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Johannes Eichner1*, Clemens Wrzodek1, Michael Römer1, Heidrun Ellinger-Ziegelbauer2, Andreas Zell1
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Abstract

The current gold-standard method for cancer safety assessment of drugs is a rodent two-year bioassay, which is associated
with significant costs and requires testing a high number of animals over lifetime. Due to the absence of a comprehensive
set of short-term assays predicting carcinogenicity, new approaches are currently being evaluated. One promising approach
is toxicogenomics, which by virtue of genome-wide molecular profiling after compound treatment can lead to an increased
mechanistic understanding, and potentially allow for the prediction of a carcinogenic potential via mathematical modeling.
The latter typically involves the extraction of informative genes from omics datasets, which can be used to construct
generalizable models allowing for the early classification of compounds with unknown carcinogenic potential. Here we
formally describe and compare two novel methodologies for the reproducible extraction of characteristic mRNA signatures,
which were employed to capture specific gene expression changes observed for nongenotoxic carcinogens. While the first
method integrates multiple gene rankings, generated by diverse algorithms applied to data from different subsamplings of
the training compounds, the second approach employs a statistical ratio for the identification of informative genes. Both
methods were evaluated on a dataset obtained from the toxicogenomics database TG-GATEs to predict the outcome of a
two-year bioassay based on profiles from 14-day treatments. Additionally, we applied our methods to datasets from
previous studies and showed that the derived prediction models are on average more accurate than those built from the
original signatures. The selected genes were mostly related to p53 signaling and to specific changes in anabolic processes or
energy metabolism, which are typically observed in tumor cells. Among the genes most frequently incorporated into
prediction models were Phlda3, Cdkn1a, Akr7a3, Ccng1 and Abcb4.
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Introduction

A crucial step in the development of drug candidates is the early

exclusion of compounds with carcinogenic potential. The current

standard for cancer risk assessment is the two-year rodent

bioassay, which involves lifelong treatment of mice and rats at

different dose levels. In addition to high costs and sizeable animal

use, this method is also known to give false-positive results with

respect to human relevance [1]. These may for instance arise from

spontaneously formed tumors, from rodent-specific modes of

carcinogenicity which do not exist in humans, or from toxic doses

causing cell injury or death followed by regenerative cell

proliferation [2].

Since the liver is a major target for drug-induced tumor

formation, the assessment of cancer risk in this organ is of major

importance. A wide variety of mechanisms have been proposed so

far for hepatocarcinogenesis. In general, a major distinction is

made between genotoxic carcinogens (GC), which induce tumors

by direct chemical interaction with DNA, and nongenotoxic

carcinogens (NGC), which lead to tumor formation by other

mechanisms, such as peroxisome proliferation or secretion of

growth-stimulating hormones [3]. For the detection of genotoxi-

city, a cost-effective short-term test battery, consisting of the Ames

test, mouse lymphoma assay, in vitro micronucleus or chromosomal

aberration test, is routinely performed in the pharmaceutical

industry. However, this battery of tests is associated with a high

number of false positives [4]. Furthermore, as opposed to GCs, no

established short-term toxicity assays exist for the early identifi-

cation of NGCs. Thus, there is a great demand for the

development of reliable prediction methods, and toxicogenomics

may be one method which is worth considering in this respect.

Nuwaysir et al. first introduced the concept of toxicogenomics

and developed a custom cDNA microarray for the extraction of

toxicant signatures, i.e., sets of informative genes which are

commonly and uniquely differentially expressed upon treatment

with toxicants belonging to a certain class [5]. The authors

proposed that on the basis of confidently labeled training

compounds generalizable models can be constructed that facilitate

the classification of unknown test compounds. Furthermore,

putative mechanisms of action can be deduced from the observed

gene expression patterns.

Various bioinformatics approaches have been developed for the

analysis of gene expression profiles induced by treatment with

toxic substances. Published approaches for the inference of
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informative gene signatures include statistical as well as machine

learning-based methods. Statistical methods, such as analysis of

variance (ANOVA), mixed linear models, principal component

analysis (PCA) or Golub’s signal-to-noise ratio (Golub-Ratio) have

been successfully adopted for the extraction of genes which are

differentially expressed between compound classes [6–9]. The so

far applied machine learning-based approaches include prediction

analysis for microarrays (PAM), Support Vector Machines (SVM),

weighted voting, recursive feature elimination (RFE), and other

supervised learning algorithms which can be employed for both

feature selection and class prediction [6,9–11]. A detailed review

of the different approaches used in toxicogenomics studies was

recently published by Afshari et al. [12]. Notably, in recent years

much attention has been drawn towards the microarray-based

prediction of nongenotoxic carcinogenesis in rat liver (reviewed by

Waters et al. [1]).

A large catalogue of transcriptomics datasets is now available in

public databases (e.g., Gene Expression Omnibus and ArrayEx-

press). Furthermore, recently conducted large-scale studies result-

ed in the assembly of databases specializing in toxicogenomics,

such as DrugMatrix (https://ntp.niehs.nih.gov/drugmatrix) and

Open TG-GATEs (http://toxico.nibio.go.jp) [13]. Interestingly,

regulatory agencies recognize toxicogenomics as a powerful tool to

assist in solving toxicologal issues. Both DrugMatrix and TG-

GATEs were pointed out as useful resources to gain further

knowledge for the drug discovery process [14].

In contrast to universal databases such as Gene Expression

Omnibus, these two databases offer organized in vivo and in vitro

datasets from a large set of compounds, which were generated

using consistent study designs and standardized experimental

protocols to achieve reproducibility and comparability [14]. Both

databases comprise time-series measurements of gene expression

at multiple dose levels, which were profiled using Affymetrix or

Codelink (DrugMatrix only) platforms. For phenotypic anchoring,

data from various measurements characterizing the compounds’

pharmacology and toxicological effects, including clinical chem-

istry and histology data, can be downloaded along with the gene

expression data.

Here we present two novel approaches for the inference of

robust and generalizable gene expression signatures and evaluate

their performance with respect to the prediction of a carcinogenic

potential, usually assessed in a two-year study, based on public

microarray data from various short-term studies. Our first

approach employs an ensemble of common feature selection

methods for the extraction of informative genes from multiple

subsamplings of the training compounds. By considering many

variations of the training set and adopting multiple selection

algorithms, this approach aims at increasing the generalizability of

the inferred signature in the sense that it allows a more reliable

identification of NGCs among compounds with unknown

carcinogenic potential.

The second approach, which requires less computational power

and a smaller amount of training compounds, is based on a

moderated signal-to-noise ratio. While traditional approaches

select genes differentially expressed between two equally treated

classes of samples, our method allows for the extraction of gene

expression patterns which are truly specific to the class of primary

interest. Thus, we consider our approach better suited for the

objective evaluated here, where genes showing a specific response

pattern upon NGC treatment and not upon exposure to non-

carcinogens shall be identified. On the basis of Golub’s signal-to-

noise ratio and the t-shrink statistic proposed by Opgen-Rhein and

Strimmer, we devised the Specificity Ratio (SR) which detects

genes that are specifically deregulated upon treatment with NGCs,

while no or only minor expression changes can be observed for

NCs [15,16].

When compared against previously reported signatures on

public toxicogenomics data from six previously conducted studies

and another dataset obtained from TG-GATEs, we found that on

average a higher accuracy could be achieved by classifiers trained

on predictive signatures from our Ensemble Feature Selection

(EFS) method. We also assessed the classification performance of

different ensembles of feature selection methods and investigated

the robustness of each individual gene ranking technique in these

ensembles.

Methods

Ethics Statement
The here analyzed data is publicly available from the TG-

GATEs database (http://toxico.nibio.go.jp/english/), which has

been established during the Japanese Toxicogenomics Project

(TGP).

Microarray Dataset
The Affymetrix dataset used for classifier training and

evaluation was compiled on the basis of the recently published

TG-GATEs database [13]. We selected 2 GC, 9 NGC and 11 NC

compounds which could be unambiguously assigned to one of

these three compound classes. Experimental evidence for class

membership was obtained from genotoxicity tests and long-term

animal studies (Table 1). The three compounds Methapyrilene

hydrochloride (MP), Pirinixic acid (WY) and Monocrotaline

(MCT) were considered as undefined, as these showed character-

istics of both genotoxic and nongenotoxic compounds.

For equipotent dose selection, we considered the doses which

were tested in long-term animal studies and finally resulted in the

development of first hepatocellular carcinomas. In parallel, we

investigated the TD50 rates, i.e., the compound dose that leads to

tumor formation in half of the tested animals, published in the

CPDB database (http://potency.berkeley.edu/). Furthermore, we

compared histopathology and clinical chemistry data between

different compound administrations within the TG-GATEs

database. Altogether, from the three dose levels available for each

compound in the database, we selected for each compound

individually an appropriate dose which corresponds to 5–30-fold

of the TD50 rate. Since dose range finding studies up to 14 days

are routinely performed for drug candidates in the pharmaceutical

industry, this time point was of major practical interest.

Download and Preprocessing of the Microarray Data
The Affymetrix raw data (CEL files) and the corresponding

metadata were downloaded from the TG-GATEs FTP site (ftp://

ftp.dbcls.jp/archive/open-tggates/). After importing the Affyme-

trix raw data into the R software environment, the data was

normalized by using the robust multi-chip average (RMA) method

implemented in the affy package. In a subsequent annotation step

gene symbols and Entrez Gene IDs were assigned to each

Affymetrix probeset, based on the corresponding metadata

package rat2302.db provided by Bioconductor [17,18].

Signature Extraction by using an Ensemble of Feature
Selection Techniques

In this study we conceived and implemented an approach for

the extraction of predictive and generalizable mRNA signatures

for the detection of nongenotoxic hepatocarcinogenesis in rat. For

the ranking of candidate signature genes we used weights of

Support Vector Machines (SVM) with linear kernels, Prediction

Assessing Compound Carcinogenicity in Rat Liver
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Analysis for Microarrays (PAM), Recursive Feature Elimination

(RFE) and Golub’s Signal-to-noise Ratio (Golub-Ratio) [15,19–

21]. However, in principle, any other algorithm producing a

complete ranking of the genes depending on their potential to

discriminate NGCs from NCs could have been used.

Optimization of the Number of Informative Genes
Each method was applied on 25 random subsamplings of the

data (bootstrap samples), each containing 90% of the training data.

The remaining 10% of the training data (out-of-bag samples) were

used for evaluating the classification performance based on the

area under the ROC curve. For this purpose, 11 different

signature sizes between 2 and 100 genes were defined. Then ROC

scores were estimated based on the predictions of a fast KNN

classifier trained on each signature obtained for a certain

combination of a method, bootstrap and signature size. By

averaging ROC scores across methods, bootstraps and cross-

validation folds, a performance could be assigned to each signature

size. The optimal number of informative genes was then

determined by fitting a spline function which describes the

relation between signature size and classification performance

and computing its analytical maximum.

Assessment of the Stability
In order to assess the robustness of the signatures depending on

the selection method and the number of signature genes, a stability

index proposed by Kuncheva was used [22]. Given two feature

subsets A and B of size k, which have r features in common and

which were selected from a set of n features, the Kuncheva index

(KI) serves as a measure for the consistency between A and B and

is formally defined as KI(A,B)~
rn{k2

k(n{k)
~

r{(k2=n)

k{(k2=n)
[22].

Obviously, KI(A,B) monotonically increases with r, the number

of features shared between A and B. The term k2/n was included to

correct for the common selection of features by chance and

transforms the KI to a value range between 21 and 1. A value of 0

is expected for independently drawn feature subsets which overlap

purely by chance. While negative values of the KI suggest that the

selected subsets are more complementary than expected by

chance, positive values indicate higher overlaps than expected

by chance. The maximum is obtained for two equal subsets and

the minimum is reached for two disjoint subsets with

|A| = |B| = n/2. The KI can also be computed for m.2 feature

subsets by averaging across all pairs of subsets:

Table 1. Selected compounds from TG-GATEs database.

Class Compound CAS Number Vehicle Dose [mg/kg/d] Group ID

Genotoxic carcinogens 2-Acetamidofluorene 53-96-3 MC 30 AAF_LD

N-Nitrosodiethylamine 62-75-9 MC 10 DEN_MD

Nongenotoxic carcinogens Carbon tetrachloride 56-23-5 CO 300 CCL4_HD

Phenobarbital 50-06-6 MC 100 PB_HD

Clofibrate 637-07-0 CO 300 CFB_HD

Hexachlorobenzene 118-74-1 CO 100 HCB_MD

Phenytoin 57-41-0 MC 600 PHE_HD

Coumarin 91-64-5 CO 150 CMA_HD

Ethinyl estradiol 57-63-6 CO 1 EE_LD

Fenofibrate 49562-28-9 MC 100 FFB_MD

Non-carcinogens Aspirin 50-78-2 MC 450 ASA_HD

Diclofenac sodium 15307-79-6 MC 10 DFNa_HD

Ciprofloxacin hydrochloride 93107-08-5 MC 1000 CPX_HD

Metformin hydrochloride 1115-70-4 MC 1000 MFM_HD

Nifedipine 21829-25-4 MC 1000 NIF_HD

Enalapril maleate 76095-16-4 MC 600 ENA_HD

Mexiletine 5370-01-4 MC 400 MEX_HD

Triazolam 28911-01-5 MC 1000 TZM_HD

Meloxicam 71125-38-7 MC 30 MLX_HD

Lornoxicam 70374-39-9 MC 3 LNX_HD

Cyclosporine A 59865-13-3 CO 100 CSA_HD

Undefined compounds Methapyrilene hydrochloride 135-23-9 MC 100 MP_HD

Wy-14643 50892-23-4 CO 10 WY_LD

Monocrotaline 315-22-0 MC 10 MCT_MD

The table lists the compounds from the TG-GATEs database which were included into our computational analysis of NGC-specific expression profiles. For each
compound CAS numbers are provided as a reference. According to the annotation files from TG-GATEs, either corn oil (CO) or methyl cellulose (MC) were used as
vehicles for the administration to rats. From the three dose levels available at TG-GATEs, we selected for each compound individually the dose level on the basis of the
tumorigenic dose rate 50 (TD50) known from published animal studies. The liver samples of 3 Sprague-Dawley rats were taken for one group. The corresponding IDs
include the compound short name as well as the selected dose. Low Dose (LD) = 1/8 of LD50, Medium Dose (MD) = 1/4 of LD50, High Dose (HD) = 1/2 of LD50.
doi:10.1371/journal.pone.0097678.t001

Assessing Compound Carcinogenicity in Rat Liver

PLOS ONE | www.plosone.org 3 May 2014 | Volume 9 | Issue 5 | e97678



KI(A1, . . . ,Am)~
m

2

� �{1Xm

i~1

Xm

j~iz1

KI(Ai,Aj) ½22�:

Merging of the Signatures
In order to obtain a robust consensus signature which is less

dependent on the employed selection method and the compounds

used for training, the sets of informative genes selected by diverse

methods on different bootstraps were merged. For this purpose,

the gene ranks obtained from individual bootstraps and methods

were summed up. Then the genes were sorted in ascending order

based on their rank sums to obtain a consensus ranking. Given the

ranking and the previously determined optimal number of

informative genes, the final multi-gene signature was generated.

Specificity Ratio for Signature Extraction
As an alternative to the Ensemble Feature Selection (EFS)

approach, which makes extensive use of diverse machine learning

algorithms, we conceived a second, purely statistical approach.

Our Specificity Ratio (SR) relies on a similar concept as Golub’s

ranking method, which selects informative genes, based on high

expression differences between classes and small deviations within

classes [15]. Golub et al. proposed to calculate for each gene g[G

the signal-to-noise ratio rg~
m1g{m2g

s1gzs2g

, where m1g and m2g denote

the fold-changes of g averaged across all samples in class c1 and c2,

respectively. s1g and s2g denote the corresponding standard

deviations [15].

Please note that high positive or negative values of rg may

indicate significant expression differences between the two classes.

However, rg does not ensure that the selected genes have class-

specific expression profiles in the sense that high expression

changes are only present in the class of primary interest. As we

aimed at selecting genes, which are up- or downregulated in the

primary class c1 (here: NGC) while being not differentially

expressed in the secondary class c2 (here: NC), we replaced m1g

and m2g by the average absolute fold-changes m’1g and m’2g with

m’1g~
1

n

X2

j~1

Xnj

i~1

Dxijg D in the denominator of Golub’s ratio. In this

equation xijg denotes the log2(fold-change) of a gene g in the i-th

compound of class cj which contains nj compounds. The total

number of compounds is n~n1zn2.

In the next step, the gene-specific standard deviations sg were

shrunken towards the median variance s0 averaged across all

genes, in order to avoid the overvaluation of genes with marginal

differential expression, due to an underestimation of the sample

variance. For this purpose, we replaced the gene-specific standard

deviations sg by the moderated standard deviations

s’g~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ls2

0z(1{l)s2
g

q
used by Opgen-Rhein and Strimmer in

their shrink-t statistic [16]. The authors proposed to adjust the

variances by using a weighed sum of the gene-specific variances s2
g

and the overall variances s2
0, where the weight of s2

0 is given by a

pooling parameter l with 0ƒlƒ1.

The optimal value for l is determined based on the variances

var s2
g

� �
of the gene-specific variances s2

g as defined in the

following equations:

l~ min 1,

XG

g~1

var s2
g

� �
XG

g~1

s2
g{s2

0

� �2

0
BBBBB@

1
CCCCCA

var s2
g

� �
~

n3

(n{1)3

X2

j~1

Xnj

i~1

(xijgz�xxjg)2

n1n2
{

(n{2)s2
g

n2

 !2

Intuitively, the main idea is that if the variance var s2
g

� �
of the

gene-specific variances s2
g is high, these values could not be

reliably obtained from the data and thus, should be adjusted by

shrinkage towards the target s2
0 [16]. Otherwise, if all s2

g could be

reliably estimated with small variance var s2
g

� �
, the adjustment

should be smaller. The complete mathematical derivation of the

formulas used for the estimation of the moderated standard

deviations s’g was provided earlier by Opgen-Rhein and Strimmer

[16]. Finally, on the basis of Golub’s ratio rg~
m1g{m2g

s1gzs2g

, we

defined the specificity ratio sg~
m’1g{m’2g

2s’g
.

Post-Filtering of Candidate Signature Genes
Since our ratio sg is based on the absolute values of the fold-

changes, the direction of a gene’s deregulation may vary across the

compounds in the primary class c1. In order to filter genes which

are either consistently up- or downregulated, we applied a ROC-

based filter to the obtained gene lists. This filter computes a ROC

score for each gene by comparing the fold-changes observed for

the different compounds to their corresponding compound class.

The ROC score reaches its maximum (ROCg~1) for a particular

gene g, if the fold-changes measured for the compounds of the

primary class (here: NGC) are all greater than the fold-changes

observed for the secondary class (here: NC). For an equally

informative gene which is consistently more strongly downregu-

lated upon treatment with primary class compounds, the ROC

score would be 0. If there is no correlation between gene

expression and the compound class, we would expect a ROC score

of 0.5. As we aimed at filtering both consistently up- and

downregulated genes, we computed for each gene g[G the

maximum ROC score tg~ max ROCg,1{ROCg

� �
obtained for

regular and inverted class labels, respectively. Then we used a

cutoff of tgw0:8 to filter relevant signature genes.

Assessment of the Classification Performance
Ultimately, the selected informative genes were incorporated

into different prediction models which were evaluated on

independent sets of test compounds. To this end, we trained 6

different classifiers based on the learning algorithms SVM, KNN,

PAM, Random Forest, Weighted Voting and Naive Bayes and

evaluated the performance of these classifiers based on a nested

363-fold cross-validation [15,19,21,23]. Within each fold of the

outer cross-validation, an inner 3-fold cross-validation was
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performed on the corresponding training data to determine the

optimal model parameters.

Scaling of Classifier Inputs and Outputs
The standardized fold-changes (i.e., z-scores) of the informative

genes were used as features for model construction. Specifically,

for each gene the mean m and the standard deviation s of the fold-

changes were calculated and then each fold-change was

transformed into a z-score z(x)~
x{m

s
. For the sake of simplicity

and better comparability, the prediction scores returned by the

classifiers were mapped to a value range between 0 and 1. As SVM

outputs were contained in the interval ½{n,n�, where n varies

between models depending on the used training data and

hyperparameter C, the sigmoidal function f : R?½0,1� with

f (x)~
1

1ze{x
was used for scaling. The confidences obtained

from Weighted Voting classifiers, which originally ranged between

21 and 1, were transformed using the linear function

g : ½{1,1�?½0,1� with g(x)~
xz1

2
. For KNN we computed

continuous outputs, based on the function h : N?Q with h(x)~
x

k
where k denotes the number of nearest neighbors and x # k is the

number of positively labeled ones among these.

Pathway Analysis
Enrichment analysis against KEGG pathways was performed to

investigate putative mechanisms of action [24]. Overrepresenta-

tion of genes from specific pathways among the signature genes

was determined by a hypergeometric test. Given a set of n

signature genes of which m are contained in a certain pathway and

provided that the union of all pathways contains N genes of which

M are in the considered pathway, the p-values were computed

according to the following formula:

P(X§m)~
XM
i~m

M

m

� �
N{M

n{m

� �
N

n

� �

The resulting p-values were corrected for testing multiple

pathways using the FDR method by Benjamini and Hochberg

[25]. As criterion for significant enrichment we used a p-value

cutoff of 0.05.

Implementation
All plots shown in the results section were generated using the R

programming language for statistical computing and packages

from the Bioconductor library [17]. For SVM training and

classification the libsvm implementation from the SHOGUN

toolbox was used [19]. RFE was implemented in R on top of

the linear kernel SVM from SHOGUN [19]. Golub-Ratio and

Weighted Voting were implemented from scratch based on the

description of the algorithm from Golub et al. [15]. For KNN,

PAM, Naive Bayes and Random Forest the R packages knnflex,

pamr, klaR and randomForest were used [21,23]. In order to assess the

prediction accuracy of the classifiers ROC curves were generated

using the ROCR package [26].

Results

In this study we introduce and compare two novel feature

selection methods which were specifically designed for the problem

of extracting informative genes for NGC/NC classification from

gene expression data (Figure 1). First, the performance of both the

machine learning-based EFS and the statistical SR method was

assessed on a microarray dataset obtained from the Japanese

toxicogenomics database TG-GATEs. For the EFS method, we

also evaluated the performance achieved with different ensembles

of feature selection techniques and assessed the stability of the

selected informative genes for each gene selection method

individually. The two proposed methodologies were then com-

pared against seven signatures reported in previous studies. Since

except for one study the data has been deposited in the public

domain, we also evaluated our methods against six of the

previously reported signatures on the original datasets. Finally,

we applied the methods to predict the carcinogenic class of the

compounds MCT, MP and WY which showed characteristics of

both genotoxic and nongenotoxic compounds in published

carcinogenicity studies.

Classification Performance Achieved with Novel EFS and
SR Method

The standard gene selection methods Golub-Ratio, SVM,

PAM and RFE as well as the statistical inference methods t-test,

Wilcoxon rank-sum test, and permutation test were employed to

infer predictive signatures for the reliable discrimination of NGCs

from NCs, based on Affymetrix data from Sprague-Dawley rats

treated for 14 days in a repeated dosing study. Next, a consensus

signature was compiled by integrating the individual gene

rankings obtained from diverse ensembles of gene selection

methods across varying subsamplings of the training data

(bootstraps). The idea of this approach is firstly, that the

integrated signature contains only genes which were deemed

informative by multiple independent selection methods. Second-

ly, it is characterized by increased robustness against variations in

the set of training compounds, as the respective genes were highly

ranked for multiple random subsamplings of the data. We

inferred predictive signatures based on three different variants of

our EFS methodology, which involve the use of standard gene

selection methods, the statistical inference methods t-test,

Wilcoxon rank-sum test, and permutation test, or both types of

ranking algorithms. Depending on the employed ensemble of

methods the resulting signature size ranges between 36–54

probesets referring to 24–45 annotated genes (Table S1).

A second signature was compiled by selecting the 100 genes

with the strongest NGC-specific expression pattern according to

our Specificity Ratio. As described in more detail in the methods

section we refined the signature by using a ROC-based filter,

which excludes genes showing inconsistent regulation states upon

NGC treatment. The final SR signature contains 29 probesets

which are attributed to 24 genes (Table S1).

We evaluated the classification performance by incorporating

each of our signatures into prediction models, which were

constructed using established supervised learning algorithms. For

each classifier an averaged ROC curve was generated based on

the results from a 363 nested cross-validation (Figure 2).

Apparently, the performance of the EFS method heavily depends

on the employed ensemble of feature selection techniques. While

depending on the adopted classifier good or excellent classifica-

tion accuracy was found for standard gene selection methods, the

performance achieved with t-test, Wilcoxon rank-sum test, and

permutation test was considerably weaker (Figure 2A, B). By

Assessing Compound Carcinogenicity in Rat Liver
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combining both standard methods for gene ranking and the three

evaluated statistical methods it was also possible to construct

fairly well generalizable prediction models (Figure 2C). However,

despite the increased complexity, the models did not improve in

terms of prediction accuracy. Therefore, we did not pursue this

approach any further. The steep initial slope of the ROC curves

shown in Figure 2D indicates that the SR method also permits

the specific detection of NGCs at a low false positive rate.

However, when compared to the EFS signature, the SR signature

is clearly limited in terms of sensitivity, which may in part be

owed to the stringent selection of genes with NGC-specific

expression patterns. PAM, Weighted Voting and Random Forest

were found to be the most reliable classification methods for both

the EFS and the SR signature. When compared to these

classifiers, KNN and Naive Bayes tend to result in worse

prediction accuracies. The SVM classifier performs well in

conjunction with the EFS signature, but is not recommended for

use with the SR signature.

Comparison of Feature Selection Methods in Terms of
Accuracy and Robustness

Besides assessing the predictive power of EFS-based signatures

depending on the applied ensemble of methods, we also evaluated

the robustness of each individual method against variations of the

training data. For this purpose, we used the stability index KI

proposed by Kuncheva (see methods section) [22]. Concurrently,

the average performance of the individual signatures inferred from

varying subsets of the training data was measured in terms of the

ROC scores on the 10% out-of-bag samples, which were excluded

from each bootstrap. For both scores the optimum is 1, but the

values assigned to the worst cases are different. While a ROC

score of 0.5 corresponds to the performance achieved by a random

guesser, a KI of 0 would be expected for randomly drawn feature

subsets.

The accuracy and stability of the signatures selected by different

methods is depicted depending on the number of informative

genes in Figure 3. According to the curves in Figure 3A the highest

average classification accuracy could be achieved with the

Figure 1. Methodologies used for signature extraction and compound classification. (A) Ensemble Feature Selection method: First, the
compounds are subdivided into a training set and a test set. Then n different subsamplings (bootstraps) each containing 90% of the training
compounds are randomly drawn. Gene rankings are generated on each bootstrap by m different algorithms and n6m signatures are inferred. The
individual signatures are subsequently merged and incorporated into diverse classifiers which are applied to the test compounds in order to assess
the performance. (B) Specificity Ratio method: After splitting the dataset, the gene ranking is directly performed on the training compounds. A
preliminary signature is generated from a gene ranking according to the specificity ratio. Then genes exhibiting inconsistent expression profiles
across the compounds of the primary class are removed using a ROC-based filter. Finally, the performance of the filtered signature is evaluated on the
test set.
doi:10.1371/journal.pone.0097678.g001
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methods t-test, Wilcoxon rank-sum test and permutation test,

which select informative genes based on statistical inference. For

these statistical tests the maximum accuracy was attained with at

most 30 informative genes. However, as illustrated in Figure 3B a

relatively low consistency was observed between the gene sets

selected on different bootstraps. Similarly, a relatively low

signature stability was found for Golub’s ranking method, which

also relies on a statistical comparison of the classes. Golub’s

method reached its maximum accuracy in conjunction with a

signature size of 40 (average ROC score: 0.79). The decrease of

performance which is observable for increased signature sizes (.

40 genes) may be partly due to overfitting, caused by the selection

of genes with minor relevance for the problem of distinguishing

NGCs from NCs. A marginally weaker performance than for the

Golub-Ratio was found for the PAM method, which also reaches

its maximum accuracy when only the 40 top ranked genes are

used for model construction. However, the informative genes

selected by PAM are clearly less dependent on the subsampled

part of the training data, which becomes apparent from Figure 3B.

Strikingly, a considerably higher robustness against sampling

variation was found for the two SVM-based methods. However,

the classification accuracy achieved with signatures from SVM and

RFE was significantly lower when compared to Golub-Ratio and

PAM, especially for smaller signature sizes. A comparable,

moderate performance, but significantly increased robustness can

only be observed for larger signature sizes, for instance, when 70

informative genes are selected.

Comparison Against Existing Signatures for NGC
Prediction

We then compared our novel signatures to several already

available ones which had been derived using widely used

supervised classification methods [6,10,11,27–30]. Furthermore,

we determined which genes have been selected most frequently.

Besides emphasizing the most relevant informative genes, we also

point out shared mechanistic characteristics, which were identified

based on pathway enrichment analysis.

The classification performance, that has been achieved by 6

representative machine learning methods, was assessed for all

signatures using cross-validation and measured based on the area

under the ROC curve. The distributions of the resulting ROC

scores are illustrated as box plots in Figure 4A. Another

illustration, which depicts the predictions made for the individual

compounds in more detail, is shown in Figure 4B.

The boxes shown in Figure 4A clearly indicate that the highest

average classification performance is achieved by classifiers

incorporating our novel 54-probeset EFS signature (mean ROC

score: 0.95). In this performance comparison the second best

signature was the one proposed by Uehara in 2011 followed by

our SR signature (Table 2). The signatures by Ellinger-

Figure 2. Evaluation of EFS-based and SR-based signatures on TG-GATEs data. The ROC curves obtained from different cross-validation
folds were averaged based on the thresholds for class discrimination and drawn separately for each of the six classification methods. The classifiers
evaluated here were trained on features selected using our (A–C) EFS methodology in conjunction with (A) the standard gene selection methods
Golub-Ratio, PAM, SVM and RFE, (B) the statistical inference methods t-test, Wilcoxon rank-sum test and permutation test or (C) all previously stated
methods. (D) The prediction accuracy was also determined for the SR signature-based models and the corresponding ROC curves were generated as
described previously.
doi:10.1371/journal.pone.0097678.g002
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Figure 3. Accuracy and stability of signatures depending on gene selection method and signature size. (A) The line plots illustrates the
mean classification performance achieved by a KNN classifier based on diverse signatures selected by the methods Golub-Ratio, SVM, PAM, and RFE.
The performance was measured in terms of area under the ROC curve for 11 linearly spaced numbers of informative genes ranging from 2 to 100.
Points and whiskers correspond to the means and the standard deviations of the ROC scores assessed on the out-of-bag samples of 25 bootstraps
during 3-fold cross-validation. The adjacent bar plots depict the corresponding ROC scores averaged across signature sizes and cross-validation folds.
(B) The Kuncheva index (KI) was used to score the correspondence of signatures selected on different bootstraps depending on the selection method
and the number of selected genes. The average KI obtained for each method is shown in the bar plot on the right.
doi:10.1371/journal.pone.0097678.g003

Figure 4. Performance comparison against signatures known from the literature. (A) Box plots show the distribution of ROC scores
resulting from 3-fold cross-validation of 6 different classifiers incorporating either one of 7 published signatures or one of our 2 novel signatures. Each
box corresponds to a certain multi-gene signature. The lower, center, and upper line of each box indicates the lower quartile, median, and upper
quartile of the ROC scores obtained for a certain signature. The whiskers extend to the most extreme ROC score which is within 1.5 times the
interquartile range from the box. Outliers are depicted as individual points. (B) The heatmap shows the binary classification outcomes of 6 predictors
used for NGC vs. NC discrimination, depending on the incorporated signature. The colors indicate the number of methods which classified a certain
compound as NGC and NC, respectively. Cells are drawn in blue if a compound was classified as NGC and in green if it was classified as NC by the
majority of predictors. Grey color indicates a tie between the two classes. In order to discretize the continuous prediction scores, the class
discrimination cutoff was chosen individually for each predictor as an optimal tradeoff between sensitivity and specificity.
doi:10.1371/journal.pone.0097678.g004
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Ziegelbauer and Nakayama also show a trend towards higher

accuracies when compared to the rest. Consistent with our

expectations the Uehara (2008) signature was outperformed by the

more recent Uehara (2011) signature, as it primarily captures

changes in gene expression present after 24 hours upon one-time

NGC exposure, which are of minor relevance for the 14-day

administration setting evaluated here. Similarly, the low perfor-

mance found for the Auerbach signature, which was designed for

longer treatment durations up to 90 days, must be seen in the

context of its limited applicability to the 14-day setting.

In order to enable a conclusive and fair comparison to each of

the existing signatures, we also applied our approaches to the

original datasets from which these signatures were identified.

Consistent with our evaluation on the TG-GATEs data, the

models constructed from the EFS-based signatures achieved the

highest prediction accuracy on 5 of 6 published toxicogenomics

datasets, when compared to classifiers trained on the original and

SR-based signatures, respectively (Figure 5). The corresponding

ROC curves can be found in Figure S1-S6. Only on the dataset

compiled by Auerbach et al., the SR-based signature performed

better. Considering the average performance across all datasets

Table 2. Published and novel signatures for NGC prediction in rat liver.

Signature Number of probesets Number of genes Relevant time point Microarray platform Mean ROC score

Auerbach 11 10 90 days Agilent Whole Rat Genome Microarray 0.6960.20

Ellinger 101 76 14 days Affymetrix RAE 230A 0.8060.18

Fielden 35 27 5 days Amersham Codelink 0.7060.22

Nakayama 56 44 28 days Custom oligonucleotide microarray 0.7860.23

Nie 7 6 24 hours Custom cDNA microarray 0.5960.19

Uehara (2008) 112 101 24 hours Affymetrix RAE 230 2.0 0.7460.22

Uehara (2011) 82 68 28 days Affymetrix RAE 230 2.0 0.8760.17

EFS signature 54 45 14 days Affymetrix RAE 230 2.0 0.9560.09

SR signature 29 24 14 days Affymetrix RAE 230 2.0 0.8360.20

The table lists all signatures compared in this study and indicates the respective number of probesets which originate from or were mapped to the Affymetrix Rat
Genome 230 2.0 Array. Along with the number of probesets the number of corresponding genes is shown. For each signature the treatment duration and microarray
platform used in the original study is specified. The rightmost column contains the mean ROC scores and standard deviations which resulted from evaluation on the TG-
GATEs dataset.
doi:10.1371/journal.pone.0097678.t002

Figure 5. Evaluation of EFS-based and SR-based signatures on datasets from previous studies. The bar plots depict the area under the
ROC curve achieved by specific prediction models built and evaluated on datasets which have been used in related toxicogenomics studies. The
prediction models differ in the adopted classifiers and in the incorporated signatures. On each dataset, two signatures were extracted using the EFS
and SR method, respectively, and compared to the signature from the original study in terms of classification performance. Each dataset corresponds
to a certain panel (see panel headers), each signature is represented by a group of bars, and the classifiers are indicated by different colors (see
legend).
doi:10.1371/journal.pone.0097678.g005
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and signatures, the best classifier was Weighted Voting (mean

ROC score: 0.88), followed by PAM and Random Forest.

Besides comparing our novel signatures to published ones in

terms of classification accuracy, we determined which informative

genes were commonly selected (Figure 6A–C). Among these genes

is, for instance, App, which is a key protein in the pathomechanism

of Alzheimer’s disease, but was also reported to be upregulated in

different cancer types, and shown to play a crucial role in the

growth control of pancreatic and colon cancer [31]. Another

highly informative gene is Cdkn1a, which is a p53-dependent key

regulator of cell fate, as it triggers cell cycle arrest in the G1 phase

under various stress conditions, such as DNA damage [32].

Mechanistically similar growth-inhibitory effects were reported for

Ccng1, which is also known to be transcriptionally regulated by

p53, and which was shown to induce pRb-dependent G1 phase

arrest when being highly expressed [33]. Phlda3, which was

proposed as a potential biomarker in diverse toxicogeniomics

studies [6,10,29], is a known target gene of p53, too. Phlda3 may

act as a tumor suppressor by inhibiting the translocation and

activation of Akt, thereby preventing negative regulation of p53-

dependent apoptosis via Akt [34]. The Akr7a3 transcript, which is

part of our proposed signature and which was mostly found

upregulated in response to carcinogen treatment, was previously

considered as informative by Ellinger et al., Nakayama et al. and

Uehara et al. [6,10,29]. Consistent with these results, in a recent

explorative study aiming at the identification of novel candidate

biomarkers for liver cancer, an upregulation of Akr7a3 on the

protein level was observed in rat hepatomas [35]. Another

frequently used informative gene is Abcb4 alias Mdr3. This

multidrug-resistance gene is typically expressed in diverse tumors,

rendering them less sensitive to treatment with anti-cancer drugs

(Figure 6C) [36].

In addition to determining the most commonly selected

informative genes, we also compared the signatures with respect

to their associated pathways (Table S2). It can be concluded from

Figure 6D that signatures for early NGC detection frequently

include genes involved in energy metabolism, anabolic metabo-

lism, drug metabolism (e.g., by CYP enzymes), and DNA-damage

response (e.g., via p53 pathway). These changes clearly reflect a

response to carcinogens including starting cellular hyperplasia

upon treatment. However, it should be noted that the early

molecular events captured by the proposed signature genes are not

specifically related to nongenotoxic mechanisms, of which a wide

variety have been proposed for rat liver [3]. As representing the

complete spectrum of NGC mechanisms in one gene list is hardly

feasible, most of the current signatures for NGC detection are also

sensitive to genotoxic carcinogens (Figure S7).

Expression Profile Analysis of Undefined Compounds
For three of the analyzed compounds, namely MP, WY and

MCT a definite assignment to either GCs or NGCs was not

possible based on published animal studies and genotoxicity assays

[37–39]. As only two unambiguously classified GCs (AAF and

DEN) are available from TG-GATEs, we take the view that it is

not feasible to construct generalizable toxicogenomics models for

reassigning the undefined compounds to either GCs or NGCs.

Figure 6. Comparison of predicted and known signature genes. (A) The Venn diagram depicts the overlap between the informative genes
from the EFS and SR signature and the genes contained in 7 previously reported signatures. The symbols of known marker genes independently
confirmed by our approach are listed in the intersection of the two sets. (B) This diagram illustrates the overlaps between the two novel signatures
predicted using the Ensemble Feature Selection (EFS) method and the Specificity Ratio (SR), respectively. (C) The histogram shows the absolute
selection frequencies of informative genes which are part of the 2 novel signatures and the 7 previously published ones. The genes which are
included in 2 or more signatures are named on top of the corresponding bars. (D) For each signature a pathway enrichment analysis against KEGG
was performed and then a histogram was generated that shows which pathways were most frequently detected as enriched among the informative
genes. Some of the KEGG pathways which were detected to be significantly enriched in two or more signatures are listed on top of the respective
bars.
doi:10.1371/journal.pone.0097678.g006
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Nevertheless, we compared the expression profiles of these

undefined substances to the ones observed for unambiguously

classified compounds, and evaluated whether a detection of their

carcinogenic potential was possible based on our multi-gene

signatures.

In order to generate a graphical representation of the

compounds’ expression profiles, the dimensionality of our

predicted signatures was reduced to a two-dimensional space

using PCA (Figure 7A–B). Obviously, a clear separation between

NGC- and NC-treated sample groups is possible, based on both

the EFS and the SR signature after 14 days of repeated dosing.

While for most published signatures considerable overlaps could

be observed between the NGC and the NC clusters (Figure S8),

only a small overlap, caused by the compound CMA, was found

for the EFS and SR signature, respectively. Consistent with this

observation, the expression changes in the top 10 genes of our EFS

signature (Figure 8) and SR signature (Figure S9) are less

pronounced for CMA when compared to the other NGCs. It

also becomes apparent from Figure 8 that the expression

differences between NGCs and NCs are much more striking than

the differences between NGCs and GCs. This finding is consistent

with the fact, that the EFS signature is also sensitive to GCs. In

general, it can be concluded that owing to the circumstance that

the GC class was not considered during informative gene selection,

the inferred signatures are not specifically related to nongenotoxic

mechanisms, but rather to hepatocarcinogenesis in general.

Nevertheless, individual informative genes (e.g., Me1) exist, that

are clearly differentially expressed between GC and NGC

(Figure 8), which may in part explain the isolated positions of

the genotoxic compounds DEN and AAF in PCA space

(Figure 7A).

In the PCA plots the three undefined compounds MP, WY and

MCT were found to be very distinctly positioned (Figure 7A–B),

which indicates compound-specific differences in the expression

profiles of the selected informative genes. While the profile of MP

resembles the one of the genotoxic compound AAF, WY is located

near the nongenotoxic substances CFB and FFB (Figure 7A–B).

MCT also tends to show a rather NGC-like profile similar to the

Figure 7. Separation and classification of compounds based on EFS and SR signature. (A) The dots correspond to different treatment
groups and are colored according to the classes of the compounds used for treatment. Each treatment group was originally represented by a vector
composed of the fold-changes of the 54 signature genes measured after 14 days of repeated dosing. In order to inspect the compound-specific
expression profiles in a lower-dimensional space, these vectors were transformed to the first and second principal component resulting from PCA. In
order to highlight clusters of NGCs and NCs, convex hulls were drawn around the respective compounds. The compounds WY, MP and MCT were
considered as undefined, due to ambiguous outcomes of published studies. (B) PCA plot similar to (A), but generated on the basis of the SR
signature. (C) The heatmaps depict the confidence of the predictions made by diverse classifiers for assessing the carcinogenic potential of GCs (AAF,
DEN) and undefined compounds (MP, WY, MCT). Columns represent compounds and rows correspond to classifiers. The compound classes are
indicated by the colorbar on top. The discrimination between carcinogens (blue) and non-carcinogens (green) was done based on the EFS signature.
(D) Toxicogenomics-based assessment of the carcinogenic potential of GCs and undefined compounds using diverse classifiers which incorporate the
SR signature genes as predictive features.
doi:10.1371/journal.pone.0097678.g007
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ones observed for CCL4, PHE, and EE. Whereas a certain

similarity between the profile of WY and those of other NGCs was

also apparent from PCA representations obtained from most

published signatures (Figure S8), this was not the case for MCT

which mostly clustered in the vicinity of the genotoxic compound

DEN.

Discussion

In this study, we evaluated two alternative methodologies for the

extraction of predictive molecular signatures from toxicogenomics

datasets to allow classification of compounds with respect to their

chronic effects based on short-term expression profiles. In contrast

to most previous approaches, which employed individual selection

algorithms on a fixed set of compounds, our EFS method

integrates the results from an ensemble of feature selection

techniques applied to multiple randomly drawn subsets of the

training compounds. We designed this methodology under the

assumption that genes which are truly relevant for compound

classification will have a higher chance to be repeatedly selected by

independent methods. Furthermore, bootstrapping was used to

increase the robustness of the signature in the sense that it is

insensitive to small variations of the training data. Our EFS

method builds on concepts which were theoretically described by

He et al. and practically applied by Abeel et al., who implemented

an SVM-based method for the discrimination of diverse cancer

types [40,41]. In contrast to the method proposed by Abeel et al.,

our signature extraction method is not intrinsically multivariate, as

it does not score the joint predictivity of a set of genes, but selects

genes based on a high average rank assigned by independent

methods. Furthermore, our EFS method is capable of optimizing

the signature size by fitting a non-linear model which describes the

classification performance depending on the number of informa-

tive genes.

The SR method was derived from a gene ranking method

proposed by Golub et al. [15]. The main idea of Golub’s signal-to-

noise ratio is to preferentially select genes which show high

expression differences between classes, while at the same time their

variation within classes is small. Occasionally, this method tends to

select inappropriate genes, due to an underestimation of the

variances observed within classes. In order to overcome this

problem, we used moderated standard deviations as proposed by

Opgen-Rhein and Strimmer in their shrink-t statistic [16].

Another problem which was inadequately considered by most

previous approaches is the fact that ordinary feature selection

algorithms treat both classes equally. In the here evaluated

toxicogenomics setting, this may result in the counterproductive

selection of genes which are deregulated in NCs while remaining

unchanged in NGCs. We avoid this problem by using the

difference of the mean absolute fold-changes between a primary

and secondary class in the numerator of Golub’s ratio. However,

as this modification may cause the selection of informative genes

which are not consistently up- or downregulated, an additional

post-filtering step is required. In contrast to the SR method the

performance of most machine learning-based methods depends on

the proper selection of specific parameters, which require

optimization on an additional validation set or by nested cross-

validation. As the SR method does not require an additional set of

compounds for model selection, it is particularly suited for

toxicogenomics applications, where typically only few compounds

are available for training.

In a performance comparison against 7 previously reported

informative gene sets for NGC detection, we demonstrated that

the signatures inferred by our EFS and SR method enable 6 state-

of-the-art classifiers to achieve comparably high prediction

accuracy. Especially the EFS signature stands out as the gene set

for which by far the highest classification performance was

observed. This finding was also substantiated by the fact that EFS-

based signatures permitted the construction of the most accurate

prediction models on the majority of datasets used in previous

studies.

When comparing different variants of the EFS method, the best

performance was found for an ensemble with the traditional gene

selection methods Golub-Ratio, PAM, SVM and RFE. These

feature selection techniques were also shown to produce more

consistent signatures than the statistical inference methods t-test,

Wilcoxon rank-sum test, and permutation test, when applied to

varying subsets of the training data. Since the inference of a

consensus signature is more straightforward given a homogeneous

Figure 8. Expression profiles of EFS signature genes. Shown is a heatmap depicting the fold-changes of the top 10 informative genes from the
predicted EFS signature. Rows represent genes and columns represent treatment groups. Cell colors indicate the strength and direction of differential
expression relative to the corresponding control groups (red: upregulation, green: downregulation). Treatment groups which belong to different
compound classes are separated by solid vertical lines. The respective classes are indicated by the color bar on top of the heatmap.
doi:10.1371/journal.pone.0097678.g008
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set of signatures, this favorable characteristic may partly explain

the suitability of these methods for an EFS approach.

Furthermore, we would like to point out that the viability of the

EFS and other omics-based approaches for the prediction of

chronic toxicity also depends on the effective treatment of

experimental artifacts, such as batch effects. In this study, the

application of the RMA algorithm was sufficient to correct for

experimental variation. However, if systematic non-biological

effects persist despite application of appropriate normalization

methods, we recommend the use of specifically designed software

for the removal of batch effects (e.g., SVA package for R/

Bioconductor) [42,43].

As fairly reliable short-term tests exist for the prediction of GCs,

we focused on NGC detection in this study. To this end, we

carefully selected suitable training compounds from the TG-

GATEs database, which can be unambiguously classified as NGCs

based on experimental evidence from published studies. Despite of

the fact that exclusively NGCs were used for training, our

proposed EFS signature and to a lesser degree also the SR

signature were demonstrated to be also suited for the detection of

GCs. Additionally, the sensitive detection of the undefined

compounds MP, MCT and WY, which show characteristics of

both genotoxic and nongenotoxic mechanisms, renders proof of

the good generalizability of the two signatures.

WY was originally classified as an NGC which can be further

characterized as a peroxisome proliferator [44,45]. Consistent

with this view, experimental evidence for WY acting as an NGC

was obtained from a negative Ames test [46]. However, another

in vitro test, which is based on single cell gel electrophoresis,

revealed that WY also induced DNA strand breaks in this setting,

as typically observed for GCs [37]. Despite a negative Ames test

result for MP, a potential mutagenic action of this compound was

observed in the mouse lymphoma assay [38]. On the other hand, a

genotoxic mRNA signature induced by NGCs in liver may also

arise from secondary DNA damage which has been suggested to

be caused by an imbalance between cell growth and cell death

[47], or which may result from oxidative damage [48]. Similar

results were observed for MCT, which was characterized as a

nongenotoxic substance, although genotoxicity and morphological

changes were detected in a human brain tumor cell line [39].

As cell growth and proliferation in tumors requires increased

uptake of nutrients (e.g., glucose), which are required for

production of high metabolites and reducing (e.g., ATP, NADH)

or macromolecules (e.g., proteins, nucleic acids), drastic changes in

the intermediary metabolism can be observed in tumor cells

[49,50]. Since this metabolic reprogramming is mediated via

transcriptional regulation these changes also become apparent

when monitoring global gene expression. Accordingly, we could

find pathways related to energy metabolism and anabolic

processes overrepresented among different informative gene sets

used for microarray-based identification of NGCs. Another typical

response which is captured by transcriptional signatures is the

response to DNA damage via the p53 signaling pathway [51,52].

While this response is characteristic for genotoxic compounds,

which by definition directly interact with DNA, abnormal DNA

integrity can also be caused by secondary mechanisms (e.g.,

oxidative damage via peroxisome proliferation) triggered by NGCs

[3,53], as alluded to above.

This finding may also in part explain the fact that many

reported signatures do not exclusively comprise genes which are

specifically deregulated upon NGC treatment, and thus require

additional short-term toxicity assays (e.g., Ames test) for proper

distinction from GCs. In principle, the toxicogenomics-based

discrimination of NGCs from GCs could be pursued as a

complementary approach. However, due to the lack of reasonable

numbers of unambiguously classified GCs in TG-GATEs, which

are needed for model construction and evaluation, such an

analysis could not be performed here. Concerning this GC-NGC

discrimination resources available from other public toxicoge-

nomics databases, such as DrugMatrix could be exploited in future

studies. Furthermore, in addition to the commonly performed

genome-wide analysis of mRNA expression, other omics datasets,

capturing genomic and epigenomic features (e.g., miRNA

expression and DNA methylation) on a global level, should be

collected, since they can be expected to deliver additional

biomarker signatures in association with further insight into

responses to carcinogens at the molecular level.

In conclusion, this work adds to the current repertoire of

toxicogenomics methodologies for the extraction of predictive

signatures from omics datasets, which delivers additional mech-

anistic insight and can be used, for instance, to prioritize

compounds for long term carcinogenicity assays.

Supporting Information

Figure S1 Evaluation of EFS-based and SR-based signa-
tures on dataset from Ellinger et al. The ROC curves

obtained from different cross-validation folds were averaged based

on the thresholds for class discrimination and drawn separately for

each of the six classification methods (SVM, KNN, PAM,

Random Forest, Weighted Voting and Naive Bayes). These

classifiers were trained on (A) the original signature reported by

the authors, (B) the signature inferred using our EFS method or

(C) the signature obtained from our SR method.

(PDF)

Figure S2 Evaluation of EFS-based and SR-based signa-
tures on data from Uehara et al. (2011). The ROC curves

obtained from different cross-validation folds were averaged based

on the thresholds for class discrimination and drawn separately for

each of the six classification methods (SVM, KNN, PAM,

Random Forest, Weighted Voting and Naive Bayes). These

classifiers were trained on (A) the original signature reported by

the authors, (B) the signature inferred using our EFS method or

(C) the signature obtained from our SR method.

(PDF)

Figure S3 Evaluation of EFS-based and SR-based signa-
tures on data from Uehara et al. (2008). The ROC curves

obtained from different cross-validation folds were averaged based

on the thresholds for class discrimination and drawn separately for

each of the six classification methods (SVM, KNN, PAM,

Random Forest, Weighted Voting and Naive Bayes). These

classifiers were trained on (A) the original signature reported by

the authors, (B) the signature inferred using our EFS method or

(C) the signature obtained from our SR method.

(PDF)

Figure S4 Evaluation of EFS-based and SR-based signa-
tures on data from Nie et al. The ROC curves obtained from

different cross-validation folds were averaged based on the

thresholds for class discrimination and drawn separately for each

of the six classification methods (SVM, KNN, PAM, Random

Forest, Weighted Voting and Naive Bayes). These classifiers were

trained on (A) the original signature reported by the authors, (B)
the signature inferred using our EFS method or (C) the signature

obtained from our SR method.

(PDF)

Figure S5 Evaluation of EFS-based and SR-based signa-
tures on data from Fielden et al. The ROC curves obtained
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from different cross-validation folds were averaged based on the

thresholds for class discrimination and drawn separately for each

of the six classification methods (SVM, KNN, PAM, Random

Forest, Weighted Voting and Naive Bayes). These classifiers were

trained on (A) the original signature reported by the authors, (B)
the signature inferred using our EFS method or (C) the signature

obtained from our SR method.

(PDF)

Figure S6 Evaluation of EFS-based and SR-based signa-
tures on data from Auerbach et al. The ROC curves

obtained from different cross-validation folds were averaged based

on the thresholds for class discrimination and drawn separately for

each of the six classification methods (SVM, KNN, PAM,

Random Forest, Weighted Voting and Naive Bayes). These

classifiers were trained on (A) the original signature reported by

the authors, (B) the signature inferred using our EFS method or

(C) the signature obtained from our SR method.

(PDF)

Figure S7 Toxicogenomics-based assessment of com-
pound carcinogenicity using published signatures. The

heatmaps show the confidence scores obtained from classifiers

which were trained on published signatures for NGC prediction

and applied to assess the carcinogenic potential of genotoxic and

undefined compounds. One heatmap is depicted for each

signature. Rows represent classifiers and columns correspond to

compounds. The color intensity indicates the confidence that a

certain compound is carcinogenic (blue) or non-carcinogenic

(green).

(PDF)

Figure S8 PCA-based separation of compounds based
on published signatures. Shown are the PCA-transformed

expression profiles observed for different compounds in rat liver

samples after treatment for 14 days. For this purpose, the

compounds were represented by a vector composed of the fold-

changes of the informative genes used in a certain published

mRNA signature. PCA was then used to reduce the dimensionality

of these vectors to the two principal components. Each of the plots

corresponds to a certain signature (see titles). The dots correspond

to different compounds, which are colored according to the

compound class (see legend). Clusters of NGCs and NCs,

respectively, are indicated by polygons drawn around the

respective compounds. The compounds WY, MP and MCT were

considered as undefined, due to ambiguous outcomes of published

studies.

(PDF)

Figure S9 Expression profiles of SR signature genes.
The heatmap depicts the expression profiles of the top 10

informative genes from the SR signature. The rows correspond to

genes and the columns to treatment groups. Red indicates

upregulation and green indicates downregulation. The annotated

classes of the compounds are represented by the color bar on top.

The boundaries between compound classes are highlighted by

black lines.

(PDF)

Table S1 Excel file with published and predicted
signatures. This file contains the Affymetrix probesets, gene

symbols, Entrez Gene IDs and descriptions of all genes contained

in published or novel signatures in tabular format. If necessary,

custom probesets were mapped to the corresponding Affymetrix

IDs via the associated gene symbols.

(XLS)

Table S2 Excel file with pathways enriched in signa-
tures. This file contains the KEGG pathways enriched among

the genes of each published or novel signature in tabular format.

For each pathway the corresponding KEGG identifier, name and

the number of deregulated genes is given. The significance of the

enrichment was measured by means of FDR-corrected p-values (q-

values) using a cutoff of q ,0.05.

(XLS)
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