration

site’’ jŝs that is closest to the current position r of the controlled

object. The calibration sites j1,::,jSf gare the S locations:

ji~K{1 F Qið Þð Þ ð13Þ

where F Qið Þ is the force derived by Equation (11) from the average

response, Qi, to the i-th stimulus in the vocabulary.

In this first implementation, there were 4 distinct electrical

stimuli, s1, s2, s3 and s4 and 4 mean corresponding neural

responses, r1, r2 r3 and r4 (Figure 2A). Each mean neural response

was a high-dimensional collection of spiking activities, which was

reduced by the motor interface to the two coordinates of a force

vector. Principal component analysis (PCA) performed this

dimensionality reduction by extracting from each of the 4 mean

neural responses recorded during the calibration phase the two

principal components that capture the highest amount of signal

variance. We scaled these two components so as to span the

variance of the force vectors over the desired force field. This

process resulted in a simple linear mapping, i.e. a gain matrix and

an offset vector that, when applied to the neural response

produced a force vector (Equation 11). In particular, the 4 mean

responses collected during the calibration mapped to 4 template

force vectors F1, F2, F3, and F4 (Figure 2B). The desired force field

established a relationship between these template force vectors and

4 positions, x1, x2, x3 and x4 (Figure 2C). These 4 positions

partitioned the space of the external device into 4 contiguous

regions, A1, A2, A3 and A4, based on a nearest-neighbor map: a

generic point x was associated to the region Ai if xi was the nearest

calibration position (Figure 2D). In this case, the sensory interface

triggered the stimulus si. It is straightforward to extend this

procedure to an arbitrary number of stimuli for generating denser

approximations of the desired force field.

The dynamic neural interface generates an
approximation of the desired force field

The concurrent operation of the sensory and the motor

interfaces resulted in the realization of a force field that

approximated a desired radial force field converging towards a

central equilibrium point (Figure 2C). If one might assume that the

recorded neural activity elicited by each stimulus remained

invariant through time, then the field generated by the interface

would be a piecewise constant approximation of the desired field.

However, the inherent variability of neural activities observed after

each repetition of an electrical stimulation pattern violated this

assumption. This variability was mostly caused by background

activities that interacted with the activities induced by the stimulus.

In the anesthetized preparation, the background activities can be

considered as random noise. In the alert animal, these activities

may also contain a voluntary component. In this way the actual

field is an additive superposition of the field approximation

established by the interface with a random component induced by

background neural noise. Extracting as much information about

the stimulus as possible from the recorded signals is a key technical

challenge for generating a controlled desired dynamical behavior

with the bidirectional interface.

The dynamic neural interface is able to drive a point mass
to a target location

During the test phase, we probed the ability of the dNI to drive

the simulated point mass towards a goal location, corresponding

by design to the central equilibrium point of the desired force field.

This is a simplified representation of a reaching movement, where

the interface emulates the generation of a convergent force field

similar to those observed after microstimulation of the spinal grey

matter [4–6].

The dNI generated a movement of the simulated point mass

(Figure 3D) by the following procedure:

1) The experimenter places the point mass at a starting initial

state (position and velocity).

2) The sensory interface determines the stimulus to be

delivered at that position, based on the nearest calibration

site (see Equation 12). The stimulus is delivered.

3) The motor interface decodes the ensuing neural activity and

derives the force vector to be applied to the point mass (see

Equation 11).

4) The next position is computed by integrating the equation of

motion of the point mass in a viscous medium (see Equation

15) for a short time (typically 1s).

5) The process is repeated from step 2 until the point mass

reaches the region of equilibrium.

Because of the cortico-cortical pathways between stimulated

and recorded populations [13], the neural population responses

were clearly modulated by the stimuli (Figure 3C). However, the

actual behavior of the interface contained a stochastic component

due to the fact that each stimulation pattern, when repeated over

different trials, caused a variable response in the recorded motor

cortex. Part of the response variability in our anaesthetized

preparation likely arose from trial to trial fluctuations in ongoing

internal activity unrelated to the stimuli [14]. These trial to trial

response variations resulted in a random time-varying component

of the force field.

Evaluation and optimization of the dynamic neural
interface using information theoretic metrics and
trajectory based metrics

The performance of the dNI likely depends upon information

that the neurons make available for communication with the

dynamical system, which in turn likely depends upon the temporal

precision at which spike trains are considered [15,16]. In

particular, previous studies of neural encoding suggest that more

information may be extracted from neural responses if they are

examined with a relatively fine precision of the order of few to few

tens of ms [17,18] and that the optimal precision to extract

information from neural activity may vary depending on the

specific task or condition [19,20].

In this study we therefore determined empirically the range of

response parameters that maximized some measures of the quality

by which the neurons can communicate with the rest of the

system. The neural response r following the electrical stimulation

was quantified as a time series of spike counts for each of the N

neurons computed in T small time intervals of size Dt post-

Shaping the Dynamics of a Neural Interface
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stimulation. The size of the bins Dt (corresponding to the temporal

precision used to evaluate neural responses) and the parameters

defining the time window duration (the number of time bins T and

the offset of the post-stimulus window) are all arbitrary parameters

that we attempted to set optimal according to some quantitative

criterion. To study systematically how the performance of the dNI

depends on the temporal parameters defining the neural response,

we generated a set of ‘‘off-line’’ trajectories according to the

following simulation procedure. At each step of the simulation, the

position of the point mass was paired with the stimulation pattern

associated with its nearest neighbor, as in the actual on-line

experiment. Then, a recorded pattern was randomly drawn from

an additional collection of neural responses to the 4 electrical

stimulation patterns stored in the sensory interface.

Using the off-line trajectories, we estimated the amount of

information that the neural population makes available to

communicate with the dynamical system. This information was

evaluated as the Mutual Information I(Fexp; F) between the force

vector expected to be generated by the electrical stimulation in a

given trial (a template force vector corresponding to the mean

force vector established during the calibration trials in response to

the considered electrical stimulation, Figure 3A blue arrows) and

the actual force vector obtained from the neural response in that

trial.

We found that the really critical response parameter was the

temporal precision Dt at which spikes are sampled (Figures 4C and

4D). A fine temporal precision Dt<5–10 ms was needed to obtain

high Information values. Using coarser temporal precisions of 50

or 100 ms led to dramatic decreases of the Information values

(Figure 5A). Figure 5B reports the results of how the Information

I(Fexp; F ), averaged over all sessions and calculated using a

sampling precision Dt = 5 ms, depended upon the windows

duration T?Dt and upon the offset value defining the response

window. Information was very stable in the range T?Dt<25–

600 ms. The fact that the interface performs well also for decoding

windows as short as few tens of ms encourages us to believe that it

will be possible to push the dNI technology towards implementing

feedback which is rapid enough to control real life motor tasks.

Moreover, there was a highly significant correlation (p,10e-9)

between the Information I(Fexp; F ) and both the convergence rate

(the percentage of trajectories that converge into the target) and

the inverse of the mean number of steps to convergence of the off-

line dNI trajectories (Figure 4E–F). As a result, the performance of

the dNI was maximal for fine temporal precisions: the conver-

gence rate peaked for Dt<5–10 ms (Figure 4C). At Dt = 5 ms, the

convergence rate of the dNI was on average 6 times higher than

the convergence rate obtained with a purely random choice of the

electrical stimulus to be applied (Figure 4D), demonstrating that

the neural information had a sizeable impact on the dNI

dynamics. These results suggest that precise spike timing is not

only crucial for communication within the nervous system [16],

but it is also important for bidirectional communication between

external effectors and the nervous systems.

The impact of the Mutual Information provided by the neurons

participating in the dNI upon the performance of the dNI was

further investigated by studying the relationship betweenI(Fexp; F )
and the convergence speed of the dNI on the off-line simulated

trajectories. For each set of possible response parameter and

experimental session, we computed the mean number of steps

needed for the trajectory to converge and the probability of

reaching convergence to the center of the force field (averaged

over 100 off-line-generated trajectories) with these response

parameters and we correlated it with the Information computed

in the same conditions. In sum, the empirical finding was that

higher Information values corresponded to faster and more

reliable convergence of the dynamical behavior and all measures

pointed to the same range of neural response parameters being

optimally efficient for dNI operation.

We also evaluated how the performance of the interface

depended upon the population size by comparing the conver-

gence rates when using all the neurons of each datasets with

those using only half or one quarter of the units. The average

number of recorded neurons during each experimental session

was 13.6960.48 (mean6SEM over all sessions). For each

dataset, we randomly selected (out of nA recorded units) nH and

nQ units for the calculation of the performance with half and

one quarter units, with nH and nQ being the approximation to

the closest integer of nA/2 and nA/4, respectively. For each

selection of the subpopulation, we subtracted the obtained

convergence rate by that obtained from a random choice of the

stimulation patterns (as we did when analyzing the performance

of the entire population). Figure 5C shows that a decrease in

performance is observed only when reducing the population

size to one quarter of the recorded one. Convergence rates with

one quarter neurons are statistically different from the rates in

the other two cases (p = 3.3552e-006, ANOVA), while the

performances with all and half neurons were not statistically

different (p.0.1, ANOVA). This suggests that using multi

electrode recording arrays is useful for the performance of the

system.

Finally we used different performance metrics to compare on-

line trajectories with off-line simulated trajectories to evaluate if

the off-line dataset could be used to simulate and study in more

detail on-line behavior. To perform this comparison we selected

70 converging on-line trajectories selected from 13 rats and 70

corresponding off-line trajectories. In particular we calculated the

root mean square error (RMSE), the mean integrated distance to

target (MIDT) and the number of steps to convergence. For the

calculation of RMSE, we first computed for each trial i the ideal

trajectory pi
ideal(t) as the one sharing the initial point with the

actual trajectory, but evolving with a force F~{K :x. Then, for

each trial i we computed the root mean square error as

RMSEi~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t~1

(pi
actual(t){pi

ideal(t))
2

vuut with T being the maxi-

mum duration of the trial and pi
actual(t) the actual position of the

Figure 2. Calibration procedure scheme. The purpose of the calibration procedure is to set the parameters of the neural interface. The
calibration consists of 4 steps. (A) Recording a training set. The calibration procedure is performed upon a training set (r1…rn) built by recording the
neural activities evoked over multiple presentations (usually 100) of each of the n stimulation patterns (s1…sn with n = 4 in this example). (B) Motor
Map. The training set is also used to set the motor map. The spike trains from multiple neurons are reduced by PCA to two coordinates of a force
vector. In this example the result of this operation is a set of 4 template vectors, each corresponding to a stimulation pattern. (C) Desired force field
map. The chosen desired force field to be approximated (e.g. a continuous radial force field converging towards a central equilibrium point)
establishes a relationship between the n template vectors and the n positions in the two-dimensional space. (D) Sensory Map. The n positions are used
to partition the external device space by using a space partition algorithm (e.g. in this case a nearest neighbor map) and, as a consequence, n sensory
regions (A1…An) are defined. A look-up table connects each sensory region to a corresponding stimulation pattern. As a result, the sensory map
converts each position of the space into a stimulation pattern.
doi:10.1371/journal.pcbi.1002578.g002
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point-mass at time t. We computed MIDT as the average distance

from the target. For each trial i, being pi
actual(t) the position of the

point mass at time t and pi
target(t) the position of the target we

define: MIDTi~
1

Ti

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

t~1

pi
actual(t){pi

target(t)
����

vuut . Because the

target corresponds to the origin of the plane, MIDT is simply

the length of the trajectory normalized by its converging time.

As reported in Figure 4B, we found no significant differences in

the computation of RMSE, MIDT or number of steps to

convergence between on-line and off-line data (t-test, with

p = 0.17 for RMSE, p = 0.41 for MIDT, p = 0.5 for number of

Figure 3. An example of motor and sensory interfaces and on-line closed-loop trajectories generated by evoked activity of a
population of neurons. (A) The output of the motor interface during the test phase is represented as the force vectors (black arrows) generated
during 100 ‘‘test set’’ repetitions of each stimulation pattern. The spread of the distribution of the single trial vectors represents neural variability at
fixed stimulus. The small discrepancies between the angles of the template vectors computed during calibration (blue arrows) and the trial-averaged
vector observed for each stimulus during the test phase (red arrows) originates from differences between training and test dataset due to neural
variability and limited sampling. (B) A graphical representation of 4 sensory regions generated by the sensory interface. Each position of the point-
mass is mapped onto a stimulation pattern and is color coded. (C) Spike rasters and Post Stimulus Time Histograms (PSTH) of a single neuron evoked
by 4 different stimulation patterns, using the same color code as in panel B to distinguish responses to different stimuli. (D) Trajectories of the point-
mass (dotted black line) generated on-line starting from 4 different initial points (yellow circles). For each trajectory, the force vector applied step by
step by the motor interface to the simulated point-mass is indicated with a color code representing the stimulation pattern chosen by the sensory
interface. In this example the forces were applied with an interval of 1 s and the point mass reached the target respectively in 6, 16, 25 and 29 s.
doi:10.1371/journal.pcbi.1002578.g003
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steps). The consistency between the off-line open-loop simulated

trajectories and the actual closed-loop trajectories recorded on-line

during the experiment suggests that the parameters set optimally

by generating offline simulated trajectories from calibration data

will be optimal also for running the same interface online. In this

respect Mutual Information is an advantageous optimization

metrics during calibration, because the corresponding evaluation

of the inverse number of steps requires running a larger number of

simulated trajectories and would thus be computationally slower.

Discussion

With few notable exceptions [21–25], the development of

neural interfaces has proceeded along two separate tracks. There

are sensory interfaces, such as the cochlear implants [26] that

transform external physical events into neural stimuli for the brain

and there are motor interfaces that decode activities from cortical

regions to generate commands for external devices [1,27–29].

However, the efficiency of biological motor behavior rests upon

the seamless integration of sensory information and motor

commands. This integration occurs both in our deliberate and

conscious responses to external stimuli and in hardwired reflex

responses organized by the neural circuitry of the spinal cord. In

fact, the voluntary motor commands originating from the highest

brain centers operate upon the world by modulating the activities

and the response properties of the spinal networks. Here, we have

taken a first step towards the design of a brain-machine interface

that emulates the same basic principle: the interface has a sensory

and a motor component whose direct interaction generates a

system of automatic responses, which are to be modulated by

volitional activities. In this sense, our proposed architecture draws

inspiration from the natural ‘‘neural interface’’ that all vertebrates

are endowed with: the spinal cord.

Unlike its biological counterpart however, the proposed

interface is not connected to a musculoskeletal system, but can

act over a broader family of dynamical systems. In this example,

we chose a simulated point-mass moving within a viscous fluid.

The interface generates position-dependent forces converging to a

stable equilibrium point. This simple framework highlights an

important issue in the design of brain-machine interface: the

boundary between neural and artificial control. The parameters of

the external system – in this case the viscous and inertial matrices –

may result from a combination of passive physical elements and

feedback control components. There is therefore an important role

Figure 4. Off-line analysis of dependence of the dNI performances on the temporal parameters defining the neural response. (A) A
closed-loop trajectory recorded on-line (green line) compared to 100 trajectories generated off-line (blue dotted line indicates the mean trajectory
and shaded areas represent the p = 0.05 confidence region of trajectory). (B) We compared 70 converging on-line trajectories selected from 13 rats
with 70 corresponding off-line trajectories using different parameters such as the root mean square error (RMSE) from the ideal trajectory, the mean
integrated distance to target (MIDT) and the number of steps to convergence. Setting the time interval of 1 s between two consecutive steps, these
values (mean6SEM: online = 18.261.6 and offline = 19.961.8) indicate also how long it took for this particular point mass to reach the target. Off-line
and on-line behaviors were not significantly different (p.0.1; paired t-test), indicating that off-line simulated trajectories are representative of on-line
behavior. (C) Mean convergence rate (CR) subtracted by the mean convergence rate obtained from a random choice of the stimulation patterns,
calculated using different sizes for Dt. (D) Mean CR of the dNI calculated using Dt = 5 ms. The CR of the off-line trajectories is used to evaluate the
performances of the interface, which is found to be maximal for small temporal resolutions (Dt<5–10 ms). In particular, by using a bin size of 5 ms
the mean CR is 6 times higher than the CR randomly built. The Mutual Information I(Fexp; F ) between the expected force vector and the actual force
vector is highly correlated both to the CR (E) and to the inverse of the mean number of steps to convergence (F) calculated for all the simulated off-
line trajectories.
doi:10.1371/journal.pcbi.1002578.g004

Figure 5. Role of recording parameters on Mutual Information measures of the performance of the dNI and dependence of
performances on number of recorded single units. (A) Dependence of the Mutual Information I(Fexp; F ) between the expected force vector
and the actual force vector upon the temporal bin size Dt. Results were calculated using data computed in the response window with zero offset and
600 ms duration and are reported as average6SEM over all experimental sessions. Information was maximal for small bin sizes, such as Dt = 5–10 ms,
meaning that the best performance of the dNI is obtained when recording neural activity with fine temporal precision. (B) Dependence of the Mutual
Information I(Fexp; F ), calculated with temporal resolution of Dt = 5 ms, upon duration (T?Dt) and offset defining the response window. Results are
reported as average over all experimental sessions. (C) Convergence rate vs. population size. We compared the convergence rates when using all the
neurons of each datasets with those using only half or one quarter of the units (subtracted by the mean convergence rate of trajectories randomly
generated). Data are represented as box plots: red lines are the medians, lower and higher borders of the boxes indicate respectively the 25th and
75th percentiles, while the whiskers indicate the minimum and maximum value of each group. ANOVA test revealed that only the quarter case is
statistically different from the other two (p = 3.3552e-006).
doi:10.1371/journal.pcbi.1002578.g005
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of the engineering design in establishing the dynamical properties

of the external device, as it is seen by the neural system through

the interface.

Force fields in motor behavior
The concept that force fields afford a representation of the

motor output in the spinal cord was first expressed in the

aforementioned stimulation studies [4–8]. However, the mecha-

nistic concept behind this representation can equally well

characterize a variety of other observations, including some of

the most classical ones. The stretch reflex first described by

Sherrington [30] is one the clearest examples. Another example is

spinal pattern generators that produce a different type of field, a

field inducing a cyclical motion of the limbs. Grillner and

coworkers [9] offered a compelling model of locomotion pattern

in the lamprey, and in both cases the rhythmic activity is sustained

by a phase-shift between the state of motion and the consequent

forces. While the experimental tests in the current paper have been

focused on the enforcement of equilibrium-seeking behavior,

different behaviors are programmable through the approximation

of different force-fields.

The description of the bidirectional neural interface as a force-

field has a conceptual rationale in the causality of mechanical

interactions between a control system and its environment [31,32].

At the interface with the environment, a control system may act

either as a generalized admittance, determining a state of motion

in response to an applied force, or as a generalized impedance,

determining a force in response to an applied state. Considerations

about neuromuscular mechanics suggest the second case as more

appropriate, because the mapping from state (position and

velocity) to force is typically well defined but not invertible. In

this sense too, the architecture of the interface reflects the

organization of the biological motor system. However the extent

of the similarity may vary depending on the structure that is being

controlled. The dynamical parameters – for example the mass and

viscosity – may be characteristics of the physical system that is

been controlled by the interface. But they also may be – at least

partially – introduced in the interface algorithms to shape a

desired behavior. For example a virtual mass and a virtual viscosity

can be added in parallel to the physical system to increase stability

and modify the resulting trajectories.

Intelligent and purposeful motor behavior involves the ability to

react to unexpected perturbations and to change planning goals.

In this respect, the study presented in this report represents a

preliminary step towards the development of an interface that

facilitates exploration and adaptation providing its users with the

possibility to modulate a field of forces. Even if the concept of

controlling a limb by shifting its equilibrium position is not new

[33–35], in the context of BMIs this is a radically new platform

compared to current approaches based on decoding – instant by

instant – the desired state of motion of the connected device, such

as, for example, a robotic arm. Consider a reaching movement

with a prosthetic hand. As the hand moves towards the target an

obstacle is encountered that triggers a correction. The standard

decoding method requires recreating an entire path that circum-

vents the obstacle and reaches the final target. In contrast, a field-

based approach, reprogramming the path may be limited to

shifting the hand position to a point that is clear of the obstacle

and then let the field guide the hand towards the target without

further reprogramming.

Somatosensory perception
While early BMI studies were mostly focused on decoding

motor cortical activities [29,36], more recently there has been a

growing interest for evoking somatosensory perception by

electrical stimulation. For example Weber and co-workers are

pursuing the stimulation of dorsal root ganglia, recreating patterns

of evoked responses in somatosensory-area [37]. Recently,

Venkatraman and Carmena [38] were able to stimulate neurons

in the rat barrel cortex and to produce the sensation of an object

being swiped by the whiskers. More recently yet, Nicolelis and

coworkers were able to integrate in BMI motor cortical decoding

with artificial tactile sensing elicited by microstimulation of S1

[21]. These results are consistent with earlier observations by

Romo and coworkers who demonstrated the possibility to induce

tactile sensation analogous to finger touch in monkeys [39]. Based

on the available evidences, we expect the electrical stimuli

generated by our interface to be adequate to induce somatosensory

perception in the alert animal. Since we are stimulating in the

barrel cortex, we predict – after Venkatraman and Carmena [38]

– that the stimuli would induce perceptions analogous to whisking

an object. However, in a brain-machine interface the ultimate goal

would be to produce sensations corresponding to the state of an

artificial device, such as a food feeder, whose structure may or may

not resemble that of a biological limb. Understanding how the

somatosensory system may adapt the perceptual correlate of

electrical stimuli is a future research goal, beyond the scope and

reach of the present study. Here, we focused on the production of

automatic responses in the form of preprogrammed force fields, in

the perspective that these responses may be both accessible and

modifiable by volitional commands. Studies of current interfaces

provide ample evidence demonstrating the ability of the mamma-

lian brain to modulate the activities of populations of cortical

neurons in different brain areas [27–29,40,41]. To the extent that

this circuitry can be accessed and purposefully modulated by

voluntary neural commands, the dNI will offer its user with the

possibility to achieve motor goals in a stable manner and without

the need for constant on-line supervision. At this time, however,

the possibility that the force field produced by the interface may be

accessible to volitional control remains to be demonstrated by

additional experiments with alert animals. In particular, it will be

critical establishing what field parameters may be modified by

volitional inputs converging upon the neural structures that

determine the output of the interface. We need to stress that the

particular case of a convergent field is not the only that can be

implemented and that has functional relevance. For example, a

force field can be programmed to have rotational structure so as to

induce cyclical motions of the controlled objects. Parallel pattern

of forces, on the other hand, may approximate the control of a

contact force. The simple case of the viscoelastic force field in our

task provides the mathematical basis for generating stable

trajectories – i.e. trajectories that converge to a nominal path in

exponential time if displaced by an unexpected perturbation. In

addition to expanding the behavioral repertoire of NIs, the

bidirectional interface establishes a new venue for investigating the

mechanisms of neural plasticity through a controlled exchange

between cortical structures and a virtually unlimited repertoire of

dynamical systems implemented either in hardware or by

computer simulation.

Methods

Ethics statement
This study was carried out in strict accordance with the Italian

law regarding the care and use of experimental animals (DL116/

92) and approved by the institutional review board of the

University of Ferrara and by the Italian Ministry of Health (73/

2008-B). For all experimental procedures, rats were anaesthetized
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with a mixture of Zoletil (30 mg/kg) and Xylazine (5 mg/kg)

delivered intraperitoneally and all efforts were made to minimize

suffering.

Neurophysiological procedures and experimental set-up
The experiments were carried out on 13 male Long-Evans rats,

weighting 350–400 g and for the entire duration of the experi-

ment, anesthesia was maintained with supplementary doses of

anesthetic (intra-peritoneal or intra-muscular) such that a long-

latency, sluggish hind limb withdrawal was sometimes achieved

only with severe pinching of the hind foot. The anesthetized

animal was placed in a stereotaxic apparatus (Myneurolab). A

craniotomy was made, using a micro drill, over the primary

somatosensory cortex (S1) and primary motor cortex (M1) whisker

representations of the same hemisphere. To place the stimulation

array, a small craniotomy (262 mm) was made in the parietal

bone to expose the barrel cortex, which was identified according to

vascular landmarks and stereotaxic coordinates [42–44]. The dura

mater was not removed because the electrodes were sufficiently

rigid to pass through it. The placement of the electrodes was tested

and confirmed by recording the neuronal responses to manual

whisker stimulation. The arrays were lowered perpendicular

through the cortical surface using a hydraulic microdrive (2650,

Kopf) at depth between 500 and 900 mm from the pia (granular

layer) [45–47].

To insert the recording array, the frontal cortex was uncovered

at 0.5 mm rostral and 0.5 mm lateral to bregma, and the vibrissal

representation was exposed, at coordinates consistent with

previous maps of the M1 whisker representations [12,43,48–50].

In preliminary experiments, we conducted intracortical micro-

stimulation (monophasic cathodal pulses, 30 ms train duration at

300 Hz, 200 ms pulse duration with a minimum interval of 2.5 s)

to evoke whisker twitches, at high threshold intensities, between

1.5–1.8 mm below the cortical surface. This depth was found to

correspond to the layer V of granular cortex. The microwire array

was lowered perpendicularly into the cortex to layer V at sites

ranging from 1.0 to 2.5 mm lateral and 1.0 to 3.0 mm rostral to

bregma. Also in this case the dura was not removed and was kept

moist with a 0.9% saline solution. The effectiveness of the

placement of stimulation and recording arrays was verified by

computing peri-stimulus time histograms of neural responses to the

different stimulation patterns (see Figure 6A–D for an example).

For both recording and stimulation procedure we used 16

polyimide-insulated tungsten electrodes microwire arrays (50 mm

wire diameter, Tucker-Davis Technologies), configured in two

rows of 8 electrodes each (250 mm electrode spacing and 375 mm

rows separation) and placed over the primary somatosensory

cortex (S1) and primary motor cortex (M1) whisker representations

of the same hemisphere. Placement of electrodes was later

confirmed by histological section.

The intracortical microstimulation (ICMS) consisted of trains of

10 biphasic pulses, each phase lasting 100 ms, delivered at 333 Hz

with amplitude of 150 mA. Each stimulation train was delivered

throughout two adjacent electrodes of the stimulation array using

a programmable 8 channel stimulus generator (Stg4008, Multi-

channel Systems) built with a stimulus isolation unit for each

output channel. Software-generated TTL triggers were used both

to start the stimulation pattern and to store the stimulus timing in

the recorded neural signals.

The recording microwire array was lowered perpendicularly

into the cortex using a hydraulic microdrive (2650, Kopf) and

extracellular neuronal discharges were recorded using a multi-

channel recording system (Map system, Plexon Inc.) with a

sampling frequency of 40 KHz per channel.

During the experimental sessions an on-line PCA-based sorting

procedure (illustrated in Figure 6C) was performed using

commercially available software (Rasputin, Plexon Inc.). Time

stamps of identified units were sent in real-time via local LAN to

custom-made software developed in Matlab (MathworksH) to

translate the input neural signal into output stimulation triggers

according to the behavior of the simulated controlled system.

We ensured that the neural responses used to guide the interface

did not contain a component which reflected an electrical

stimulation artifact rather than true neural response by the

following steps: (i) we used only responses collected after the

stimulation artifact had ended (i.e. the onset of neural response

activity in each calibration trial and test trial started after the

stimulation artifact ended) (ii) the templates of the on-line spike

sorting procedure were established without including data

collected during electrical stimulation (iii) we further verified by

visual inspection that spikes identified near the onset had the same

amplitude and shape of that identified far from the electrical

stimulation (Figure 6A–C).

Histology
At the end of electrophysiological session, DC of 5 mA for 10 s

was passed through electrodes placed both at the beginning and at

the end of the array, to mark its position. The current produced a

lesion that was easily seen in cytochrome oxidase-stained

histological sections. When the acute experimental phase was

completed, the animals were deeply anesthetized with Isoflurane

and transcardially perfused with 500 ml of 0.1 M-phosphate

buffered saline (PBS) with 0.9% NaCl at 37uC followed by a 1l

cold buffered solution of 2.0% paraformaldehyde, 1.25% glutar-

aldehyde and 2.0% sucrose (pH 7.4). The brains were removed

from their skulls, coronally transected at the level of bregma and

then postfixed overnight at 4uC. The caudal portion, including S1,

was saturated in 20% sucrose, then 30% sucrose until it sank.

Coronal sections of frozen brain (60 mm thick) were cut on a

sliding microtome (SM2000R, Leica) to determine the depth of

microelectrodes tip. The sections were processed for cytochrome

oxidase (CO) according to previous reports [51,52] to identify

layer IV. Sections were washed three times in a 0.1 M PB solution

and then incubated at 37uC in a cytochrome-C oxidase staining

solution containing 4% sucrose, 0.05% DAB, and 0.05%

cytochrome C (Sigma Laboratories), until barrels were clearly

delineated. Then sections were washed in PBS and mounted on

slides. Mounted sections were dehydrated in a series of alcohols,

defatted in xylene and coverslipped.

CO stained sections were observed under brightfield illumina-

tion with Olympus BX51 microscope (Olympus) interfaced with a

color video camera (CX-9000) and with a NeuroLucida system

(MicroBrightField) (Figure 6F). Using a 106 objective, live color

images of the histological material were displayed on a high-

resolution video monitor. The boundaries of the barrels were

drawn using the image on the screen and the depth of the

electrolytic lesions was measured by the Neurolucida software.

Simulations of the dynamic system interacting with
neural activity

In this implementation, the device interacting bidirectionally

with neural activity is a simulated point mass in a viscous medium.

Typical values for the mass (M) and viscosity (B) were 10 Kg and

15 NNs/m. A linear force field F~K:r results in the linear

differential equation

M:€rrzB _rrzK :r~0 ð14Þ

Shaping the Dynamics of a Neural Interface

PLoS Computational Biology | www.ploscompbiol.org 12 July 2012 | Volume 8 | Issue 7 | e1002578



with an isotropic stiffness (K) of 4 N/m, the ideal system driven by

the noiseless linear field was slightly over-damped (damping ratio

f~1:19). While the choice of these parameters is arbitrary, in a

practical implementation, the parameters of the viscoelastic field

(here, K and B) should be selected based on the desired time

constant of the payload’s motion. As the interface implements a

piecewise constant approximation of the linear field, F~ ~KK(r),
corrupted by random background activity, the stability properties

afforded by the desired continuous field can only be considered as

an optimal limit. This first realization of the interface has some

notable limitations. One is that the control law generates an output

force in response to a position input. In a more complete system,

the input should convey not only position, but state information,

that is position and velocity. Here, the derivative component of the

controller is a fixed property, expressed by the term B: _rr in the

dynamics equation. Another obvious simplification is in the choice

of a point mass (M:€rr) for controlled object. A mechanical arm is

generally characterized by a non-linear differential equation.

However, the second order linear ordinary differential equation

(Equation 14) is used in robotics to represent the error dynamics of

non-linear systems controlled by proportional-derivative (PD)

methods [53]:

M:€eezB: _eezK:e~0 ð15Þ

with e(t)~r{rD(t) (rD(t) is a desired trajectory). In our

framework, this PD control law can be reformulated as

M:€rrzB: _rrzK :(r{h(t))~0 ð16Þ

where h(t)~K{1(M:€rrD(t)zB: _rrD(t)zK :rD(t)) is a time varying

function to be supplied by the voluntary input to the interface. In

Figure 6. Recorded neural activities in M1 evoked by electrical stimulation in S1. At the beginning of each experimental session a series of
electrical stimulation patterns is delivered and a sorting procedure is performed on the raw neural signal to identify both the stimulation artifacts and
the single unit activities. Panels (A) and (B) show a portion of a raw signal close to a stimulation event. The sorting procedure is able of identifying the
stimulus artifacts (red lines) and the spike occurrences (green lines). Panel (C) shows the unit templates used by the sorting algorithm (left) and a
representation of the sorted data onto the first two principal components plane (right). (D) Post Stimulus Time Histograms (PSTH) of neural evoked
responses of a subset of three neurons selected from three experiments. The color code represents different stimulation patterns. (E) Scatter plot of
variance vs. mean of spike counts (computed in sliding 20 ms long post-stimulus windows) of all pooled data points across units and sessions. This
measure is a relatively standard measure of cortical response variability. The best-fit power law curve (s2~a:mb with a= 0.7 and b= 0.93) is plotted
with the best fit parameters. These data are at the most reliable end of the range of response variability reported in the cortical literature. (F) CO
stained section (AP = 23.3 mm from bregma) of the rat brain with microelectrode track. The black dotted line indicates the boundary of the barrel.
The perpendicular length from the tip of the electrodes (the center of the hole) to the cortical surface measured 730 mm.
doi:10.1371/journal.pcbi.1002578.g006
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this case, the dNI would provide stability to a desired movement in

a way analogous to the combined influence on limb movements of

muscle mechanics and feedback mechanisms of the spinal cord.

Therefore, while the form of Equation 14 is quite simple, it also

expresses a fundamental mathematical representation for control.

By tuning the sensory and motor interfaces to approximate a

predetermined force field, the dNI establishes an automatic

behavior. The neural connections between the stimulated and

the recorded populations determine the force to be generated at

each position in the field. However, the recorded activities are also

affected by inputs from other brain areas. In the alert brain, these

additional inputs provide a pathway for the volitional commands

to modulate the dynamics of the interface. To see this, suppose

that the output of the interface is the programmed force field, K :r
(where r indicates the radial distance from the origin of the plane

upon which the point mass moves) plus a force component, W(t)
generated by a volitional command. The net force is then

F~K:rzW(t) ð17Þ

This can be re-written as

F~K :(r{j(t)) ð18Þ

where

j(t)~K{1:W(t) ð19Þ

is a time-varying equilibrium point. Thus, the dNI architecture

provides a way to integrate voluntary commands with prepro-

grammed automatic responses so as to generate dynamically stable

movements. A computer simulation study of the relationship

between Information in neural activity, the mechanical parameters

of the dynamical system and the performance of the neural

interface is reported in [54].

Calculation of Mutual Information between expected
and actual force vectors

As explained in Results, we considered the Mutual Information

that the recorded neurons provide to guide the dynamic system.

The latter was evaluated as the Mutual Information I(Fexp; F )
between the force vector expected to be generated by the electrical

stimulation in a given trial (corresponding to the template force

vector established during the calibration trials in response to the

considered electrical stimulation) and the actual force vector F
obtained from the neural response using the algorithm described

in the above Section:

I(Fexp; F )~
X

F ,Fexp

P(Fexp)P(F DFexp)log2

P(F DFexp)

P(F )
ð20Þ

where P(Fexp) is the probability of presenting an electrical

stimulation that leads to an expected force Fexp, P(F DFexp) is the

probability of obtaining in a given trial a force vector F when

presenting an electrical stimulation that leads to an expected force

Fexp, and P(F ) is the probability of obtaining in a given trial a

force vector F unconditional to the type of electrical stimulation

applied. High (respectively low) values of I(Fexp; F ) indicate

instead a near-deterministic (respectively near-random) relation-

ship between the force provided by the neurons and the one

needed for guiding the dynamic system.

I(Fexp; F ) was computed from the data as follows. Since there

is a one-to-one correspondence between Fexp and the type of

electrical stimulation pattern, and since Mutual Information is

invariant to monotonic transformations or relabeling of the

variables, the patterns F were labeled with the same index s

(s = 1, …S) that indexes the electrical stimulation patterns. Then,

the conditional probabilities of F to each stimulation pattern s

were computed as frequency-of-occurrence histograms from the

trials to stimulus s. The values of the components Fx and Fy of

the force F were discretized into five equipopulated bins in order

to facilitate the sampling of the empirical probability histograms.

Then, the probability histograms were plugged into the above

equation for I(Fexp; F ) and its value was computed numerically.

It is well known that, because the empirical probabilities are

estimated from a limited number of trials, these empirically

obtained Information measures still suffer from an upward

systematic error (bias) due to limited sampling [55]. We corrected

for this bias as follows. First, we used a simple analytical

procedure [56] to estimate and subtract out the bias of each

Information quantity. We then applied the ‘‘shuffling procedure’’

described in [55–57], which greatly reduces the bias of

multidimensional Information estimates. We then checked for

residual bias by a ‘‘bootstrap procedure’’: stimuli and responses

were paired at random, and the Information for these random

pairings was computed. Because in this random case the

Information should be zero, the resulting value is an indication

of a residual error. In this study we found (data not shown) that

the bootstrap estimate of this residual error was very small and

much smaller than the Information values obtained for optimal

neural response parameters, indicating that our estimates of

I(Fexp; F ) were reliable.

Supporting Information

Video S1 The video clip describes the calibration procedure and

the operation of the dynamic neural interface.
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