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Abstract

The ecological environment of the Yellow River Delta is fragile, and the soil degradation in

the region is serious. Therefore it is important to discern the status of the soil degradation in

a timely manner for soil conservation and utilization. The study area of this study was Kenli

County in the Yellow River Delta of China. First, physical and chemical data of the soil were

obtained by field investigations and soil sample analyses, and the hyper-spectra of air-dried

soil samples were obtained via spectrometer. Then, the soil degradation index (SDI) was

constructed by the key indicators of soil degradation, including pH, SSC, OM, AN, AP, AK,

and soil texture. Next, according to a cluster analysis, soil degradation was divided into the

following three grades: light degradation, moderate degradation, and heavy degradation.

Moreover, the spectral characteristics of soil degradation were analyzed, and an estimation

model of SDI was established by multiple stepwise regression. The results showed that the

overall level of reflectance spectra increased with increased degree of soil degradation, that

both derivative transformation and waveband reorganization could enhance the spectral

information of soil degradation, and that the correlation between SDI and the spectral

parameter of (Rλ2+Rλ1)/(Rλ2-Rλ1) was the highest among all the spectral parameters stud-

ied. On this basis, the optimum estimation model of SDI was established with the correlation

coefficient of 0.811. This study fully embodies the potential of hyper-spectral technology in

the study of soil degradation and provides a technical reference for the rapid extraction of

information from soil degradation. Additionally, the study area is typical and representative,

and thus can indirectly reflect the soil degradation situation of the whole Yellow River Delta.

Introduction

Due to the large Chinese population and the increasingly smaller appropriation of per capita

land resources, natural resources have been used unreasonably for a long time. In particular,

unreasonable use of land resources has caused serious damage to regional ecological
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environments, consequently causing an increase of the severity of soil degradation [1, 2]. The

Yellow River Delta, located on the west coast of the Bohai Sea, is an important land resource

reserve in China. It has a fragile ecological environment and serious salinization degradation

under the impact of the dynamic systems of rivers, land, ocean, and other environmental fac-

tors [3–5]. Soil degradation restricts sustainable development of the economy and society; con-

sequently, it is a very urgent task to address the soil degradation status in a timely manner and

utilize and protect soil resources in the area rationally.

Spectroscopy technology can obtain surface information quickly and has many obvious

advantages in speed and cost. Many scholars around the world have used satellite-based spec-

tra to study soil degradation. For example, Cavalli et al. used Advanced Very High Resolution

Radiometer (AVHRR) data to evaluate soil erosion in the middle-eastern region of the state of

São Paulo, Brazil [6], and Wang et al. studied the problem of soil and water loss using Landsat

TM in the Loess Plateau, China [7]. AVHRR images from the NOAA meteorological satellite,

which are updated quickly and cover a large area, can often be used to monitor large-scale veg-

etation growth through the calculation of a vegetation index and thus can be used to infer the

degree of soil degradation indirectly [8–10]. Compared with AVHRR, which has a scan width

of 2800km, the coverage width of the Landsat satellite, with a scan width of 185 km, is smaller,

the spatial resolution is significantly improved, and data acquisition is convenient. TM and

ETM+ images are used widely in the study of middle-scale soil erosion, salinization and desert-

ification [11–13]. SPOT satellite data have advantages in spatial resolution and are often used

in soil degradation mapping, even though SPOT has fewer bands. However, the spectral width

of the multi-spectral data is generally greater than 100 nm, the bands are not continuous in the

spectrum, the number of bands is small, and it is difficult to cover the range of the entire visible

and infrared spectrum. In addition, the different degrees of soil degradation are difficult to

quantify accurately. However, with the expansion of soil research, high-resolution spectral

data have gradually revealed advantages. The spectra, with their narrow and high-resolution

bands, have great potential, especially in the quantitative study of soil properties [14, 15].

The hyperspectral curves of soils, which are acquired within the visible to near-infrared

spectral range, are almost consecutive, and their band widths are less than 10 nm. Thus, inver-

sion for higher accuracy of land details is possible. The electromagnetic radiation energies of

soil properties including soil organic matter, texture, carbonate content, and iron oxide con-

tent, are stronger, and the characteristics of spectroscopic diagnosis are obvious. Through

physical-chemical data analysis, after identifying sensitive bands or characteristics of spectro-

scopic diagnosis, quantitative inversion can be carried out directly. Therefore, there are many

studies on soil degradation related to organic matter deficiency, salinization and desertification

[16–18]. To realize precision agriculture, it is of great significance to monitor the three ele-

ments of nitrogen, phosphorus, and potassium quickly, as these elements are the three essential

nutrients of crops. Nevertheless, research has shown that it is difficult to estimate these three

elements directly by spectral feature analysis. DeTar et al. detected soil properties of bare fields

with airborne hyperspectral data, which was located on the western side of the San Joaquin

Valley of California and the soil was silty clay loam (slight to strong alkali), the results showed

that phosphorus acquisition was not satisfactory but that potassium acquisition was better.

Confalonieri et al. used near-infrared spectra to determine the properties of agricultural soils,

which lied in the Po valley near Lodi (Northern Italy) on sandy loam soil, the results showed

that nitrogen content could be determined accurately, but the determinations of potassium

and phosphorus contents were less successful. The validity of the method based on spectro-

scopic estimation of soil nitrogen, phosphorus and potassium remains controversial [19, 20],

which is why there are few studies on soil degradation caused by soil nutrient deficiency.

Hyper-spectral response and estimation model of soil degradation
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Soil degradation is a dynamic and complex process. Its causes are often complex, but the

main cause of soil degradation is the joint action of natural and social factors, such as erosion,

desertification, salinization, acidification, etc. It is dangerous for humans to exploit and utilize

agricultural resources blindly, such as by deforestation, overgrazing, unreasonable farming,

etc., and it is difficult to reflect the real situation of soil degradation when considering only one

reason for degradation. However, the soil spectrum is a comprehensive reflection of all soil

properties, so study of the spectral characteristics of soil degradation under the action of multi-

ple factors is more scientific [21]. Among previous studies, there have been many studies on

single types of soil degradation, such as soil pollution, erosion, salinization and organic matter

deficiency. Mathieu et al. studied soil erosion with SPOT-HRV images in central Chile [22].

Cannane et al. studied polluted soils by FT-IR spectral data in the Puducherry State of South

India [23]. Guo et al. studied soil salinization with Landsat5 TM and Landsat8 OLI images in

the Yellow River Delta [24]. Mirzaee et al. studied soil organic matter using Landsat7 ETM+ in

the Selin plain of Iran [25]. However, there have been relatively few comprehensive studies on

multiple indicators of soil degradation.

Most of the studies of hyper-spectral soil degradation in the Yellow River Deltafocus on soil

salinization, and which are partial to the study method of information extraction. Moreover,

there is little research on soil nutrient impoverishment, and study of the hyper-spectral

response of soil degradation remains insufficient [26–29]. On one hand, the research methods

are immature, and the results are still objectionable. On the other hand, the spectral data of

field soil samples, which are still limited in their application, are ineffective and must be pro-

cessed indoors. In addition, to present, many theoretical problems and process mechanisms of

soil degradation remain unclear, and there are no recognized or unified soil degradation indi-

cators. Therefore, it is of great academic value to carry out spectral estimation of soil degrada-

tion and the establishment of a degradation indicators system that can provide a scientific

basis for the protection of the soil environment and the rational planning and utilization of

land resources in the Yellow River Delta region.

In this study, a soil degradation index (SDI) was constructed according to several key indi-

cators of soil degradation. The spectral characteristics of soil degradation under the action of

multiple factors were analyzed through the hyperspectral data collected by ASD FieldSpec4,

and estimation models of SDI were constructed. The purpose of the study was to investigate

the hyper-spectral response and quantitative estimation of soil degradation in typical areas of

the Yellow River Delta, which could provide a basis for the rational formulation of agricultural

policies in the Yellow River Delta and could have important practical significance for improv-

ing soil quality in the delta.

Materials and methods

Study area

This study was performed in Kenli County (37˚240-38˚100 N, 118˚150-119˚190 E) in the Yellow

River Delta of China, which belongs to Dongying City, Shandong Province. As the major

source of freshwater and groundwater recharge, the Yellow River flows from the southwest of

Kenli County to the northeast into the Bohai Sea. There are high water tables and high degrees

of groundwater mineralization. The regional groundwater depths of 44.1% of the county area

are from 1–2 m, and those of 7% the county area are less 1 m. The average degree of ground-

water mineralization is 24.6 g/l, and the highest value is up to 167.5 g/l [30]. The main land-

forms include coastal lowland, gentle slope, and low-lying land, among others. The main soil

type is saline soil derived from alluvial deposits of the Yellow River, which has a light loam soil

texture and nutrient deficiencies. Soil degradation in the region manifests mainly as

Hyper-spectral response and estimation model of soil degradation
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salinization, alkalization, and diminishing fertility, which cause negative effects to the local

agricultural production [31–33]. The local crops include mainly winter wheat (Triticum aesti-

vuml), corn (Zea mays), paddy (Oryza sativa), and cotton (Gossypium), and most of the natu-

ral vegetation consists of salt-tolerant herbaceous plants and shrubs, such as reed (Phragmites

australis), cogongrass (Imperata cylindrica), seepweed (Suaeda glauca), and salt cedar

(Tamarix chinensis).

Soil sampling and laboratory analyses

Soil samples were collected in the study area from April 23 to 25, 2015. Fifty-nine long-term,

fixed-point observation points were distributed evenly in Kenli County, except for the coastal

intertidal zone, as shown in Fig 1, and we added a number of samples at some observation

points with more types of vegetation on the surface. Eventually, we obtained 71 soil samples

from the 59 observation points. Each soil sample had a mass of approximately 1 kg. The sam-

ples were collected from the 0 to 20 cm interval of surface soil and then placed into a sealed

bag. The specific information of the soil samples, such as sample number, geographical coordi-

nates, land use types, vegetation cover types, vegetation growth, soil types, and texture, was

recorded.

Mixed soil samples from multiple points were brought back to the laboratory, where they

were dried, ground and sieved through 2 mm soil sieves. Laboratory tests were performed to

obtain the soil chemical properties, which included pH, soil salt content (SSC), organic matter

(OM), available nitrogen (AN), available phosphorus (AP) and available potassium (AK). PH

and SSC were measured using a WTW inoLab1Multi 3420 Set B multiparameter measuring

instrument [34]. OM was determined by the potassium dichromate method [35]. AN was

determined by the method of alkaline hydrolysis diffusion [36]. AP was estimated by sodium

bicarbonate extraction method [37]. AK was extracted using 1 mol/L ammonium acetate

(pH = 7.0) and determined by the ammonium acetate method [38].

Soil degradation index

Indicators for soil degradation evaluation. Many factors affect soil degradation, and

there is no uniform standard at present to evaluate the degree of soil degradation. Soil degrada-

tion in Kenli County is mainly manifest as salinization, alkalization, and declining fertility, so

pH, SSC, OM, AN, AP, AK, and soil texture were used as evaluation indicators of soil degrada-

tion in this study. The value of pH was used to illustrate the soil alkalization, SSC was used to

illustrate the soil salinization, OM and available nutrients were used to illustrate the level of

soil fertility, and soil texture was used to illustrate the soil physical properties. According to the

experiences of experts, soil texture has been transformed from a qualitative description to a

quantitative value, and the quantitative values of medium loam, light loam, heavy loam, clay

loam, and sandy loam are 100, 95, 90, 85 and 75, respectively [39]. Table 1 presents the statisti-

cal characteristics of the evaluation indicators. The SDI values of the sample points were spa-

tially interpolated, graded, and colored according to SDI grading standards, and the

interpolation map of the soil degradation based on the field data was generated using the

inverse distance weighted interpolation method in ArcGIS, as shown in Fig 2.

Data standardization. When the value of soil pH is approximately seven, the soil salt con-

tent is relatively low, and the contents of OM and available nutrients are relatively high, the

quantitative value of soil texture is relatively high. In this situation, soil degradation is relatively

mild and soil quality is better. The trends and dimensions of the evaluation indicators differ,

so each indicator needs to be treated by data normalization to achieve the same dimensionless

trend.

Hyper-spectral response and estimation model of soil degradation
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By combining the classification standards of the Second National Survey of Soil Nutrients

in China [40], the Chinese Classification Standards of Soil Salinization[41], and the statistical

characteristics of the evaluation indicators, the reference soil was set as follows: 6.5� pH�

7.5, SSC� 1.0 g/kg, OM� 20 g/kg, AN� 90 mg/kg, AP� 40 mg/kg, AK� 200 mg/kg, and

soil texture = 100. Then, the values of the evaluation indicators were standardized by using the

distance standardization method. Thus, if the value of an evaluation indicator was farther

from the standard soil, the standardized value was greater.

Fig 1. Distribution map of the sampling points.

https://doi.org/10.1371/journal.pone.0227594.g001

Table 1. Statistical characteristics of evaluation indicators.

Range Average Standard deviation

pH 7.13–8.34 7.78 0.29

SSC (g/kg) 0.11–26.11 5.32 5.76

OM (g/kg) 3.14–30.87 12.78 6.12

AN (mg/kg) 18.13–90 49.09 18.51

AP (mg/kg) 0.31–59.6 17.69 15.16

AK (mg/kg) 76.25–481 212.12 100.41

Soil texture 75–100 91.59 8.14

Note: SSC: soil salt content; OM: organic matter; AN: available nitrogen; AP: available phosphorous; AK: available

potassium.

https://doi.org/10.1371/journal.pone.0227594.t001
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Soil degradation index. The entropy weight method has been used to determine the

weight of evaluation indicators in many studies of soil quality due to its characteristic of being

able to distinguish each evaluation indicator clearly. It can be used easily and obtains objective

results [42, 43]. The weights of the evaluation indicators were determined by the entropy

weight method in this study, and the SDI was calculated using the following equation:

SDI ¼
X

Fi �Wi ð1Þ

where F is the standardized value of each evaluation indicator i, and W is the weighting factor

of each evaluation indicator i. As SDI increases, the seriousness of soil degradation increases.

Spectral measurements and processing

Spectral measurements and preprocessing. The hyperspectra of the soil samples were

acquired by a FieldSpec4 spectrometer (Analytical Spectral Devices, Inc., Boulder, CO, USA)

with a probe-viewing angle of 25˚. The wavelength range of this spectrometer is 350–2500 nm,

in which the wavelength range of 350–1000 nm has a sampling interval of 1.4 nm and a spec-

tral resolution of 3 nm and the wavelength range of 1000–2500 nm has a sampling interval of 2

nm and spectral resolution of 8 nm. The spectrometer has a resampling interval of 1 nm and a

total of 2151 output wavelengths.

The hyper-spectra were collected from air-dried soil samples under the conditions of cloud-

less, stable natural light. The measurement was conducted from 10:00 to 14:00 LST, and the

Fig 2. Interpolation map of soil degradation.

https://doi.org/10.1371/journal.pone.0227594.g002
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spectrometer performed a white reflectance standard every 10 min during measurement. Each

air-dried soil sample was placed in a plastic sample container (2 cm in depth; 10 cm in diame-

ter), the soil surface was flattened slightly, and then the soil was placed 15 cm below the probe.

To reduce the influence of the direction of the probe on the spectra, each soil sample was col-

lected 4 times and measured once every 90˚. Each measurement had five spectral curves, so

each soil sample resulted in 20 original spectral curves. Then, any abnormal curve from the 20

original reflectance spectra was removed, the arithmetic average of the normal curves was cal-

culated, and the nine-point moving average method was used to reduce the noise of the aver-

age curves. Thus, the reflectance spectra of the soil sample was eventually obtained.

Screening sensitive wavebands and constructing spectral parameters. The first deriva-

tive of the spectra can remove the effect of background noise and rapidly locate the inflection

point of the reflectance spectra, so the spectral information can be enhanced by a first deriva-

tive transformation [44]. Therefore, in this study, the reflectance spectra were converted to the

first derivative. The reflectance spectra and first derivatives of the spectra were used to analyze

the correlation with SDI, and the peaks and troughs of the correlation coefficient curves were

regarded as the positions of sensitive wavebands.

Specific spectral parameters can eliminate the influence of background noise, enlarge the

difference between wavebands, and improve the precision of the inversion model. According

to the spectral characteristics of the different levels of soil degradation, several forms of wave-

band recombinations were designed by binary operations such as addition, subtraction, multi-

plication and division. Then, spectral parameters were produced by substituting sensitive

wavebands into those waveband recombinations. The sensitive bands, which have larger corre-

lations with SDI, will be used to build models.

Model development for the estimation

In this study, the reflectance spectra, first derivatives of the spectra, and spectral parameters

were independent variables, and SDI was the dependent variable. The estimation models of

SDI were established by using a stepwise multiple linear regression method based on various

independent variables in IBM SPSS Statistics 19.0 software (IBM, Inc., Armonk, NY, USA).

Approximately 75% (total of 53) of the soil samples was randomly selected from each degra-

dation level and used to establish the model. The remaining soil samples (total of 18) were

used to evaluate the model accuracy. The availability of the model was tested by the signifi-

cance test (sig.) value of the independent variable, and the independent variable made a signifi-

cant contribution to the dependent variable when the sig. value was less than 0.05. Only when

the sig. values of the independent variables in the model were less than 0.05 was the model

qualified. Each stepwise multiple linear regression process produced many fitting equations,

so the equation with the largest adjustment coefficient (adjusted R2) was chosen as the final

result. The goodness of fit of the models was measured by the coefficient of determination

(R2), the root mean square error (RMSE), and the ratio of performance to deviation (RPD).

Higher values of R2 and RPD and lower value of RMSE indicate better model fit. When RPD

was higher than 2, the model had high reliability and good performance; when RPD was higher

than 1.4 but lower than 2, the prediction of the model was good but the model required

improvement; when RPD was lower than 1.4, the model was not reliable and was unable to

predict the samples[45,46].

Hyper-spectral response and estimation model of soil degradation
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Results and discussion

Analysis of soil degradation evaluation

The entropy weight method was adopted to determine the weights of the index. Supposing that

there are k evaluation indexes and that each index has n values representing n soil samples, Yij

represents the ith value of the jth evaluation index, R = (Yij)n×k (i = 1,2,. . .n; j = 1,2,. . .k) is the

normalized matrix after dimensionless treatment, Pij represents the proportion of Yij to the sum

of all the index values, Ej represents the information entropy of the jth index, and Wj represents

the weight of the index. The weights of the index are calculated as follows.

1. Data standardization is carried out for each index, and a standardization matrix is

obtained.

R ¼ ðYijÞn�k ð2Þ

2. The information entropy of indicators is determined by formula (3).

Ej ¼ �

Pn
i¼1

PijLnPij

LnðnÞ
ð3Þ

wherein

Pij ¼
Yij

Pn
i¼1

Yij

and if Pij ¼ 0, limPij!0 Pij LnPij ¼ 0.

Table 2. Weights of evaluation indicators.

pH SSC OM AN AP AK Soil texture

0.1446 0.1874 0.1412 0.1407 0.1399 0.1370 0.1092

Note: SSC: soil salt content; OM: organic matter; AN: available nitrogen; AP: available phosphorous; AK: available potassium.

https://doi.org/10.1371/journal.pone.0227594.t002

Table 3. Land use types of the sample points with different soil degradation grades.

Low degradation Moderate degradation High degradation

Vegetable field 2

Wheat field 14 7

Cotton field 8 14

Paddy 1 5

Terek bostan 1 2

Wasteland Cogongrass 2 2

Reed 3

Seepweed 2 2

Bare land 6

https://doi.org/10.1371/journal.pone.0227594.t003
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3. The weight of the jth index is determined as follows.

Wj ¼
1 � Ej

K �
Pk

j¼1
Ej

ðj¼1; 2; . . . kÞ;
Xk

j¼1
Wj ¼ 1:

The entropy weighting method obtained the weight value of each index: pH = 0.1446,

SSC = 0.1874, OM = 0.1412, AN = 0.1407, AP = 0.1399, AK = 0.1370 and soil texture = 0.1092,

as shown in Table 2. The weights of SSC was relatively large, followed by PH, which iss consis-

tent with the fact that the soil in Kenli County is affected by salinity and alkalinity.

The SDI of the soil samples ranged from 0.2366 to 0.6590. According to the case of local soil

degradation and the result of a cluster analysis and based on previous studies [47, 48], soil deg-

radation was divided into the following three grades: SDI < 0.40, light degradation;

0.40< SDI< 0.54, moderate degradation; and 0.54< SDI, heavy degradation. As a result,

there were 28 (approximately 39% of the total) soil samples with light degradation, 35 (approx-

imately 50% of the total) with moderate degradation, and 8 (approximately 11% of the total)

with heavy degradation. Table 3 shows the land use types of the sample points with different

soil degradation grades.

Obviously, soil samples that showed light degradation came mostly from wheat and cotton

fields, and soil samples that showed moderate degradation came mostly from cotton fields,

wheat fields and paddies. Soil samples that showed heavy degradation were collected from

wasteland, which included only the bare land and seepweed land cover types. The field investi-

gation showed that most wheat fields were lightly degraded. The above analysis illustrates that

salinization is the main factor of soil degradation in Kenli County and that the vegetation

cover types of the soil degradation grades from severe to mild were as follows: seepweed, reed,

cogongrass, rice and cotton, and wheat [49].

Spectral characteristics of soil degradation

After the spectral measurements and processing, 1835 wavebands were retained, including

354–1345, 1421–1791, and 1975–2446 nm. Fig 3A shows the average curves of the reflectance

spectra in different soil degradation grades. The average SDI values of heavy degradation,

moderate degradation, and light degradation were 0.5738, 0.4562, and 0.3528, respectively.

The average difference of SDI of adjacent degradation grades was approximately 0.1. Fig 3B

lists the reflectance spectra of the soil SDI interval of approximately 0.1 for further study of the

spectral characteristics of the degraded soils.

From the aspect of waveforms, all waveforms were similar and had clear common features,

as shown in Fig 3. In the range of 354–600 nm, the curves were steep, and the spectral reflec-

tance increased rapidly with increase in wavelength. In the range of 601–1791 nm, the spectral

curves rose steadily, and spectral reflectance increased with increase of wavelength. When the

wavelength was greater than 1791 nm, spectral curves clearly fluctuated, and the positions of

peaks and troughs were relatively stable. Spectral reflectance decreased as wavelength

increased in several small ranges (2140–2210, 2275–2340, and 2385–2446 nm).

From the aspect of the differences in reflectance, the soil of a superior degradation grade

had higher spectral reflectance than the soil of an inferior degradation grade. The soil reflec-

tance spectra in different degradation grades were not very different when the wavelength was

less than 600 nm, but as the wavelength increased, the difference began to increase. To explore

the relationship between SDI and soil reflectance further, the average curves of the reflectance

spectra in different soil degradation grades were operated on using subtraction and division.

Hyper-spectral response and estimation model of soil degradation

PLOS ONE | https://doi.org/10.1371/journal.pone.0227594 January 8, 2020 9 / 17

https://doi.org/10.1371/journal.pone.0227594


Fig 4A shows the difference of the average curves, which indicates the absolute quantity of

reflectance between every two soil degradation grades. Fig 4B shows the ratio of the average

curves, which indicates the relative quantity of reflectance between two soil degradation

grades.

The shapes among the difference curves and reflectance spectra were similar. At the posi-

tion of maximum spectral reflectance (2140 nm), the difference of spectral reflectance was also

largest. Therefore, the spectral information of soil degradation is more prominent in wave-

bands of larger spectral reflectance. The SDI values of heavy degradation and moderate degra-

dation differed by 0.1023, and the SDI values of moderate degradation and light degradation

differed by 0.0755. The differences of SDI between ‘heavy degradation and moderate degrada-

tion’ and ‘moderate degradation and light degradation’ (Fig 4A) were close, but the difference

Fig 3. Average reflectance spectra of the different soil degradation grades (a) and reflectance spectra of soils with an SDI interval of approximately 0.1 (b).

https://doi.org/10.1371/journal.pone.0227594.g003

Fig 4. Difference curves (a) and ratio curves (b). Difference curves (a) show the difference of the average curves, which indicated the absolute quantity of

reflectance between every two soil degradation grades. Ratio curves (b) show the ratio of average curves, which indicated the relative quantity of reflectance

between two soil degradation grades.

https://doi.org/10.1371/journal.pone.0227594.g004
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between the spectral reflectances was larger. This result means that the spectral characteristics

of soil degradation are more obvious when the soil degradation is more serious.

In the 370–450 nm range, the ratio curves were steepest and the ratio changed most rapidly.

Peaks, which were more affected by soil degradation than other wavebands, appeared within

500–650 nm. Peaks of ratio curves of ‘heavy degradation/light degradation’, ‘heavy degrada-

tion/moderate degradation’ and ‘moderate degradation/light degradation’ (Fig 4B) were

located near 563, 595–600, and 540 nm, respectively. When the wavelength was less than 1975

nm, ‘heavy degradation/moderate degradation’ was higher than ‘moderate degradation/light

degradation’, showing that there was a more clear impact on the reflectance spectra when the

soil degradation was more serious, which is the same as in the previous analysis. When the

wavelength was greater than 1975 nm, the ratio curves of ‘heavy degradation/moderate degra-

dation’ and ‘moderate degradation/light degradation’ were close to each other, so the rate of

change of spectral reflectance was similar between adjacent degradation grades; thus, there

was a stable linear relationship between SDI and reflectance spectra in this range.

Clearly, the intervals of 370–450 nm, 500–650 nm and the wavebands of large spectral

reflectance in the near-infrared range, especially the near long wave infrared range of wave-

lengths greater than 1975 nm, showed a good response to soil degradation, but these wave-

bands have a large number and are over a wide range; thus, further screening of sensitive

wavebands of soil degradation is needed.

Sensitive wavebands

Fig 5 shows the correlation curve between reflectance spectra and SDI and the correlation

between the first derivative of spectra and SDI. The correlation coefficient between the reflec-

tance spectra and SDI was positive, and the value ranged from 0.45 to 0.60. The correlation

coefficient was larger in the range of 560–600 nm, with a maximum value of 0.585 at 582 nm.

This curve was relatively smooth, and it only had a slight sag at 934–936 nm. The correlation

coefficient between the first derivative of spectra and SDI ranged from -0.56 to 0.65, and the

correlation coefficient was larger in the ranges of 356–450 and 520–523 nm; it had a maximum

value of 0.638 at 386 nm. This curve fluctuated strongly, and the wavebands of remarkable

peaks and troughs occurred at 356, 371, 375, 563, 581, 583, 599, 656, 761, 773, 830, 955, 958,

1003, 1083, 1199, 1244, 1322, 1459, 1461, 1585, 1642, 1721, 1726, 1753, 2011, 2042, 1995–1997

2070, 2126, 2134, 2140, 2256, 2290, 2295, 2297, 2298, 2332, 2320, 2338, 2352, 2364, 2377, 2398,

2403, 2427, and 2441 nm.

To maximize the sensitive information of soil degradation, most of the relatively sensitive

wavebands were preserved in the study, thus, the sensitive wavebands of soil degradation were

determined to be 356, 371, 375, 386, 563, 581, 582, 583, 599, 656, 761, 773, 830, 934–936, 955,

958, 1003, 1083, 1199, 1244, 1322, 1459, 1461, 1585, 1642, 1721, 1726 1753, 1995–1997, 2011,

2042, 2070, 2126, 2134, 2140, 2256, 2290, 2295, 2297, 2298, 2332, 2320, 2338, 2352, 2364, 2377,

2398, 2403, 2427, and 2441 nm (a total of 54 wavebands).

Spectral parameters

Based on the above analyses of the spectral characteristics of soil degradation, it can be seen

that it is easier to highlight the spectral information of soil degradation using the bands that

have high spectral reflectance and greater differences among them, which are conducive to the

enhancement and extraction of soil degradation information. Therefore, the following five

types of waveband recombination were designed: Rλ2-Rλ1, Rλ2+Rλ1, Rλ2/Rλ1, (Rλ2-Rλ1)/

(Rλ2+Rλ1), and (Rλ2+Rλ1)/(Rλ2-Rλ1). Among these, λ1 and λ2 (λ2> λ1) are sensitive wave-

bands, and R is the spectral reflectance of sensitive wavebands. Spectral parameters were
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produced by substituting the 54 sensitive wavebands into these waveband recombinations.

Finally, 1431 spectral parameters were obtained in each waveband recombination.

The correlation between spectral parameters and SDI was analyzed, and the first 100 spec-

tral parameters with larger correlation coefficients in each waveband recombination were used

to build the estimation model. As shown in Table 4, the spectral parameters of (Rλ2+Rλ1)/(Rλ2-

Rλ1) correlated best with SDI.

The maximum correlation coefficients of SDI with reflectance spectra, the first derivative of

spectra, and the spectral parameters were 0.585, 0.638, and 0.664, respectively. Therefore, the

first derivative transformation and waveband reorganization was able to enhance soil informa-

tion to some extent and improve the correlation with SDI.

Fig 5. Correlation curves. The figure shows the correlation curve between reflectance spectra and SDI, and the correlation between the first derivative of

spectra and SDI.

https://doi.org/10.1371/journal.pone.0227594.g005

Table 4. First 100 spectral parameters with a large correlation with SDI.

Type of spectral parameter Maximum Minimum Average

Rλ2-Rλ1 0.586 0.524 0.542

Rλ2+Rλ1 0.588 0.584 0.586

Rλ2/Rλ1 0.626 0.566 0.579

(Rλ2-Rλ1)/(Rλ2+Rλ1) 0.578 0.515 0.539

(Rλ2+Rλ1)/(Rλ2-Rλ1) 0.664 0.613 0.622

https://doi.org/10.1371/journal.pone.0227594.t004
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Estimation models for SDI

With the reflectance spectra, the first derivative of the spectra, and the spectral parameters as

the independent variables, estimation models of SDI were established by stepwise multiple lin-

ear regression. The fitting equation with the largest adjusted R2 was chosen as the estimation

model in each analysis of the stepwise multiple linear regression. The models obtained are

shown in Table 5. The sig. values of all independent variables in Table 4 were less than 0.005,

which passed the significance test, and thus these models were considered qualified models.

The models of I, III, IV, V and VI had smaller R2 and larger RMSE than the other models,

and RPD was only slightly larger than 1.4; thus, these models can roughly estimate SDI but are

not sufficiently practical. The evaluation indices of models II and VII were better. These had

more rational R2 and RMSE, and the RPD was greater than 2; thus, these models demonstrated

good prediction ability for SDI. After a comprehensive comparison of R2, RMSE, and RPD,

the modeling effects in the order from priority to inferiority were VII> II > V> IV > I> III

> VI.

From the aspect of independent variables, modeling using the first derivative of spectra was

better than modeling using reflectance spectra. The models that used different types of wave-

band reconstruction showed great differences in goodness of fit. Modeling using (Rλ2+Rλ1)/

(Rλ2-Rλ1) was better than that using reflectance spectra or using the first derivative of spectra,

modeling using Rλ2+Rλ1 or Rλ2-Rλ1 was better than that using reflectance spectra but worse

than using the first derivative of spectra, and the goodness of fit of modeling using Rλ2/Rλ1 or

(Rλ2-Rλ1)/(Rλ2+Rλ1) was worse than the others. From the aspect of the number of independent

variables, model III had only two independent variables, models II and VII had seven indepen-

dent variables, and the others had three independent variables. Therefore, the spectral infor-

mation of soil degradation can clearly be enhanced by first derivative transformation and the

operation of the sum of two wavebands divided by their difference. The addition operation

and subtraction operation between two wavebands can enhance the information of soil degra-

dation to some extent, but it was not significant enough. The division operation and the opera-

tion of the difference of two wavebands divided by their sum were not conducive to expressing

the spectral information of soil degradation.

From the perspective of the wavebands involved, all estimation models in Table 5 involve

38 wavebands, including 8 visible bands, 8 near-infrared short wavebands, and 24 near-infra-

red long wavebands. Independent variables from models II and VII were composed mainly of

near-infrared long wavebands. Thus, the sensitive wavebands of soil degradation were concen-

trated in the near-infrared long wave region.

For the estimation model of SDI constructed by (Rλ2+Rλ1)/(Rλ2-Rλ1), the R2 was 0.811, the

RMSE was 0.039, and the RPD was 2.369. They were the optimal values in all models, so the

optimum estimation model of SDI in this study was demonstrated to be Y = 0.684–0.306

(R581+R356)/(R581-R356)+0.065(R934+R599)/(R934-R599)+7.383×10−6(R2295+R1726)/(R2295-R1726)

-5.627×10−5(R2403+R2011)/(R2403-R2011)-5.661×10−5(R2352+R1459)/(R2352-R1459)-3.905×10−6

(R2290+R1996)/(R2290-R1996)+2.561×10−5(R2403+R1721)/(R2403-R1721). The model consists of

seven independent variables, which are composed of 14 wavebands, among which 10 wave-

bands are near-infrared long wavebands. The spectral parameters of (Rλ2+Rλ1)/(Rλ2-Rλ1)

enlarge the difference between two wavebands using the division operation of their sum divided

by their difference; thus, the information of soil degradation is enhanced and the established

estimation model of SDI is efficient and stable.

The results show that the hyperspectral data can be applied to the estimation of soil degra-

dation, but this research is not extensive and the results are not universal. Additionally, the

applicability of the spectral data is restricted to the coastal areas of the Yellow River Delta.
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Compared with previous studies, which focused mainly on one type of soil degradation, such

as land desertification, salinization, soil erosion, or a given soil nutrient, there are few studies

on comprehensive soil degradation. In addition, the data sources adopted by previous studies

focused primarily on Landsat or other multi-spectral images, and near-ground hyperspectral

data were used less frequently, so this study of hyper-spectral response and estimation of soil

degradation has a certain research value and significance. Moreover, the hyperspectral data

used in our study are from soil samples that were air-dried naturally indoors, and the effect is

poor with spectral data of field soil samples, which requires further study.

Conclusion

The SDI values of soil samples in the study area ranged from 0.2366 to 0.6590. Among these

samples, 39% showed light degradation, 50% showed moderate degradation, and the remain-

ing 11% showed heavy degradation. Salinization was the main factor in the soil degradation in

Kenli County, and the vegetation cover types of the soil degradation grades from heavy to light

were as follows: seepweed, reed, cogongrass, rice and cotton, and wheat, respectively.

The soil spectra of the different degradation grades were similar in shape, and as the grade

of soil degradation increased, the overall quality of the reflectance spectra increased. The spec-

tral information of soil degradation was more prominent in wavebands of larger spectral

reflectance. The sensitive wavebands of soil degradation were found to be mainly near-infrared

wavebands, and the first derivative transformation and waveband reorganization were able to

enhance soil information and improve the correlation with SDI. The correlation between

(Rλ2+Rλ1)/(Rλ2-Rλ1) and SDI was highest in all the types of spectral parameters, and the esti-

mation model of SDI constructed by (Rλ2+Rλ1)/(Rλ2-Rλ1) was optimum. The optimum estima-

tion model of SDI in this study was as follows:

Y ¼ 0:684 � 0:306ðR581 þ R356Þ=ðR581 � R356Þ þ 0:065ðR934 þ R599Þ=ðR934 � R599Þ þ 7:383

� 10� 6ðR2295 þ R1726Þ=ðR2295 � R1726Þ � 5:627� 10� 5ðR2403 þ R2011Þ=ðR2403 � R2011Þ

� 5:661� 10� 5ðR2352 þ R1459Þ=ðR2352 � R1459Þ � 3:905� 10� 6ðR2290 þ R1996Þ=ðR2290

� R1996Þ þ 2:561� 10� 5ðR2403 þ R1721Þ=ðR2403 � R1721Þ:

In this study, the spectral characteristics of coastal soil degradation were explored, and an

estimation model of SDI was constructed. These results provide a positive reference for the uti-

lization and management of land resources in the Yellow River Delta.
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Table 5. Estimation models of SDI.

Independent variable No. Number of independent variables Model accuracy Fitting accuracy
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Rλ2+Rλ1 V 3 0.563 0.543 0.056 1.626
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(Rλ2+Rλ1)/(Rλ2-Rλ1) VII 7 0.811 0.786 0.039 2.369
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