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Image-derived models of cell organization 
changes during differentiation and drug 
treatments

ABSTRACT PC12 cells are a popular model system to study changes driving and accompany-
ing neuronal differentiation. While attention has been paid to changes in transcriptional 
regulation and protein signaling, much less is known about the changes in organization that 
accompany PC12 differentiation. Fluorescence microscopy can provide extensive information 
about these changes, although it is difficult to continuously observe changes over many days 
of differentiation. We describe a generative model of differentiation-associated changes in cell 
and nuclear shape and their relationship to mitochondrial distribution constructed from images 
of different cells at discrete time points. We show that the model accurately represents com-
plex cell and nuclear shapes and learn a regression model that relates cell and nuclear shape 
to mitochondrial distribution; the predictive accuracy of the model increases during differen-
tiation. Most importantly, we propose a method, based on cell matching and interpolation, to 
produce realistic simulations of the dynamics of cell differentiation from only static images. We 
also found that the distribution of cell shapes is hollow: most shapes are very different from the 
average shape. Finally, we show how the method can be used to model nuclear shape changes 
of human-induced pluripotent stem cells resulting from drug treatments.

INTRODUCTION
Cellular differentiation is a highly complex process that is incom-
pletely understood. While fluorescence microscopy provides a 
widely used tool for investigating the organization of cell compo-
nents, given the number and complexity of the resulting images it is 
clear that there exists a need for automated methods for their analy-
sis (Eliceiri et al., 2012). Tools are needed not just for describing 
these images, but also for creating models of cell organization that 
incorporate information from many cells (Murphy, 2016).

Owing to the intimate relationship between neuron morphol-
ogy and function, particular attention has been paid to how to 
model and represent cell shapes. Tools have been described for 
tracking neurites (Meijering, 2010) and modeling neuronal struc-
ture (Ascoli et al., 2001; Vallotton et al., 2007; Koene et al., 2009) 
using segmented electron or fluorescence microscope images. 
While some methods are primarily concerned with representing 
neuron shape via summary statistics such as shape and skeleton 
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features (Vallotton et al., 2007), the software L-NEURON and AR-
BORVITAE (Ascoli et al., 2001) use distributions over semiparamet-
ric tree representations to construct generative models of neuron 
morphology capable of synthesizing cell shapes. The NETMORPH 
software (Koene et al., 2009) likewise uses a generative modeling 
framework, but is additionally capable of constructing large net-
works of interconnected cells. Modeling of the dynamics of cell 
shape and organization during processes such as differentiation 
has received less attention. The tree-based procedures above do 
not fully address cell shape because they do not consider neurite 
or cell body thickness. While they could be interpreted as growth 
models, they are based on investigator interpretation and concep-
tualization of neuronal shapes rather than being learned directly 
from images. Obtaining continuous time series images of a differ-
entiation process to learn from is difficult due to the compounded 
effects of both phototoxicity and photobleaching and the difficulty 
of tracking individual cells from sparse time points in long time 
series. The ability to infer models of heterogeneous differentiation 
dynamics from collections of static images would address these 
issues.

Mitochondria have been shown to have a role in cell differentia-
tion fate (Mandal et al., 2011), but their spatial distributions are 
difficult to represent due to the fact that they form complex dy-
namic networks. Furthermore, there has been little work on de-
scribing the relationship between cell morphology and mitochon-
drial distribution.

Of the many model systems for cell differentiation, rat pheochro-
mocytoma cell line PC12 is particularly useful for studying neuronal 
differentiation and survival (Greene and Tischler, 1976; Burstein 
et al., 1982; Cowley et al., 1994). After stimulation with nerve growth 
factor (NGF), PC12 cells differentiate into sympathetic neuron-like 
cells, a process which is morphologically marked by neurite out-
growth over a time course of up to 6 d (Levi-Montalcini, 1987; Chao, 
1992; Fiore et al., 2009; Weber et al., 2013). To address the goal of 
building continuous models of cell shape and mitochondrial distri-
bution during differentiation, we collected images of PC12 cells at 
various times after treatment with NGF. From these we constructed 
a joint cell and nuclear shape model based on spherical harmonic 
descriptors (Ruan and Murphy, 2019) and a probabilistic model of 
mitochondrial localization (Peng and Murphy, 2011) and combined 
them into a generative model of shape and mitochondrial distribu-
tion over all time points. We then developed a novel approach for 
combining these models to predict likely sequences of changes that 
single cells undergo through the differentiation process despite the 

fact that movies of single cells were not available. Moreover, to see 
how we can generate representative trajectories from unobserved 
cells, we explored the structure of the shape space, and found the 
shape space is hollow. Some arbitrary points may be not good for 
realistic shape evolution.

As a further illustration of the potential of the inference method, 
we applied it to study changes in nuclear shape after drug treatment 
of human induced pluripotent stem cells (hiPSC; Takahashi et al., 
2007). HiPSCs are very important for the study of cell development, 
aging, and disease treatment (Yamanaka, 2012). As mentioned 
before, cell and nuclear shapes are both great indicators and con-
tributors to cellular functions. Using a public data set created by the 
Allen Institute for Cell Science, we applied the shape modeling 
method to build a shape space of three-dimensional (3D) nuclear 
shapes for hiPSCs after treatment with and without five drugs. From 
the model, we are able to characterize nuclear shape changes 
associated with the drugs.

RESULTS
Cell-component representation
As described in Materials and Methods, we collected 3D images of 
mitochondrial staining of PC12 cells at various times after treatment 
with NGF. This was done in two large experiments: one consisting of 
images taken every 12 h up to 48 h, and one of images taken every 
24 h up to 96 h; the experimental setup is illustrated in Supplemen-
tal Figure S1. We decomposed the image of each cell into three 
components: a cell shape, a nuclear shape, and a mitochondrial 
spatial distribution. The cell shape and nuclear shapes were inferred 
from autofluorescence in the mitochondrial staining image. Figure 1 
shows this procedure on a typical cell image.

Models of cell and nuclear shape
3D cell and nuclear shapes were first converted into spherical har-
monic descriptors using Robust SPHARM-PDM (SPHARM-RPDM; 
Ruan and Murphy, 2019) as described in Materials and Methods. 
Spherical harmonic descriptors are vectors of coefficients resulting 
from a spherical harmonic transform (similar to a Fourier transform), 
giving a representation with an orthogonal basis. We aligned all 
shapes to the same orientation and also normalized cell size, so that 
only variation in shape is contained in the shape descriptors. Out of 
997 cells in the original data set, eight cells that were not well repre-
sented by the descriptors were removed from the analysis. Dimen-
sion reduction was done on the descriptors using principal compo-
nents analysis (PCA) to generate a specified number of latent 

FIGURE 1: Cell shape and mitochondria localization modeling procedure. Images were segmented into cell and nuclear 
shapes and these were aligned using the SPHARM-RPDM method. An aligned original image (A) and the segmented cell 
(red) and nuclear (gray) shapes (B) are shown; these were used to create a shape-space model. The individual 
mitochondrial objects from the original image were found using a Gaussian mixture model (C); their positions were 
modeled as a probability density function (D).
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features. We found that models constructed with 300 dimensions 
were able to capture the cell shapes of individual cells with high ac-
curacy, as shown in Supplemental Table S1. Some examples of re-
constructed shapes from the models with the corresponding origi-
nal shapes are shown in Supplemental Figure S2. The models were 
constructed with two different methods of shape alignment, using 
the first-order ellipse as done previously (Ruan and Murphy, 2019) or 
using the major axis (see Materials and Methods). The reconstruc-
tion errors were similar, but because they were slightly better for the 
major axis alignment approach, all subsequent analyses were done 
using that method.

To provide a loose illustration of the major trends in shape as a 
function of differentiation, low-dimensional shape spaces con-
structed from the latent features are shown in Figure 2 and Supple-
mental Figure S3 with or without the scale factors that were removed 
during the initial normalization. Cells from different time points 
overlap in shape fairly extensively, but there is a trend toward an 
increase in size and in the first shape component (PC1, which cor-
responds approximately to elongation); this is consistent with previ-
ous observations that PC12 cells start from a roughly spherical mor-
phology and gradually flatten and spread out with more and longer 
neurites after NGF treatment. It is important to note that these two-
dimensional representations do not allow full visualization of the cell 
and nuclear shape variation. The first principal component captures 
33.6% of that variation and the second captures 7.9%, leaving 
58.5% unvisualized in these two-dimensional maps. However, all op-
erations using the models described below were done in the high-
dimensional shape space.

Relationship between mitochondrial localization and cell 
and nuclear shape
For each cell in the collection, the distribution of mitochondrial lo-
calization was described as the probability of a mitochondrial object 
occurring at a position inside of the cell according to a standardized 
coordinate system relative to the cell and nuclear membranes. We 
used the CellOrganizer implementation of the previously described 

method (Peng and Murphy, 2011) in which each object is repre-
sented by its relative distance from the nucleus and the azimuth and 
angle from the major axis and the positions of all objects are fitted 
using a logistic model (see Materials and Methods). The mitochon-
drial distribution for each cell is thus represented by the six param-
eters of the model. Given these parameters, we asked how the rela-
tionship between the mitochondrial location pattern and the cell 
shape changes as a function of differentiation.

To evaluate this relationship, we used regularized multiresponse 
regression to predict the mitochondria localization model given the 
cell and nuclear shapes, as described in Materials and Methods. In 
the regression model, we use the shape descriptors (after removing 
cell scale) for cell and nuclear shapes as the independent variable 
vector X and used the six mitochondrial parameters as the depen-
dent variable vector Y. A regularized linear model was learned to 
infer the relationship between X and Y, as shown in Eq. 5. We used 
nested leave-one-out cross-validation to first determine the optimal 
regularization parameters λ1, λ2, and λ3 and then the model param-
eters B Bˆ , ˆ0 . The parameters of the held-out cell were predicted, and 
the error between the predicted and measured mitochondrial 
parameters was recorded (this error serves as an inverse measure of 
the extent to which cell shape and mitochondrial localization pattern 
are related). Boxplots illustrating the distribution of errors at each 
time point and experiment with or without scale factor are shown in 
Supplemental Figure S4 and Figure 3. There is a distinct trend to-
ward a decrease in the error of predicting the mitochondrial localiza-
tion pattern as a function of time after treatment. We compared the 
errors between treated time points with the initial time point without 
treatment (0 h) via the t test and corrected for multiple tests using 
Bonferroni-Holm correction (Holm, 1979). An asterisk indicates a sig-
nificant difference in the ability to predict the mitochondrial location 
pattern from the cell and nuclear shape between this time point and 
0 h. As can be seen in Figure 3 for predictions with only shape mod-
els, the prediction errors decreased significantly over time, com-
pared with those in the initial untreated condition. Also, the decrease 
is most dramatic in the beginning (12 h for the 48-h experiment and 

FIGURE 2: Shape space for the joint model of cell and nuclear shapes constructed from all cells for all the time points in 
the two experiments. Here the cell size and first principal component of shape are shown. Panel A shows the space with 
images projected in the xy-plane in the corresponding locations. Panel B shows a scatter plot with points for each cell 
shape; the line links the centroids of adjacent time points to indicate the trend as differentiation proceeds. In both 
panels, blue indicates untreated cells and warmer colors indicate later time points. To expand visualization of the lower 
left corner, scale is plotted as 1.4 * log(1.2 + x), where x is the normalized scale obtained by subtracting the mean scale 
and dividing by the maximum absolute value.



658 | X. Ruan, G. R. Johnson, et al. Molecular Biology of the Cell

24 h for the 96-h experiment). We repeated this analysis using the 
shape descriptors including scale (cell size) and observed that the 
patterns of prediction errors were similar, as shown in Supplemental 
Figure S4. The similarity between results for models with or without 
scale suggests shape variation rather than cell size is the dominant 
contributor to the prediction of mitochondrial pattern.

One potential explanation for the decrease of the prediction 
errors across time could be that the variation in the mitochondrial 
distribution from cell to cell decreases with treatment time (and thus 
predicting a close mitochondrial distribution is made easier). To test 
this, we determined whether the errors for a mitochondrial distribu-
tion predicted from a cell’s shape-space position were significantly 
smaller than those resulting from random choice of a cell from all 
cells in a given experiment. The models were all significant at α < 
0.05 after Bonferroni-Holm correction as shown in Supplemental 
Table S2. These results indicate that a significant relationship exists 
between mitochondrial localization and cell shape and that the 
relationship becomes stronger as a function of time.

Figure 4 shows the distributions of the parameters of the mito-
chondria model for each time point for the 48- and 96-h experi-
ments. B1 and B2 (parameters weighting the distance from the 
nucleus) show a strong relationship to time after treatment; they also 
show a high degree of correlation (Figure 4B), becoming more con-
strained as a function of time after treatment. To illustrate variation 
in mitochondrial patterns across time, Supplemental Figure S5 
shows example cell shapes, segmented mitochondria patterns, and 
modeled and predicted spatial probability density models, for aver-
age cell shapes every 24 h for the 96-h data set.

FIGURE 3: Prediction error of mitochondrial localization parameters as a function of time for 
the model between shapes (without size) and mitochondria patterns. Panels A and B show the 
results for the 48- and 96-h dosing experiments, respectively. At each time point (x-axis) the 
central box mark indicates population median, and the lower and upper bounds of the box 
indicate 25th and 75th percentiles. Whisker bounds cover ∼95% of the data, with outliers shown 
in small crosses. An asterisk indicates that the error for that time point is statistically different 
from the error at the 0 h time point.

Modeling kinetics of differentiating 
cells
We next sought to construct a model of 
shape dynamics, such that we could gener-
ate movies of synthetic shapes for cells as 
they differentiate. Because we do not have 
images of the same cell at different time 
points, we cannot directly learn a dynamic 
model using the approach we have previ-
ously described (Johnson et al., 2015). We 
therefore propose an alternative model for 
learning shape dynamics. The basic idea is 
to assume that the populations of cells at 
each time point are large enough that we 
can consider that for each cell in our collec-
tion for a given time point there is a cell in 
the collection for the next time point that is 
reasonably similar to what the first cell 
would have looked like at the later time. We 
find the matches between cells at adjacent 
time points that give the lowest total differ-
ence in shape between them (by weighted 
maximum bipartite matching, as described 
in Materials and Methods). This gives us a 
“trajectory” in time and in shape space for 
each cell at the 0 h time point (without 
NGF treatment). Using shape evolution 
synthesis (Ruan and Murphy, 2019) we can 
construct intermediate shapes within each 
trajectory by interpolating along a linear 
path in the shape space between each pair 
of shapes in adjacent time points. Because 
cell size varies during differentiation, we use 
a shape space constructed from shape de-

scriptors that include size for the cell matching and shape evolution 
processes.

Examples of the resulting shape differentiation trajectories are 
shown in Supplemental Figure S6 and Figure 5 for the 48- and 
96-h experiments, respectively, with finer and smoother synthesis 
of the trajectories from Figure 5 shown in Supplemental Videos 
S1–S4. In both figures, each row shows the evolution of cell and 
nuclear shape for a given cell from 0 h to 48/96 h. The four cells 
are chosen based on quantiles of total distances between the 
matched cells of adjacent time points across all time points. From 
the figures, we can see that the shape evolution method appears 
reasonable in terms of the reconstructions of cell shapes for ei-
ther observed or unobserved cells (interpolated time points), and 
captures the expected trend from round cells to complicated 
shapes with long neurites (for most trajectories). Also, the total 
distances in the shape space for the trajectories reflect the over-
all shape variation across time; for example, the final shapes gen-
erally become more and more complicated as the quantile in-
creases. Moreover, the sensitivity to NGF treatment is clearly 
heterogeneous among PC12 cells, as some of the matched cells 
do not appear to differentiate after treatment (the presence of 
these cells in the late time points of course also indicates this). In 
Supplemental Figures S7 and S8, the expected directions for the 
transitions of cell shapes for different size time steps are shown. 
The figures confirm the last observation, as different positions in 
the shape space are predicted to move toward quite heteroge-
neous directions at the next time point (especially during the 
early stages). This finding of heterogeneity agrees with previous 
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experimental studies (Burstein et al., 1982; Clementi et al., 1993). 
Overall, we conclude that the method can generate very realistic 
intermediate cell shapes and synthetic trajectories, even though 
no prior knowledge or constraint on allowable shape changes 
was provided.

Generative model of the relationship between cell shape 
and mitochondrial location pattern
In addition to simulating dynamics for cell shape, we can also model 
the dynamics of changes in mitochondrial distribution. Using the 
regression model between cell/nuclear shapes and mitochondrial 
patterns, we inferred parameters of the mitochondria model for 
each of the interpolated cell and nuclear shapes along our esti-
mated cell trajectories. This allows a probability density distribution 
for mitochondria to be synthesized using the inferred parameters 
and the volume images of cell and nuclear shape (using the image 
synthesis function in CellOrganizer). Figure 6 shows the mitochon-
drial probability densities for the same four cells as in Figure 5. The 
complete sets of frames of mitochondrial patterns for these four 
cells are shown in Supplemental Videos S5–S8.

FIGURE 4: Mitochondria distribution parameters. (A) Boxplots showing distribution of 
parameters for 48-h (top) and 96-h (bottom) experiments. Box centers indicate population 
median with bounds indicating 25th and 75th percentiles, respectively. Whiskers indicate 99% 
coverage of data. (B) Mitochondria distribution parameters corresponding most with time 
plotted against each other and colored by time for 48-h (left) and 96-h (right) experiments. Blue 
indicates untreated cells and warmer colors indicate later time points at either 12- or 24-h 
intervals.

Allowable shapes and evolution 
trajectories
In the preceding two sections, we used 
nearby pairs of existing observations to 
evolve shapes along the pseudotrajectories 
by interpolation, and showed that the syn-
thetic shapes appeared realistic. An impor-
tant question is whether shapes and trajec-
tories derived from arbitrary points in the 
shape space are also realistic. To address 
this question, we first explored the path be-
tween the centroids in the shape space for 
each time point. The idea is to determine 
whether this “average” path is representa-
tive of the overall differentiation process. 
We generated a shape trajectory connect-
ing the centroids for the 48- and 96-h 
experiments as shown in the top rows of 
Supplemental Figure S9 and Figure 7A, re-
spectively. As can be seen, in both cases, 
the shapes in the centroid path are very 
smooth, and they are not similar to any of 
the cells observed in the experiments. Be-
cause centroids are calculated using all cells 
for a given time point, only the consistent 
components of the shape are retained and 
shape variation is inappropriately averaged 
out. As another approach to generating a 
realistic, purely synthetic trajectory, we con-
sidered interpolating a trajectory between 
two trajectories. To do this, we first chose 
the two trajectories that were the farthest 
apart while still being within the 95th per-
centile of distances from the centroid. As 
expected, interpolation between these tra-
jectories gave very elongated shapes unlike 
any observed in the experiments (second 
rows, Supplemental Figure S9 and Figure 
7A). We then reasoned that interpolation 
between two close trajectories would be 
more realistic. For each of the farthest apart 
trajectories, we chose the trajectory closest 

to it. Interpolation of a trajectory between these close pairs that are 
from very different regions of the shape space (third and fourth 
rows, Supplemental Figure S9 and Figure 7A) gave very different 
results but ones that were both clearly realistic. We conclude that 
only interpolations between nearby examples of real trajectories 
yield reasonable results.

The result that shapes from some “interior” portions of the shape 
space (and hence some shape trajectories) are not realistic suggests 
that actual cell shapes may form a “hollow” distribution in shape 
space. That is, rather than forming clusters with high densities in 
the middle, actual shapes may be thought of as existing on or near 
the surface of something like a hyperellipsoid or hypertuboid in 
shape space (and shape trajectories as being paths along that sur-
face). To explore this, we performed a simple test (related to the 
quantile–quantile test) to determine the Gaussianity of the shape 
distributions for shape spaces of various number of dimensions: we 
fitted the data with a Gaussian distribution and made a histogram of 
the distance from the centroid with bins at 0.05 intervals in Gaussian 
probability. If the distribution is close to a Gaussian distribution, the 
number of points in the bins should be similar. As shown in Figure 7B, 
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as the dimension of the shape space increases, the distribution be-
comes farther and farther from a Gaussian distribution. Above 50 
dimensions, almost all points are in the last bin. This is consistent 
with the “hollowness” hypothesis. To test whether the shape distri-
bution is approximately hyperellipsoidal, we performed a similar 
analysis using a fit to a hyperellipsoidal distribution followed by mea-
suring the signed distance from the estimated hyperellipsoidal sur-
face. As the dimension of the shape space increases, the shapes in-
creasingly move farther from the centroid and become closer to the 
estimated surface (Figure 7C).

Diverse drug effects on nuclear shapes
As an illustration of another application of the shape model ap-
proach, we constructed models of changes in nuclear shape result-
ing from drug treatment. For this, we used a public data set of im-
ages of hiPSCs with and without treatment with various drugs. The 
detailed description of the generation of these images is provided 

on the data set website (see Materials and Methods). A shape space 
for cells treated with vehicle only, with rapamycin, or with staurospo-
rine is shown in Figure 8A, with the shape space for all five drugs 
and vehicle shown in Supplemental Figure S10. As shown in the 
figures, major shape variation after drug treatment for all five drugs 
is captured. Among the five drugs, rapamycin and staurosporine 
have the most significant effects on the nuclear shape and occur in 
opposite directions: rapamycin treatment significantly reduces nu-
clear size while staurosporine increases it. The effect of rapamycin is 
consistent with previous findings that rapamycin is an mTOR inhibi-
tor and can reduce cell size (Fingar et al., 2002), and nuclear size is 
considered to be highly correlated with cell size (Huber and Gerace, 
2007; Edens et al., 2013). However, to our knowledge, there is no 
strong previous evidence on how staurosporine relates to nuclear 
size.

To determine the statistical significance of any shape changes 
caused by the different drugs, we compared means and standard 

FIGURE 5: Illustration of synthetic cell and nuclear shape differentiation for 12-h time steps interpolated between the 
time points of the 96-h experiment. Four trajectories chosen based on the quantiles of total distances between matched 
cell pairs in the trajectory are shown.

FIGURE 6: Illustration of mitochondria localization patterns during differentiation for 12-h time steps in the 96-h 
experiment. Each row shows 2D mean value projections of the 3D mitochondrial probability density maps in a trajectory. 
The trajectories are the same as shown in Figure 5. Each column represents a time point from 0 to 96 h with time step 
of 12 h from left to right. The maps are shown with a hot-cold color map (blue indicates low probability of observing a 
mitochondrion at that location).
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deviations for size and the first five PCs, along with the difference of 
distribution for these six components using Hotelling’s T-squared 
test (a multivariate version of the t test), followed by Bonferroni-
Holm correction, as listed in Supplemental Table S3. Surprisingly, 
with the exception of brefeldin, all drugs show very significant 
changes over their vehicle controls. Paclitaxel and (S)-nitro-blebbi-
statin (SNB) do not change nuclear size very much but significantly 
change nuclear shape.

To see which shape components are strongly affected by the 
drug treatment, we compared size and the first 39 shape PCs be-
tween a drug and its vehicle, because the first 39 PCs represent 
∼95% of overall shape variance. The p values for the comparison are 
shown in Figure 8B. Size, PC1, PC4, PC7, and PC19 show very sig-
nificant changes, especially PC1 and PC4. To see what shape as-
pects these two PCs reflect, we visualized shapes at different num-
bers of standard deviations across these components. As shown in 
Figure 8C, PC1 is associated with the roundness of the nuclear 

shape (with some subtle remaining rotation), while PC4 seems to be 
associated with thickness. Supplemental Figure S11 shows similar 
results for PC7 and PC19, but their effects on shape are not obvious. 
From the figure, PC7 might associate with sharpness along the z-
axis (from flat to sharp). The overall conclusions are that nuclear 
shapes under rapamycin or SNB treatment are generally rounder 
than those in normal condition, and are thicker under treatment with 
paclitaxel, rapamycin, or SNB.

DISCUSSION
One of the objectives of systems biology is to understand the 
relationships between cell components such that cell fate and 
the organization of unobserved components may be predicted. 
An additional objective is that these models not rely on human 
interpretation, such as hypothesized mechanisms for biochemical 
processes, but rather be learned directly from experimental 
measurements.

FIGURE 7: Creation of synthetic shape trajectories by various approaches from models of the 96-h experiment. (A) The 
top row shows a shape trajectory formed by creating shapes corresponding to the centroid shape coordinates in each 
original time point as well as shapes corresponding to points interpolated between them. The second row shows the 
trajectory formed by creating shapes corresponding to the mean of the shape coordinates for the pair of trajectories 
that have the 95% farthest distance between them (trajectories a and b). The third row shows the trajectory formed by 
the mean of a and the trajectory closest to a. The fourth row shows the trajectory formed by the mean of b and the 
trajectory closest to b. (B) The heatmap shows the number of points in each quantile of a Gaussian distribution within 
the shape space of a given number of specific dimensions. The colors indicate increasing number of points from blue 
(zero) to dark red. (C) The heatmap shows histograms of the number of points at a given distance from the fitted 
surface of a hyperellipsoid for shape spaces of different numbers of dimensions. The colors indicate increasing number 
of points from blue (zero) to dark red.
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With these considerations in mind, we developed a tool to 
model the relationship between cell morphology and organelle 
organization and demonstrated that this relationship varies dur-
ing differentiation of PC12 cells. We found that there is a de-
crease in variation of mitochondrial localization with respect to 
time after differentiation.

Given population snapshots, we constructed a model to de-
scribe shape evolution in response to NGF treatment; the model is 
capable of producing movies by statistically sampling differentiat-
ing cell shapes. Here we make very simple assumptions for shape 
dynamics in terms of both cell/nuclear shapes and mitochondria 
localization by interpolating across linear paths in the shape space 
for the cell and nuclear shape models and then estimating param-
eters for the localization model from those shapes. The synthetic 
movies appear reasonable in terms of shape dynamics even without 
using any prior knowledge of how PC12 cells actually differentiate. 
Of course the model of mitochondrial localization is quite simplistic, 
only considering the spatial probability distribution, rather than try-
ing to predict individual mitochondrial shapes, sizes, and intensi-
ties. Thus, one potential future direction is to apply other genera-
tive methods for organelle or protein dynamics, for example, the 
3D equivalent to optimal transport models (Kolouri et al., 2015).

An important finding was that, at least for the PC12 images, 
shape models that were sufficiently detailed to capture most varia-
tion yielded shape spaces that are effectively hollow, with most cell 
shapes and trajectories away from the mean shape coordinates. This 

has important consequences both for synthesis of shapes (allowing 
synthesis only between similar measured shapes) and for compari-
son of image sets.

The method we have described is capable of constructing 
models in a range of time-varying cell-component localization 
applications, including but not limited to changes associated 
with division and cell migration. Recent findings have shown that 
population heterogeneity is inherent in the PC12 signaling net-
works (Ryu et al., 2015). The relationship between proliferation 
and differentiation is sharply defined by mutually exclusive pAKT 
and pERK concentrations (Chen et al., 2012). This suggests an 
influence of stochastic effects on the cell fate decision, and that 
on the single-cell level cells are either proliferating or differentiat-
ing. As a consequence, homogeneity of the population can be 
reduced by optimal growth conditions, but never completely ab-
rogated (Mouri and Sako, 2013; Chung et al., 2014).

Moreover, the method can allow us to model nuclear shape 
changes of hiPSCs after drug treatment. The most significant shape 
variances after treatment are the nuclear size and roundness. These 
findings are consistent with previous findings.

The image-derived modeling technique described here is 
able to model single-cell decisions and is therefore a small step 
in the development of tools to automatically learn relationships 
among cell populations and between cell shapes and their com-
ponents, as well as provide compact representations of these 
relationships.

FIGURE 8: Shape space and shape variances comparison of nuclear shapes for hiPSCs. (A) Nuclear shape spaces for 
vehicle (blue), rapamycin (red), and staurosporine (green). A large dot with a black boundary shows the centroid of 
shape distributions for each group. (B) p values of t tests between a drug and its vehicle for size (shown on the left) and 
the first 39 PCs (separately). (C) Shape variance visualization for PC1 and PC4 in the shape space. The variations in PC1 
and PC4 are shown along the x-axix and y-axis, with different standard deviations (SDs) as indicated. The center shows 
the mean shape.
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MATERIALS AND METHODS
Cell culture and experimental conditions
PC12 cells (between 6 and 10 passages) were obtained from the 
American Type Culture Collection (UK) and were cultured in RPMi 
medium containing 10% horse serum (HS), 5% fetal calf serum, 
1% l-glutamine, and penicillin/streptomycin at 37°C in 5% CO2. 
Cells were plated on collagen-coated 35-mm glass-bottom ibiTreat 
dishes and were allowed to adhere for 24 h. Two types of experi-
ments were performed. Cells were either treated with 50 ng/ml rat 
NGF (Promega, Madison, WI) at 0, 12, 24, 36, and 48 h before im-
aging at the same time, or were treated at the same time and 
imaged at 24-h increments up to 96 h after treatment. Before imag-
ing (1 h), cells were stained at 37°C with a 0.5 μM solution of mito 
red (Sigma-Aldrich, Munich, Germany) for 5 min, rinsed with 
phosphate-buffered saline, and placed in 1 ml of growth media 
without phenol red.

Microscopy
Cells were imaged on an Axio Observer.Z1 (Carl Zeiss Microscopy, 
Jena, Germany) microscope equipped with a spinning disk (CSU-22; 
Yokogawa, Japan) with an EX-Plan-Neofluar 40×/1.30 oil objective. 
The sample voxel size was 0.161 μm × 0.161 μm × 0.340 μm and 59 
slices were taken with a 150-ms exposure time at 12-bit pixel depth. 
Imaged cells were manually selected to not be in contact with other 
cells. Due to the sensitivity of cells to phototoxicity, approximately 
10 fields were imaged per plate. Between 172 and 98 cells were 
imaged at each time point for the 48-h experiment and between 46 
and 89 cells per time point in the 96-h experiment.

Cell shape segmentation
To find the outline of each cell, each slice of an image was con-
volved with a 2D Hessian filter with a 3-pixel SD and eigen-edges 
were extracted (Ronneberger et al., 2008). Dilation and erosion 
operations were performed on each slice with a disk structuring 
element of 14 and 24 pixels, respectively. The final shape was regu-
larized by convolving with a Gaussian with a SD of 7 pixels and 
retaining all pixels with a value greater than 0.5. The result was a 
“shell” of the cell shape, and thus a fill operation was performed on 
each region (cell) in the image.

Nuclear shape segmentation
Given a masked cell shape, the intensity image was thresholded via 
Ridler–Calvard thresholding (Ridler and Calvard, 1978). The nucleus 
was defined as the volume not containing a signal within the convex 
hull of each cell. Because this may result in multiple objects, a 
distance transform was performed, segmented with an active con-
tour, and the largest object returned as the final nuclear shape. An 
example of this pipeline is shown in Supplemental Figure S12.

Cell and nuclear shape model with spherical harmonic 
framework
Shape alignment and modeling. Joint models for cell and nuclear 
shapes were constructed using the spherical harmonic framework 
as described (Ruan and Murphy, 2019). To make different shapes 
comparable, this framework aligns shapes using the first-order 
ellipse before creating the model. As an alternative we also did 
alignment using the major axis, as illustrated in Supplemental 
Figure S13. The surface points were projected to the xy-plane, and 
PCA was used to find the major axis. The cell shape was then 
rotated around the z-axis to align it to this axis (Supplemental 
Figure S13A). After that, if the skewness along the x-axis was 
negative, the shape was flipped in the xy-plane. The cell shape was 

mapped to a unit sphere as described previously (Ruan and Murphy, 
2019). This assigns each point on the surface of the shape to a 
point on a unit sphere, referred to as a parameterization of the 
shape. This parameterization needs further alignment so that the 
final descriptors of different cells are comparable, and further 
alignments were done on the parameterization vectors. The basic 
idea is to find some landmarks from the parameterization in specific 
directions and then rotate the parameterization using the 
landmarks. The first step is to pick a pair of vertices whose direction 
is closest to the x-axis to define the oriented poles in the spherical 
parameterization. To do this, vertices in the object were first paired 
with each other such that the projection to the unit sphere of one 
point is closest to the antipodal point of the other point (i.e., the 
two points are [approximately] diametrically opposite to each other 
after mapping). The 1% of pairs whose vector directions have the 
smallest angles to the xy-plane (those that are approximately in the 
xy-plane) were chosen, and the subset of those chosen for which 
the direction vectors were within 0.01% of the x-axis. The pair in 
this subset with the largest distance between them was chosen as 
the south and north poles for the parameterization. The second 
step is to find landmarks in the equator (analogous to points with 0° 
and 180° longitudes). The pairs of points whose direction vectors 
had inclinations (polar angles) closest to zero were chosen, and 
finally the pair with the minimum differences in the z coordinate 
selected. Given the poles and equator landmarks, a rotation matrix 
was defined as the rotation from the projected coordinate of the 
equator landmark with the larger y coordinate to the coordinate of 
(0, 1, 0) (see Supplemental Figure S13, B and C). After rotation, the 
spherical parameterization is flipped along the x-axis if the point in 
the object space with coordinate (1, 0, 0) in the parameter space 
has a smaller z coordinate than that of the centroid of all surface 
points.

The final parameterizations were converted to spherical harmonic 
descriptors, and shape spaces of various dimensions were created 
from various numbers of principal components of the descriptors. 
To analyze the distributions in the shape space, fits to Gaussian or 
hyperellipsoidal distributions were done for each number of dimen-
sions. Hyperellipsoidal fits were done using various methods 
from the HYPERELLIPSOIDFIT package (www.mathworks.com/
matlabcentral/fileexchange/59186-hyperellipsoidfit), namely, the 
sum of discriminants method (SOD), ellipsoid-specific method (HES), 
quadratic constraint-based methods (BOOK and TAUB), fixed con-
stant term method (FC), or fixed sum of squares method (2-NORM). 
Fits for these methods were calculated with the regularization 
parameter set to log values from 2 to −2 in increments of 0.1 and the 
combination of method and regularization parameter that gave the 
lowest residual error was chosen.

Shape reconstruction. Shape reconstruction from a SPHARM-
RPDM model was done as described previously (Ruan and Murphy, 
2019). The accuracy of shape reconstruction was measured using 
the Hausdorff distance, which is defined as

HD X Y d x y d x y, max max min , , max min ,
y Y x X x X y Y

( ) ( )( ) = 



∈ ∈ ∈ ∈  (1)

where X and Y are two sets of points and d (x, y) is a metric of dis-
tance between two points (Euclidean distance in our case). The 3D 
volume images of shapes were converted to surface meshes, and 
vertices in the meshes for the original and reconstructed surfaces 
were used to calculate the Hausdorff distance. Hausdorff distances 
are measured in voxels, and therefore cannot be readily compared 

https://www.mathworks.com/matlabcentral/fileexchange/59186-hyperellipsoidfit
https://www.mathworks.com/matlabcentral/fileexchange/59186-hyperellipsoidfit
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between shapes of difference sizes. An additional error metric, peak 
signal-to-noise ratios (PSNR) between the original and reconstructed 
shape, was therefore also included to provide a scale-free estimate 
of the reconstruction quality. PSNR is calculated based on the Haus-
dorff distance with the following form:

PSNR 20log
BD

HD
10=  (2)

where BD is the diagonal of the minimum bounding box of the cell 
and HD is the Hausdorff distance. For the joint model, the joint re-
construction error was defined as the average of those for the two 
components (cell and nuclear shapes).

Mitochondrial localization model
Mitochondrial localization models were learned as described previ-
ously (Peng and Murphy, 2011). Briefly, the mitochondrial image after 
masking to the cell boundary was preprocessed by removing intensity 
below the Ridler–Calvard threshold. A spherical Gaussian mixture 
model was fitted using seeds at each intensity local maxima after con-
volving the image with a Gaussian filter of one voxel SD. The position 
of each voxel in the cell was parameterized according to its ratio of 
distance to the nuclear surface over the nuclear distance plus the dis-
tance to the cell surface, s, and the inclination and azimuth angles, θ 
and φ, respectively, from the nuclear center. A logistic function was 
fitted to the probability that each pixel contains an object centroid,

P s
e

, ,
1

1 s s cos sin sin sin cos0 1 2
2

3 4 5
θ φ( ) =

+ β β β β φ θ β φ θ β θ( )− + + + + +  (3)

The spatial probability distribution for each cell was parameter-
ized by the six-element vector β.

Regression model between shape and mitochondrial 
distribution
We used a multiresponse regression to model and predict the mito-
chondrial localization model given the cell and nuclear shapes:

Y B XB W1n 1 0= + +×  (4)

where X R n s∈ ×  is a matrix of joint shape-space positions of dimen-
sion s, with each row corresponding to a cell and nuclear shape, and 
each column a dimension of the shape space (in this case 300 di-
mensions without scale, and 301 dimensions including scale factors 
as an additional feature). Y R n p∈ ×  is a matrix of mitochondrial local-
ization models, with each row being a model corresponding to the 
cell at the same row in X. 1n×1 is the n-dimensional column vector 
with all elements as 1. B0 and B are model parameters, where 
B R p

0
1∈ ×  is the parameter for the intercept and B R s p∈ ×  is the re-

gression matrix describing the relationship between the shape 
space and mitochondria localization models. W ∈ Rn×p is a matrix of 
random noise following multivariate Gaussian distribution with zero 
mean (the residual variation in the localization parameters not ex-
plained by model parameters). Here we combined elastic net re-
gression (Zou and Hastie, 2005) with a group-penalized estimator 
(Simon et al., 2013a) of model parameters defined as

B B Y XB B vec B B Bˆ , ˆ argmin
1

2
1

B B
n F F

i

s

i0
,

1 0
2

1 1 2
2

3
1

2
0

∑λ λ λ( )= − − + + +×
=

 (5)

where vec( )⋅  is the operator of reshaping a matrix into a column 
vector, || ||1⋅  represents the l1 norm of a vector, || ||F⋅  stands for the 
Frobenius norm of a matrix, and B|| ||i 2  indicates the l2 norm of the 

ith row of B. The regularization parameters λ1, λ2, and λ3 function as 
penalization terms on B to control the structure of B, as well as to 
avoid overfitting of the model. These regularization parameters 
were chosen by sweeping over combined sets of possible candidate 
values, and selecting the set that results in the lowest mean-squared 
prediction error of Y via 10-fold cross-validation. In the cross-valida-
tion, we allowed λ2 and/or λ3 to be zero, which means that the 
model may degenerate into lasso regression (Tibshirani, 1996; if 
both λ2 and λ3 are zeros), elastic net regression (Zou and Hastie, 
2005; if λ3 is zero), or sparse group lasso regression (Simon et al., 
2013b; if λ2 is zero). The reason for the possibility of degeneration in 
the model is to allow more flexible control of the model in response 
to different situations in the data sets. We implemented the regres-
sion model with the alternating direction method of multipliers 
framework (Boyd et al., 2011).

Modeling kinetics of differentiating cells
Given cell populations at sequential time points, we sought to find 
plausible and most similar cell shapes at the subsequent time point; 
such a shape pair can be treated as a “trace” in time series models. 
This essentially becomes a matching problem, where we want to 
find a matching of each cell in one time point to one cell in the next 
time point that minimizes the total shape-space distance between 
pairs of matched cell shapes. More formally, given the shape-space 
positions of equal numbers of cells at subsequent time points, 
X X,t t0 1, we can construct a matrix of cell shape distances between 
cells at subsequent time points,

D d x x,ij i j( )=  (6)

where i N j N1, , , 1, , ,t t0 1= … = …  and N N,t t0 1 are the number of 
cells for t0 and t1, respectively. We want to minimize the function

D a
i X j X

ij ij
t t0 1

∑ ∑
∈ ∈

 (7)

where aij is binary matrix of assignments taking a value of 1 if there 
is an assignment and 0 otherwise, subject to the constraints 

a 1
i

N
ij1

t0

∑ =
=  and a 1

j

N
ij1

t1

∑ =
=

 (Christofides, 1975). This problem was 
solved through the Hungarian algorithm (Kuhn, 1955).

Modeling drug-induced nuclear shape changes
Image source. The images are obtained from the drug perturba-
tion pilot study at Allen Institute of Cell Science (www.allencell 
.org/drug-perturbation-pilot.html). The detailed experimental 
setup and image acquisition procedure are described on the 
website. Briefly, green fluorescent protein–tagged hiPSCs were 
treated with different drugs, followed by 3D high-resolution 
imaging. Five drugs were used: brefeldin A, paclitaxel (Taxol), 
rapamycin, SNB, and staurosporine. After drug treatment, 3D 
z-stack images were acquired with high magnification (120×). For 
the nuclear channel, images were 624 × 924 × 65 pixels and each 
pixel represented 0.108 μm × 0.108 μm × 0.29 μm.

Nuclear segmentation
A seeded watershed method (Meyer, 1994) was used for segmenta-
tion, in which a 2D projected image was segmented and the seg-
mented objects were used as seeds for the 3D seeded watershed 
algorithm. There are two basic steps: the projected 2D image seg-
mentation and 3D image segmentation. The detailed procedure is 
as follows:

1. Projected 2D image segmentation. First, because some images 
have very low SNRs, which makes the segmentation difficult, we 

www.allencell.org/drug-perturbation-pilot.html
www.allencell.org/drug-perturbation-pilot.html
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skip images with low contrast with a contrast threshold (the root 
mean square contrast 15 in the implementation) for the mean of 
the top three contrasts across all slices. Then, we project the nu-
clear image to the xy-plane by averaging the 15 slices centered 
by the slice with the highest contrast. Second, we first smooth the 
projected image with a Gaussian filter, and binarized the image 
with 0.9 folds of Otsu’s threshold, followed by hole filling and im-
age smoothing. Third, if an object is considered as multiple cells 
touching together based on some criteria such as area, length of 
major axis, eccentricity, and so on, we split the object into multi-
ple regions using a bottleneck detection method. In the method, 
we extract the skeleton and find paths for each pair of endpoints 
in the skeleton. For each path, we calculate the minimum dis-
tance from each pixel in the path to the two sides of the object 
boundary. A bottleneck is considered if there is a local minimum 
distance, where we can find two points that form the local mini-
mum in each side of the boundary as bottleneck points. We do 
this for all paths. After that, we split the object into two parts by 
cutting the line across a pair of bottleneck points, if both parts 
have a reasonable size (>500 pixels). We repeat the cutting pro-
cess for all pairs of bottleneck points. Fourth, we refine the seg-
mentation of the projected image with the seeded watershed 
algorithm followed by local segmentation with Otsu’s method. 
We first use the results from the third step as seeds for the water-
shed algorithm to define regions. For each region, we use Otsu’s 
algorithm to get a local threshold for the object in order to better 
match the local background to obtain a more accurate nuclear 
shape. The region is binarized with 0.9 folds of Otsu’s threshold, 
followed by hole filling and image smoothing. Also, we split 
touching objects using the method as described in the third step.

2. 3D nuclear shape segmentation. After obtaining 2D nuclear 
shapes in the projected image, we create a mask with the same 
size as the original 3D nuclear image and then place the seg-
mented objects as the central slice in the mask as well as setting 
the boundary as an object (so that we can remove cells touching 
the boundary in the segmentation). Then, we smooth the nuclear 
image with a 3D Gaussian filter and apply the watershed algo-
rithm using the mask as the seeds. For each region obtained 
from the watershed algorithm, we apply Otsu’s method to obtain 
a specific threshold for each region and binarize the region with 
a threshold of 0.95 folds of Otsu’s threshold. Then, we fill holes 
and smooth the nuclear shape with image close and open filters. 
Finally, bad segmentations are moved with criteria such as the 
area of the projected object in the xy-plane, the volume, the 
number of z-stacks, area touching the boundary, length of princi-
pal axis, solidity, surface area, length of equivalent diameter, and 
so on.

Nuclear shape modeling
We build a nuclear shape-space model using the SPHARM-RPDM 
model in the same way as described above, except that the model 
was only for nuclear shape.

Availability
The CellOrganizer software used here for modeling these relation-
ships is available at http://cellorganizer.org. The source code for 
performing all analyses in this article, as well as analysis results, is 
available at http://murphylab.cbd.cmu.edu/software. The original 
PC12 images are available from the Dryad Digital Repository at 
https://doi.org/10.5061/dryad.hc8037v.
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