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Esophageal cancer is one of the fastest rising types of cancers in China. The Kazak nationality is the highest-risk group in
Xinjiang. In this work, an effective computer-aided diagnostic system is developed to assist physicians in interpreting
digital X-ray image features and improving the quality of diagnosis. The modules of the proposed system include image
preprocessing, feature extraction, feature selection, image classification, and performance evaluation. 300 original esophageal
X-ray images were resized to a region of interest and then enhanced by the median filter and histogram equalization
method. 37 features from textural, frequency, and complexity domains were extracted. Both sequential forward selection
and principal component analysis methods were employed to select the discriminative features for classification. Then,
support vector machine and K-nearest neighbors were applied to classify the esophageal cancer images with respect to
their specific types. The classification performance was evaluated in terms of the area under the receiver operating
characteristic curve, accuracy, precision, and recall, respectively. Experimental results show that the classification
performance of the proposed system outperforms the conventional visual inspection approaches in terms of diagnostic
quality and processing time. Therefore, the proposed computer-aided diagnostic system is promising for the diagnostics
of esophageal cancer.

1. Introduction

Esophageal cancer is the eighth most common malignancy
worldwide, with more than 480,000 new patients diagnosed
annually. According to the Surveillance, Epidemiology, and
End Result (SEER) statistics, the 5-year survival rate for
esophageal cancer based on stage at diagnosis (2001–2007)
is 17% overall: 37% for local disease; 18% for regional dis-
ease; and 3% for distant disease [1]. The World Health
Report 2004 ranked esophageal cancer as the highest cause
of cancer mortality in China. Among the 446,000 causes of
death caused by esophageal cancer worldwide, more than half
occurred in China, that is, 288 thousand (WHO, 2004) [2–4].

Xinjiang Uygur Autonomous Region is a high incidence area
of esophageal cancer. The mortality rate of esophageal cancer
for Kazak nationality is 155.9 out of 100,000, which is signifi-
cantly higher than the average mortality of 15.23 out of
100,000 in China [5]. Over 80% of esophageal cancer occurs
in developing countries, where nearly all cases are esopha-
geal squamous cell carcinoma (ESCC). A number of risk
factors for ESCC, including tobacco smoking, alcohol drink-
ing, dietary and micronutrient deficiencies, high temperature
of beverage and food consumption, and other miscellaneous
factors (such as fast eating habits and polycyclic aromatic
hydrocarbon exposure), have been identified over the past
few decades [6]. The incipient symptoms of esophageal
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cancer are too inconspicuous to be found. Most patients
are diagnosed late in the course of the disease, and at this
stage, it carries a bad prognosis. X-ray barium technology,
as a crucial tool for the detection of esophageal cancer, offers
the specialist physician high-quality visual information to
identify the disease types [7]. Classically, the X-ray images
are examined manually by physicians, and it is inevitability
difficult to avoid inconsistent interpretations by interob-
servers. In some cases, even for experienced radiologists, they
may misinterpret images of the esophageal cancer regions
and miss smaller lesions. Therefore, the primary preventive
strategies and control activities on esophageal cancer should
be enhanced in the future, which are potentially effective to
reduce the mortality of esophageal cancer and also essential
to save lives and resources. In this paper, a computer-aided
diagnostic system is developed to assist physicians in classify-
ing the esophageal cancer with specific disease types.

With the rapid development in computer technology,
CAD is currently widely used in the diagnosis or quantifica-
tion of various diseases [8–10]. Many studies have shown
that CAD has the potential to increase the sensitivity and
the specificity of diagnostic imaging [11, 12]. The merit of
CAD of image features lies in the objectivity and reproduc-
ibility of the measures of specific features. The conventional
paradigm envisions that the CAD output will be used by the
physician as a second opinion with the final diagnosis to be
made by the physician [13]. Qi et al. developed a computer-
aided diagnosis system to assist the detection of dysplasia
in Barrett’s esophagus. Experimental results showed that the
proposed CAD algorithms had the potential to quantify and
standardize the diagnosis of dysplasia and allowed high
throughput image evaluation for endoscopic optical coher-
ence tomography screening applications [14, 15]. Sommen
et al. presented a novel algorithm for automatic detection of
early cancerous tissue inHDendoscopic images.Experimental
results showed that of 38 lesions indicated independently by
the gastroenterologist, the system detected 36 of those lesions
with a recall of 0.95 and a precision of 0.75 [16]. Schoon et al.
proposed a CAD system to find the early stages of esophageal
cancer. The results showed that the proposed system
achieved a classification accuracy of 94.2% on normal and
tumorous tissue and reached an area under the curve of
0.986 [17]. Esophageal cancer CAD literature published to
data mostly focuses on endoscopic images. In addition to
our previous study, no other papers have been found in
the field of esophageal X-ray images to our best of knowledge.

The algorithms in the published CAD literature included
image preprocessing, feature extraction, and pattern classi-
fication. Histogram equalization algorithm is one of the
most widely used techniques for enhancing image contrast
for its simplicity and effectiveness. Shang et al. proposed a
Range Limited Peak-Separate Fuzzy Histogram Equalization
(RLPSFHE) for enhancing image contrast for its simplicity
and effectiveness. The experimental results show that the
RLPSFHE can achieve a better trade-off between mean
brightness preservation and contrast enhancement [18].
Zohair et al. introduced an ameliorated version of the
contrast-limited adaptive histogram equalization (CLAHE)
to provide a good brightness with decent contrast for CT

images, which provided acceptable results with no visible
artifacts and outperformed the comparable techniques [19].
The purpose of feature extraction is to extract the relevant
features from the region of interest as the input vectors
of the classifiers. Gu et al. proposed a new feature extraction
method called adaptive slow feature discriminant analysis
(ASFDA) in order to address the weaknesses of the tradi-
tional SFDA. Experimental results proved the superiority
of ASFDA among some state-of-the-art methods [20].
Mueen et al. extracted three levels of features global, local,
and pixel and combined them together in one big feature
vector that achieved a recognition rate of 89% [21].

The classification based on multiple image features has
the advantage of increasing accuracy via increasing the
amount of information used. However, making use of too
many image features derived from a limited training data
set increases the risk of overfitting, which will decrease
the robustness of the system when classifying data outside
of the training set [22]. Therefore, it is necessary to select
a limited number of image features to balance accurate and
robust classification. Gladis et al. applied principal compo-
nent analysis (PCA) with support vector machine (SVM) to
classify the brain MR images by type. The recognition perfor-
mance of the proposed technique was compared with three
other method systems. Experimental results showed the
PCA with SVM outperformed the three other methods in
terms of classification accuracy [45]. Li et al. utilized the
sequential forward selection algorithm (SFS) to figure out
the nonunique probe selection problem. The experimental
results demonstrate the proposed method outperformed the
other greedy algorithms [23]. Techniques such as artificial
intelligence and data mining techniques were widely used
in the field of medical imaging classification [24]. SVM
is a state-of-the-art pattern recognition technique grown
up from a statistical learning theory. Papadopoulos et al.
implemented artificial neural network (ANN) and a SVM
to characterize the microcalcification clusters in digitized
mammograms. The results indicated that the classification
performance of SVM is superior to the ANN [25]. Zhu
et al. employed the SVM to make a distinction within a
class of Src kinase inhibitors. The sequential forward selec-
tion and sequential backward selection methods were used
to remove redundant variables. The results showed that the
proposed method could be employed to structure activity
relationship modeling with much improved quality and pre-
dictability [37]. Katsuyoshi and Alberto detailed the K-
nearest neighbor method for the application in breast cancer
diagnosis. Experimental results showed that the classification
accuracy changes with the number of neighbors and also with
the percentage of data used for classification [26]. Chen et al.
applied the KNN to classify the lung sounds. Experimental
results indicated that the error in respiratory cycles
between measured and actual values was only 6.8%, illus-
trating the potential of the detector for home care applica-
tion [27]. Sharma and Khanna proposed a CAD system to
detect abnormalities or suspicious areas in breast X-ray
images and classify them as malignant and nonmaligant.
Experiments were performed with three texture feature
extraction techniques, including Zernike moments, gray-
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level co-occurrence matrix, and discrete cosine transform.
Experimental results showed that SVM with Zernike
moments attains the optimum performance [28]. Though
the literature published has shown the superiority on the rec-
ognition performance of the SVM and KNN, the impact of
various feature selection algorithms on classification perfor-
mance has not been fully explored.

This paper presents a computer-aided diagnostic system
to classify the medical X-ray images of Xinjiang Kazak
nationality esophageal by type. The proposed system consists
of (I) image preprocessing, (II) feature extraction, (III)
feature selection, and (IV) classification and performance
evaluation. Firstly, the original images are resized to a
region of interest and then enhanced by the median filter
and histogram equalization method. During the feature
extraction and selection step, the feature vectors of the
classifiers are selected by PCA and SFS among 37 features
in the textural, frequency, and complexity domains. The
employed classifiers, that is, SVM and KNN, are validated
using a 10-fold cross-validation technique that yields an
average estimation of classifier performance with 95% confi-
dence intervals. The performances of both classifiers are
investigated with and without prior PCA and SFS input fea-
ture vector selection. AUC values of the receiver operating
characteristic (ROC) curves, accuracy, precision, and recall,
are used to evaluate the classification performance.

2. Methods and Techniques

The proposed methodology is applied to 300 raw esophageal
X-ray images, of which 100 were classified by a pathologist as
normal images and 200 as abnormal images. The abnormal
cases were further divided in two categories: 100 fungating
type and 100 ulcerative type. These images, which included
221 males (mean age: 65) and 79 females (mean age: 68) with
an age range of 45–80 years, were collected from The First
Affiliated Hospital, Xinjiang Medical University of China.

The proposed algorithms were implemented in the Matlab
2013 platform. The flow chart of the system design is
depicted in Figure 1.

2.1. Image Preprocessing. Customarily, preprocessing is a
necessity whenever the data to be mined is noisy, inconsis-
tent, or incomplete. Preprocessing significantly improves
the effectiveness of data mining techniques [29]. The typical
size of the raw images is 1012×974, and almost 50% of the
whole image comprised the background with a lot of noise.
Moreover, these images are scanned at different illumination
conditions, so some images appeared too bright and some are
too dark. To circumvent the above-mentioned issue, the first
step toward noise removal is pruning the original images
with a cropping operation. The images are resized to a region
of interest of 140×240 pixels, which can guarantee that all
the regions of interest contain the lesion areas meanwhile
avoid the useless information. In addition, the median filter
is applied to the cropped images in order to further eliminate
the image noise. The second step is image enhancement, in
particular, the histogram equalization method, which can
increase the contrast range in an image by increasing the
dynamic range of gray levels, which is utilized to enhance
the image for diminishing the effects of over-brightness and
over-darkness in images. The preprocessed images are again
inspected by a pathologist to ensure that their quality was
sufficient for diagnosis. Figure 2 presents the preprocessing
results of the abnormal esophageal X-ray images, fungating
and ulcerative esophageal X-ray images.

2.2. Feature Extraction. The purpose of feature extraction in
this project is to convert a two-dimensional image into a fea-
ture vector, which can be further utilized as the input for the
mining phase of the classifier. The extracted features should
provide the characteristics of the input type to the classifier
by considering the description of the relevant properties of
the image into feature vectors. Accordingly, three kinds of
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Figure 1: Flow chart of the system design.
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features are extracted to describe the structure information of
texture, frequency, and complexity.

2.2.1. Texture Features. Texture contains important informa-
tion regarding underlying structural arrangement of the sur-
face of an image. Gray-level co-occurrence matrix (GLCM),
which describes patterns of gray-level repetition, is a well-
known texture extraction method originally introduced
by Haralick et al. [30]. The co-occurrence matrix is con-
structed by getting information about the orientation and
distance between the pixels. Assuming that f x,y is a two-
dimensional image with the size of M×N, the definition of
the co-occurrence matrix is as follows:

P i, j d,θ = # x1,y1 , x2,y2 ∈M
×N d,θ, f x1,y1 = i, f x2,y2 = j ,

1

where # denotes the number of the elements of the set.
d and θ are the distance and angle between x1,y1 and
x2,y2 , respectively.

Many texture features can be directly computed from
the gray-level co-occurrence matrix. Pourghassem et al.
extracted contrast, correlation, energy, and homogeneity
from GLCM [31].

Contrast = 〠
L−1

i=1
〠
L−1

j=1
i− j 2P i, j,d,θ ,

Correlation =
〠L−1

i=1〠
L−1
j=1 i ⋅ j ⋅P i, j,d,θ − μxμy

σxσy
,

Energy = 〠
L−1

i=1
〠
L−1

j=1
P i, j,d,θ 2,

Homogeneity = 〠
L−1

i=1
〠
L−1

j=1

p i, j,d,θ
1 + i− j

,

2

where μx,σx and μy,σy are mean and standard deviation
of pixel value in the row and column directions of the
GLCM, respectively. For this task, we calculate a gray-
level co-occurrence matrix for four different directions
θ ∈ {0°, 90°, 45°, and 135°} and the distance d = 1. As a
result, texture feature vector includes 16 elements.

2.2.2. Frequency Features. The discrete wavelet decomposi-
tion (DWT) has been widely used as a fast algorithm to
obtain the wavelet transform of X-ray medical images
[32, 33]. The DWT analyzes the images by decomposing it

Ulcerative type

(a) Raw image (b) Resized image (c) Noise-removed image (d) Intensity image

(a) Raw image (b) Resized image (c) Noise-removed image (d) Intensity image

Fungating type

Figure 2: Preprocessing results of the abnormal esophageal X-ray images.
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into coarse approximation and detailed information repre-
senting the low- and high-frequency contents of images,
respectively. The approximation can be further calculated
to produce the approximation and detailed information at
the next level of the decomposition and so on till the required
level is reached. Figure 3 depicts the wavelet decomposition
process of this work. Specifically, A1–A4, representing the
wavelet approximations of four levels, are low-frequency part
of the images. C11–C13, C21–C23, and C31–C33, denoting
the details of horizontal, vertical, and diagonal directions
of four levels, are high-frequency part of the images.
Empirically, C11–C13 can be discarded, since they contain
little useful information and a lot of noise. And the
approximation coefficient A4 at fourth level is used to repre-
sent the low frequency of the image. The mean and variance
values are further calculated from each coefficient after
the DWT is performed on the X-ray images. Therefore,
20 features are extracted from an input image.

2.2.3. Kolmogorov Complexity Features. An image can be
converted into a one-dimensional binary sequence via scan-
ning it either horizontally or vertically. The complex value
of each row vector can be obtained by evaluating the com-
plexity of each vector in the horizontal direction. The com-
plexity of the complex vector, which is comprised of the
complexity of each row, can be calculated as the complexity
feature of the image. Kolmogorov [34] proposes to measure
the conditional complexity of a finite object x, given a finite
object y by the length of the shortest sequence p, that consists
of 0 s and 1 s and thus makes it possible to reconstruct x given
y. Mathematically, this is explained as follows:

KB x y =min l p B p,y = x , 3

where l p is the length of the sequence p and B p,y is the
decoding function, for which there is an algorithm comput-
ing its values.

Kolmogorov only gave a general definition of the
Kolmogorov complexity. Kasper and Schuster [35] pro-
posed an explicit algorithm to compute the KC measure,
which includes two operations, copying and inserting.
After the explicit algorithm is applied to the images, one fea-
ture is obtained.

2.3. Feature Selection. Feature selection is an optimization
technique that, given a set of features, attempts to select a
subset of size that leads to the maximization of some criterion

function [36]. In this paper, we employ both sequential
forward selection (SFS) and principal component analysis
(PCA) methods to select the discriminative features among
the feature vector.

2.3.1. Sequential Forward Selection. Informally, SFS algo-
rithm can be described as follows [37]: SFS begins with an
empty feature set, and all the observation features were
marked as nonselected features. At each iteration, one feature
from among the nonselected features is added to the feature
set, which minimizes the mean square error (MSE). The iter-
ative process could be stopped until the best merit MSE is
obtained. MSE can be defined as follows:

MSE = 1
N
〠
N

i=1
xi − x , 4

where X denotes the random variables. N is defined as the
number of samples taken.

2.3.2. Principal Component Analysis. Principal component
analysis, which is also known as Karhunen-Loeve (KL)
transform, is a projection-based technique that facilitates
a reduction in data dimension through the construction
of orthogonal principal components that are weighted,
linear combinations of the original variables [38–40].
Assuming that a linear transformation mapping the
original N-dimensional feature space into an M-
dimensional space, where M <N , the PCA transform can
be denoted as follows:

FD = FVXa, 5

where FV is the so-called eigenvector, whose length depends
on the components that we want for expressing the observa-
tion feature space. The resultant feature space is the projec-
tion of the original data set over the eigenvectors of the
covariance matrix. In this study, we applied the PCA for
investigating if the reduced set of features can retain signifi-
cant discrimination of the projected data. Firstly, the original
matrix was converted into a standardized matrix. That is, the
features were normalized to have zero means and unit
variances. Secondly, the covariance matrix, which comprises
the weights of each feature in the input space, was calculated.
In addition, the eigenvalues and the corresponding eigen-
vectors of the covariance matrix were computed. The
eigenvector with highest eigenvalue was the first principle
component that contains the most significant information
and accounts for the larger amount of variance in the
data. The first few principal components are selected to
be the inputs of classifiers when their accumulative con-
tributive rate was 0.9.

2.4. Classification and Performance Evaluation. In this study,
two classifiers, that is, K-nearest neighbors (KNN) and sup-
port vector machine (SVM) with radial basis function
(RBF), were used for classification. SVM seeks the optimal
boundary between two classes. The popularity of this method
has grown as it provides a powerful machine learning

Image

A1 C11, C12, C13

A2 C21, C22, C23

A3 C31, C32, C33

A4 C41, C42, C43

Figure 3: Four-level DWT decomposition process.
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technique toclassifydata.KNNisknown in themachine learn-
ing field as a nonparametric method.

2.4.1. Support Vector Machine (SVM). Support vector
machine, a technique derived from statistical learning theory,
is the most promising technique for data classification and
regression and function estimation [41–44]. The basic idea
of applying SVM for solving classification problems can be
stated briefly as follows: (a) transform the input space to
higher dimension feature space by a nonlinear mapping
function and (b) construct the separating hyperplane with
the maximum distance from the closest points of the training
set [45]. SVM has high classifying accuracy and good capabil-
ities of fault tolerance and generalization. SVM constructs a
binary classifier from a set of training samples x1,…,xn ,
which belongs to a class label. SVM selects the hyper-
plane that causes the largest separation among the deci-
sion function values for the borderline examples of the
two classes. The hyperplane decision function can be defined
as follows:

f x = sign 〠
n

i=1
αiyiK xi,x − b , 6

where K xi,x is the kernel function. b is the classification
threshold. αi is lagrangian multiplier, which is calculated by
quadratic programming problem.

max
α

W α = 〠
l

i=1
αi −

1
2
〠
l

i=1
〠
l

j=1
αiα jyiyjK xi,x j 7

subject to ∑l
i=1αiyi = 0, 0 ≤ αi ≤ C i = 1,…,l , 0 ≤ α j ≤ C

j = 1,…,l
There are three parameters in SVMmodel that we should

choose. They make great impact on a model’s generalization
ability. It is well known that SVM generalization perfor-
mance depends on a good setting of hyperparameters C,
the kernel function, and kernel parameter. For multiclassifi-
cation problems, there are two general approaches, one-
against-one and one-against-all. In the former approach,
classifier is calculated from each pair of classes. All classifiers
are combined to conclude the final classification by using
majority voting scheme. In the latter one, the classifier is
calculated from each class versus all classes and then the first
object that is classified as a single class is the type of the
unlabeled data.

2.4.2. K-Nearest Neighbors (KNN). The K-nearest neighbor
classifier is firstly proposed by Cover and Hart in 1968
[46]. It is a nonparametric learning algorithm that is used
for classification and regression [47]. KNN is a very simple
but efficient algorithm because it is a typical type of
instance-based or memory-based learning scheme. The
implementation process of the K-nearest neighbor algorithm
is as follows [48]:

(I) In the first step, the number of nearest points of
test data x against training data K is determined.
Euclidean distance is the most commonly used to

measure the distance between two instances accord-
ing to the type of attribute [49]. Assuming there are
two points in K-dimensional space, x = x1,x2,…,xk
and y = y1,y2,…,yk , the Euclidean distance between
the two can be denoted by

d x,y = 〠
k

i=1
yi − xi

2 8

(II) We can judge that the test data x is a certain category
when it has more representatives than a certain
category of data.

Generally, larger values of k reduce the effect of noise
on the classification, but make boundaries between classes
less distinct. A good k can be selected by cross-validation,
running the nearest neighbor classifier on the learning set
only. Due to its implementation simplicity and classifica-
tion effectiveness, KNN has been widely used in pattern
recognition. It is also used as a different feature selection
algorithm [50, 51] and is integrated into the feature selection
framework to evaluate the quality of a candidate feature
subset [52–54].

2.4.3. Performance Evaluation. The classifiers are validated
using a 10-fold cross-validation technique that yields an
average estimation of classifier performance with 95% con-
fidence intervals. In the cross-validation, 90% of samples
were used for training and 10% were used for the valida-
tion replications. The performances of the classifiers are
evaluated in terms of the area under the receiver operating
characteristic (ROC) curve (AUC), accuracy, precision, and
recall. The ROC analysis is a commonly used approach for
classification performance evaluation [55]. The AUC value
is the average true positive rates over all possible false pos-
itive rates. The accuracy, precision, and recall [56] are given
as follows:

Accuracy =
Number of correctly classi f ied images

Total Number of images
× 100%,

Precision =
Number of correctly classi f ied images per class
Total number of classi f ied images per class

× 100%,

Recall =
Number of correctly classi f ied images

Total number of expected images in the corresponding class

× 100%
9

3. Results and Discussion

The above-described methodology has been evaluated on a
set of esophageal X-ray images collected from The First
Affiliated Hospital of Xinjiang Medical University. During
the classification stage, performance comparison is divided
into three categories: (1) all 37 features; (2) features selected
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by SFS; and (3) features selected by PCA. The classification
was conducted on a two-stage process. In the first-stage clas-
sification process, the X-ray images are classified as normal
and abnormal. Then the second-stage classification process
continues the abnormal images that are classified as fun-
gating and ulcerative type images. And the classifiers were
validated by a 10-fold cross-validation technique. The clas-
sification performance was measured by the AUC values
of the ROC curves, accuracy, precision, and recall.

Feature selection is carried out using SFS and PCA
methods to remove the redundancy due to highly correlated
features. During the first-stage and second-stage classifica-
tion processes, the SFS selected 17 appropriate features out
of 37 features, respectively. It means a reduction of comput-
ing time and data storage space. The selected features are
from the textural, frequency, and complexity domains and
all useful for the classification. The results of feature selection
of SFS for the two-stage classification process are detailed in
Tables 1 and 2. Among the appropriate 17 features selected
by the SFS, the higher proportion is θ= 45°, 90°. This result
shows that texture of esophageal focus may occur in the
particular angle and distance. Each principal component is
orthogonal and represents a linear combination of the
original variables. The first few principal components

typically account for most of the variance in the original
data. In this analysis, the first six principal components
together explained 90.7% and 92.26% of the variance for
the first-stage and second-stage classification processes,
respectively. The eigenvalue and the cumulative variance
of the first six principal components for the two-stage
classification are tabulated in Table 3.

Figure 4 reports the KNN classification results for values
of K ranging from one to twenty-one using 10-fold cross-
validation. It can be seen from Figure 4 that KNN classifier
achieved the best classification when K = 15. It is observed
that the KNN classifier has an AUC value of 97.4%, accuracy
of 92.33%, precision of 92.7%, and recall of 92.3%.

The radial basis function (RBF) kernel is chosen for
SVM classifier. For the training of KNN classifier, the
number of the nearest neighbor K = 15 and Euclidean dis-
tance metric was employed. Based on the result shown in
Table 4, Figure 5, and Figure 6, the following conclusions
can be drawn:

(a) The step of feature selection not only reduces the
dimension of the input vector, but also improves
classification performance. This may be due to the
elimination of the correlated features from the 37-D
feature vector.

Table 1: Details of feature selection by SFS for the first-stage
classification process.

Features Feature number

Texture features (θ, d)

(0°, 1) 1 2 3 4

(45°, 1) 5 6 7 8

(90°, 1) 9 10 11 12

(135°, 1) 13 14 15 16

Frequency features

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

KC features 37

The numbers in italics are the features selected by SFS.

Table 2: Details of feature selection by SFS for the second-stage
classification process.

Features Feature number

Texture features (θ, d)

(0°, 1) 1 2 3 4

(45°, 1) 5 6 7 8

(90°, 1) 9 10 11 12

(135°, 1) 13 14 15 16

Frequency features

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

KC features 37

The numbers in italics are the features selected by SFS.

Table 3: Details of feature selection by PCA for the two-stage
classification process.

PC
Eigenvalue Cumulative variance (%)

First stage Second stage First stage Second stage

PC1 11.07 15.1 35 45.8

PC2 6.84 6.2 53.4 62.56

PC3 5.57 4.44 68.4 74.57

PC4 3.4 3.24 77.6 83.32

PC5 2.94 1.84 85.6 88.3

PC6 1.91 1.47 90.7 92.26

98

96

Ev
al

ua
tio

n 
le

ve
l (

%
) 94

92

90

88

86

84
1 3 5 7 9 11

K value
13 15 17 19 21

AUC
Accuracy

Precision
Recall

Figure 4: KNN classification results for various choices of K (%).
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(b) The SFS outperforms the PCA. In the first-stage
classification, for all 37 features used as input vectors,
it yields the best AUC value of 94.5%, accuracy
of 92.67%, precision of 91%, and recall of 91%.
With input features selected by SFS and PCA, the
corresponding AUC value, accuracy, precision, and
recall are 97.4% and 95.33%, 95% and 93%, 94.33%
and 91.4%, and 94% and 91.4%, respectively. In the
second-stage classification, it produces the best
AUC value of 94%, accuracy of 91.5%, precision of
90.67%, and recall of 90.67% for all the 37 features.
With the input vectors selected by SFS and PCA,
the corresponding AUC value, accuracy, precision,
and recall are 97% and 95.14%, 94.67% and 92.5%,
94.14% and 91.67%, and 94.14% and 91.67%,
respectively.

(c) Under either feature selection criterion (no selection,
SFS selection, and PCA selection), the performance
of SVM is better than the KNN. The highest classifi-
cation performance was achieved when the SVM
classifier and SFS selection are employed.

In our previous studies, several methods related to
computer-aided diagnosis system of esophageal cancer have
been developed. The classification performances are tabu-
lated in Table 5. It is observed that single feature reached
lower classification accuracy. The classification performance
improved in the case of using the comprehensive feature
without dimensional reduction algorithm. When the feature
extraction methods were utilized, the accuracy obtained the
further improvement.

Although the previous works have made some achieve-
ments, the classification performance still needs to be
improved in order to meet the requirements of esophageal
cancer diagnosis. The present study introduced the KC
feature extraction and SFS and SVM algorithms, and the
high classification performance was achieved by combining
with the previous method.

The processing time of the proposed method takes
around 14.32 s (11.02 s for image preprocessing, 2.16 s for
feature extraction, and 1.14 s for classification) while the
manual recognition takes about 37 s. The accuracy of
detecting the esophageal cancer via both specialist physi-
cians and the proposed method is 92% and 95%, respec-
tively. And the accuracy of classifying the abnormal
images into fungating and ulcerative types reaches up to
90% and 94.67%, respectively. The classification performance
of the proposed method outperforms the conventional visual
inspection approach by improving the diagnostic quality and
processing time.

Table 4: Classification performance of SVM and KNN
classifiers (%).

Parameters
All features

SFS
selection

PCA
selection

SVM KNN SVM KNN SVM KNN

AUC
First stage 94.5 93.7 97.4 95.7 95.33 94.5

Second stage 94 93.4 97 94.67 95.14 94

Accuracy
First stage 92.67 91.3 95 93 93 92.67

Second stage 91.5 90.14 94.67 92.14 92.5 91.5

Precision
First stage 91 90.4 94.33 92.5 91.4 91.33

Second stage 90.67 90.33 94.14 92.33 91.67 91.4

Recall
First stage 91 90 94 92.5 91.4 91

Second stage 90.67 90.33 94.14 92 91.67 91.4

98

96

94

92

90

88

86
SVM KNN SVM KNN SVM KNN

All features SFS selection PCA selection

AUC
Accuracy

Precision
Recall

Figure 5: Classification performance of the first classification
stage (%).

98

96

94

92

90

88

86
SVM KNN SVM KNN SVM KNN

All features SFS selection PCA selection

AUC
Accuracy

Precision
Recall

Figure 6: Classification performance of the second classification
stage (%).

Table 5: Classification performance of previous studies (%).

Methods Classification accuracy

GH+Bayes [57] 76.6

WT+Bayes [58] 76.5

GH+GLCM+Bayes [59] 86.7

GLCM+GGCM+PCA+KNN [60] 87.5

GH: gray-level histogram; WT: wavelet-based transform; GGCM: gray-
gradient co-occurrence matrix.
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4. Conclusions

Esophageal cancer has a high mortality in Xinjiang Kazak
nationality. X-ray barium technology is more commonly
used in the diagnosis of this disease. However, the differences
of experience, knowledge, and skills among individual physi-
cians may affect the diagnosis results. This paper presents a
computer-aided diagnosis system with image processing
and pattern recognition in diagnosing esophageal cancer of
Xinjiang Kazak nationality by using X-ray images. The
original images, including normal esophageal images, fungat-
ing and ulcerative type images, were first resized to a region
of interest and then enhanced by the median filter and histo-
gram equalization method. Then, 37 features were obtained
from images using three different techniques, which include
textural, frequency, and complexity domains. SFS and
PCA methods were applied to select the input features for
classification. Furthermore, the esophageal cancer images
were classified via SVM and KNN classifiers by type. And
the classifiers were validated by a 10-fold cross-validation
strategy. The classification performance was evaluated
in terms of the AUC values, accuracy, precision, and
recall, respectively.

A two-stage classification process was carried out for
classifying the esophageal cancer by type. In the first-stage
classification process, the X-ray images are classified as
normal and abnormal. For all 37 features used as input
vectors, it yielded the best AUC value of 94.5%, accuracy
of 92.67%, precision of 91%, and recall of 91%. With input
features selected by SFS and PCA, the corresponding AUC
value, accuracy, precision, and recall were increased by
2.9% and 0.83%, 2.33% and 0.33%, 3.33% and 0.4%, and
3% and 0.4%, respectively. Then the second-stage classifica-
tion process continues the abnormal images that are classi-
fied as fungating and ulcerative type images. It produced
the best AUC value of 94%, accuracy of 91.5%, precision of
90.67%, and recall of 90.67% for all the 37 features. With
the input vectors selected by SFS and PCA, the correspond-
ing AUC value, accuracy, precision, and recall were increased
by 3% and 1.14%, 3.17% and 1%, 3.47% and 1%, and 3.47%
and 1%, respectively. Experimental results show that the
highest classification performance is achieved when the
SVM classifier and SFS selection were employed. The accu-
racy of detecting the esophageal cancer and classifying it by
type via specialist physician and the proposed method is
92% and 95% and 90% and 94.67%, respectively. The classi-
fication performance of the proposed system outperformed
the conventional visual inspection approach by improving
the diagnostic quality and processing time.

The proposed method may be limited in the following
aspects. First, the regions of interest of the images were
selected manually, which result to be time-consuming during
the image processing stage. This is because the lesion areas
vary greatly from different images, and it is hard to find a uni-
fied segmentation method at present. The second important
limitation of the study is the lack of comparison with the early
esophageal cancer because of the small number of images in
early stage. Based on the limitations of the current study,
the future perspectives of our work aiming for diagnostic

quality improvements may lie in studying more advanced
feature extraction model and the segmentation method for
esophageal X-ray images. An interesting improvement could
be to extend it into the comparison research between the
normal esophageal and the early esophageal cancer.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This project was performed under the auspices of the Natural
Science Foundation of China Grants 81460281, 81560294,
81160182, and 61201125. The authors would like to thank
the Department of Radiology, First Affiliated Hospital of
Xinjiang Medical University, Urumqi, China.

References

[1] A. H. Maria and A. Katharine, “Image-guided radiotherapy
for esophageal cancer,” Imaging in Medicine, vol. 4, no. 5,
pp. 515–525, 2012.

[2] D. M. Parkin, F. I. Bray, and S. S. Devesa, “Cancer burden in
the year 2000. The global picture,” European Journal of Cancer,
vol. 37, no. 58, pp. S4–S66, 2001.

[3] J. Y. Guang, W. L. Qian, X. D. Yu et al., “Analysis on the epi-
demiological characteristics of esophageal cancer in Huai’an
area, China from 2009 to 2011,” The Chinese-German Journal
of Clinical Oncology, vol. 11, no. 9, pp. 504–507, 2012.

[4] Y. Z. Xue, F. Z. Da, M. Xin, and D. Jiang, “Esophageal
cancer spatial and correlation analyses: water pollution,
mortality rates, and safe buffer distances in China,” Journal
of Geographical Sciences, vol. 24, no. 1, pp. 46–58, 2014.

[5] G. Hui, B. D. Jian, Z. Wei, and T. Zhang, “Gene research
progress on Xinjiang kazak esophageal cancer,” Basic Medicine
and Clinical, vol. 30, no. 4, pp. 428–430, 2010.

[6] F. Kamangar, W. Chow, C. C. Abnet, and S. M. Dawsey,
“Environmental causes of esophageal cancer,”Gastroenterology
Clinics of North America, vol. 38, no. 1, pp. 27–57, 2009.

[7] X. C. Shi, B. L. Xian, and P. C. Hua, “Digital X-ray bariummeal
in the diagnosis of early esophageal carcinoma,” Practical
Journal of Clinical Medicine, vol. 8, no. 1, pp. 42–44, 2011.

[8] M. B. Nagarajan, P. Coan, M. B. Huber, P. C. Diemoz,
C. Glaser, and A. Wismuller, “Computer-aided diagnosis
in phase contrast imaging X-ray computed tomography
for quantitative characterization of ex vivo human patellar
cartilage,” IEEE Transactions on Biomedical Engineering,
vol. 60, no. 10, pp. 2896–2903, 2013.

[9] X. Yang, Z. Jie, L. N. Li et al., “Computer-aided diagnosis based
on quantitative elastographic features with supersonic shear
wave imaging,” Ultrasound in Medicine and Biology, vol. 40,
no. 2, pp. 275–286, 2014.

[10] L. J. Meng, T. Z. Shao, S. L. Hong, and D. N. Metaxas,
“Computer-aided diagnosis of mammographic masses using
scalable image retrieval,” IEEE Transactions on Biomedical
Engineering, vol. 62, no. 2, pp. 783–792, 2015.

[11] R. L. Ellis, A. A. Meade, M. A. Mathiason, K. M. Willison, and
W. Logan-Young, “Evaluation of computer-aided detection
system in the detection of small invasive breast carcinoma,”
Radiology, vol. 245, no. 1, pp. 88–94, 2007.

9Journal of Healthcare Engineering



[12] F. M. Hall, “Improved sensitivity of mammography with
computer-assisted detection on interpretive performance in
screening mammography,” American Journal of Roentge-
nology, vol. 187, no. 6, pp. 1472–1482, 2006.

[13] M. L. Giger, N. Karssemeijer, and S. G. Armato, “Computer-
aided diagnosis in medical imaging,” IEEE Transactions of
Medical Imaging, vol. 20, no. 12, pp. 1205–1208, 2001.

[14] X. Qi, M. V. Sivak, J. E. Willis, and A. M. Rollins, “Computer-
aided diagnosis of dysplasia in Barrett’s esophagus using
endoscopic optical coherence tomography,” Journal of
Biomedical Optics, vol. 11, no. 4, p. 044010, 2006.

[15] X. Qi, Y. Pan, M. V. Sivak, J. E. Willis, G. Isenberg, and A.
M. Rollins, “Image analysis for classification of dysplasia in
Barrett’s esophagus using endoscopic optical coherence
tomography,” Biomedical Optics Express, vol. 1, no. 3,
pp. 825–847, 2010.

[16] F. V. Sommen, S. Zinger, E. J. Schoon, and P. H. N. de With,
“Supportive automatic annotation of early esophageal cancer
using local gabor and color features,” Nerocomputing,
vol. 144, pp. 92–106, 2014.

[17] E. J. Schoon, F. V. Sommen, S. Zinger, and P. H. N. de With,
“Computer-aided delineation of early Neoplasia in Barrett’s
esophagus using high definition endoscopic images,”Gastroin-
testinal Endoscopy, vol. 77, no. 5, Supplement, p. AB471, 2013.

[18] B. Z. Shang, P. Z. Fu, and A. S. Muhammad, “Range limited
peak-separate fuzzy histogram equalization for image contrast
enhancement,” Multimedia Tools and Applications, vol. 74,
no. 17, pp. 6827–6847, 2015.

[19] A. A. Zohair, S. L. Ghazali, R. Amjad, A. Al-Dhelaan, T. Saba,
and M. Al-Rodhaan, “An innovative technique for contrast
enhancement of computed tomography images using nor-
malied gamma-corrected contrast-limited adaptive histogram
equalization,” EURASIP Journal on Advances in Signal
Processing, vol. 2015, no. 1, pp. 1–12, 2015.

[20] X. Gu, C. Liu, S. Wang, and C. Zhao, “Feature extraction using
adaptive slow feature discriminant analysis,” Neurocomputing,
vol. 154, pp. 139–148, 2015.

[21] A. Mueen, M. S. Baba, and R. Zainuddin, “Multilevel feature
extraction and X-ray image classification,” Journal of Applied
Science, vol. 7, no. 8, pp. 1224–1229, 2007.

[22] L. Yu and H. Liu, “Efficient feature selection via analysis of
relevant and redundancy,” Journal of Machine Learning
Research, vol. 5, pp. 1205–1224, 2004.

[23] L. W. Li, N. Alioune, and R. Luis, “Sequential forward selection
approach to the non-unique oligonucleotide probe selection
problem,” Lecture Notes in Computer Science, vol. 5265,
pp. 262–275, 2008.

[24] J. C. Fu, S. K. Lee, S. T. Wong, J. Y. Yeh, A. H. Wang, and
H. K. Wu, “Image segmentation feature selection and
pattern classification for mammographic microcalcifications,”
Computerized Medical Imaging and Graphics, vol. 29, no. 6,
pp. 419–429, 2005.

[25] A. Papadopoulos, D. I. Fotiadis, and A. Likas, “Characteriza-
tion of clustered micro-calcifications in digitized mammo-
grams using neural networks and support vector machines,”
Artificial Intelligence in Medicine, vol. 34, no. 2, pp. 141–150,
2005.

[26] O. Katsuyoshi and P. P. Alberto, “A detailed description of the
use of the KNN method for breast cancer diagnosis,” in The
2014 7th international conference on biomedical engineering
and informatics, pp. 606–610, Dalian, China, 2014.

[27] C. H. Chen, W. T. Huang, T. H. Tan, C. C. Chang, and
Y. J. Chang, “Using k-nearest neighbor classification to
diagnose abnormal lung sounds,” Sensors (Basel), vol. 15,
no. 6, pp. 13132–13158, 2015.

[28] S. Sharma and P. Khanna, “Computer-aided diagnosis of
malignant mammograms using Zernike moments and SVM,”
Journal of Digital Imaging, vol. 28, no. 1, pp. 77–90, 2015.

[29] R. C. Gonzalez, N.: Digital Image Processing, 2nd Edn.
Addison-Wesley, Reading, 1993.

[30] R. M. Haralick, K. Shanmugam, and I. Distenin, “Textural
features for image classification,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 3, no. 6, pp. 610–621, 1973.

[31] H. Pourghassem and H. Ghassemian, “Content-based medical
image classification using a new hierarchical merging scheme,”
Computerized Medical Imaging and Graphics, vol. 32, no. 8,
pp. 651–661, 2009.

[32] T. J. Penfold, I. Travernelli, C. J. Milne et al., “A wavelet
analysis for the X-ray absorption spectra of molecules,”
Journal of Chemical Physics, vol. 138, no. 1, p. 014104, 2013.

[33] B. C. Ko, S. H. Kim, and J. Y. Nam, “X-ray image classification
using random forests with local wavelet-based CS-local
binary patterns,” Journal of Digital Imaging, vol. 24, no. 6,
pp. 1141–1151, 2011.

[34] V. V. Yugin, “Algorithmic complexity and stochastic proper-
ties of finite binary sequences,” The Computer Journal,
vol. 42, no. 4, pp. 294–317, 1999.

[35] F. Kasper and H. G. Schuster, “Easily calculable measure for
the complexity of spatiotemporal patterns,” Physics Review A:
Atomic, Molecular and Optical Physics, vol. 36, no. 2,
pp. 842–848, 1987.

[36] S. Rajeswari and J. K. Theiva, “Support vector machine
classification for MRI images,” International Journal of
Electronics and Computer Science Engineering, vol. 1, no. 3,
pp. 1534–1539, 2012.

[37] J. Zhu, W. Lu, L. Liu, and B. Niu, “Classification of Src kinase
inhibitors based on support vector machine,” QSAR and
Combinatorial Science, vol. 28, no. 6, pp. 719–727, 2009.

[38] X. G. Rui, A. Mihye, and T. Z. Hong, “Spatially weighted
principal component analysis for imaging classification,”
Journal of Computational and Graphical Statistics, vol. 24,
no. 1, pp. 274–296, 2015.

[39] B. C. Yan and S. L. Cheng, “Belnded coal’s property prediction
model based on PCA and SVM,” Journal of Central South
University of Technology, vol. 15, no. 2, pp. 331–335, 2008.

[40] A. P. Nanthagopal and R. S. Rajamony, “Automatic classifica-
tion of brain computed tomography images using wavelet-
based statistical texture features,” Journal of Visualization,
vol. 15, no. 4, pp. 363–372, 2012.

[41] J. Y. Lin, C. T. Cheng, and K. W. Chan, “Using support vector
machines for long term discharge prediction,” Hydrological
Sciences Journal, vol. 51, no. 4, pp. 599–612, 2006.

[42] L. Y. Chuang, C. H. Yang, and L. C. Jin, “Classification for
multiple cancer types using support vector machines and
outliner detection methods,” Biomedical Engineering Applica-
tions, Basis & Communications, vol. 17, pp. 300–308, 2005.

[43] M. D. Ashanira, M. Z. Azlan, and S. Roselina, “Hybrid GR-
SVM for prediction of surface roughness in abrasive water jet
machining,” Meccanica, vol. 48, no. 8, pp. 1937–1945, 2013.

[44] N. H. Chiu and Y. Y. Guao, “State classification of CBN
grinding with support vector machine,” Journal of Materials
Processing Technology, vol. 201, no. 1, pp. 601–605, 2008.

10 Journal of Healthcare Engineering



[45] V. P. Gladis and S. Palani, “A novel approach for feature
extraction and selection on MRI images for brain tumor
classification,” Computer Science & Information Technology,
vol. 10, no. 5, pp. 225–234, 2012.

[46] T. M. Cover and P. E. Hart, “Nearest neighbor pattern clas-
sification,” IEEE Transactions on Information Theory, vol. 13,
no. 1, pp. 21–27, 1967.

[47] A. Wang, N. An, G. Chen, L. Li, and G. Alterovitz,
“Accelerating incremental wrapper based gene selection
with k-nearest-neighbor,” in IEEE international conference
on bioinformatics and biomedicine (BIBM), IEEE, pp. 21–23,
Belfast, UK, 2014.

[48] H. C. Chin, T. H. Wen, H. T. Tan, C. C. Chang, and
Y. J. Chang, “Using k-nearest neighbor classification to
diagnose abnormal lung sounds,” Sensors, vol. 15, no. 6,
pp. 13132–13158, 2015.

[49] A. Wang, N. An, G. Chen, L. Li, and G. Alterovitz, “Accelerat-
ing wrapper-based feature selection with K-nearest-neighbor,”
Knowledge-Based Systems, vol. 83, pp. 81–91, 2015.

[50] K. Moorthy and M. Mohamad, “Random forest for gene
selection and microarray data classification,” Bioinformation,
vol. 7, no. 3, pp. 142–146, 2011.

[51] X. Sun, Y. Liu, M. Xu, H. Chen, J. Han, and K. Wang,
“Feature selection using dynamic weights for classification,”
Knowledge-Based Systems, vol. 37, pp. 541–549, 2013.

[52] H. L. Chen, B. Yang, G. Wang et al., “A novel bankruptcy
prediction model based on an adaptive fuzzy k-nearest
neighbor method,” Knowledge-Based Systems, vol. 24, no. 8,
pp. 1348–1359, 2011.

[53] W. L. Hua, L. Lei, and J. Z. Hui, “Ensemble gene selection for
cancer classification,” The Journal of the Pattern Recognition
Society, vol. 43, no. 8, pp. 2763–2772, 2010.

[54] Q. L. Shen, E. H. James, and A. A. Donald, “Random KNN
feature selection - a fast and stable alternative to random
forests,” BMC Bioinformatics, vol. 12, no. 1, p. 450, 2011.

[55] J. K. Kim and H. W. Park, “Statistical textural features for
detection of microcalcifications in digitized mammograms,”
IEEE Transactions of Medical Imaging, vol. 18, no. 3,
pp. 231–238, 1999.

[56] D. L. Olson and D. Delen, Advanced Data Mining Techniques,
Springer, p. 138, 2008.

[57] F. Yang, M. Hamit, A. Kutluk et al., “Feature extraction and
analysis on X-ray image of Xinjiang Kazak esophageal cancer
by using gray-level histograms,” in 2013 IEEE International
Conference on Medical Imaging Physics and Engineering,
pp. 61–65, Shenyang, China, 2013.

[58] X. M. Kong, M. Hamit, C. B. Yan, J. Sun, and J. Yao, “Fature
extraction on Xinjiang high morbidity esophagus cancer based
on wavelet transform,” in Biotechnology and Medical
Science: Proceedings of the 2016 International Conference
on Biotechnology and Medical Science, World Scientific,
p. 174, 2016.

[59] M. Hamit, F. Yang, A. Kutluk, C. B. Yan, E. Alip, and
W. K. Yuan, “Feature extraction and analysis on Xinjiang
high morbidity of kazak esophageal cancer by using
comprehensive feature,” International Journal of Image
Processing, vol. 8, no. 4, pp. 148–155, 2014.

[60] S. X. Zhang, M. Hamit, C. B. Yan, J. Sun, and J. Yao,
“Texture analysis and classification on Xinjiang kazakh
esophageal cancer images,” in Biotechnology and Medical
Science: Proceedings of the 2016 International Conference on
Biotechnology and Medical Science, World Scientific, p. 297,
2016.

11Journal of Healthcare Engineering


	Feature Extraction and Classification on Esophageal X-Ray Images of Xinjiang Kazak Nationality
	1. Introduction
	2. Methods and Techniques
	2.1. Image Preprocessing
	2.2. Feature Extraction
	2.2.1. Texture Features
	2.2.2. Frequency Features
	2.2.3. Kolmogorov Complexity Features

	2.3. Feature Selection
	2.3.1. Sequential Forward Selection
	2.3.2. Principal Component Analysis

	2.4. Classification and Performance Evaluation
	2.4.1. Support Vector Machine (SVM)
	2.4.2. K-Nearest Neighbors (KNN)
	2.4.3. Performance Evaluation


	3. Results and Discussion
	4. Conclusions
	Conflicts of Interest
	Acknowledgments

