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Simple Summary: Histones are also a common disease marker. After PAD4 mediated hypercitrul-
lination extracellular H3Cit exhibits high toxicity contributing to tissue damage which, in cases
of systemic inflammation, may lead to multiorgan failure and finally to death. We tested whether
circulating histones rise in response to strenuous exercise. Herein, we have observed that circulat-
ing histones and PAD4 raised in response to exercise. Despite the parallel increase, no significant
correlation between citrullinated histone and aggregation or cell-free nDNA was found. However,
positive correlations of cf nDNA with aggregation and PAD4, lactate with aggregation, and lactate
with citrullinated histone have been observed.

Abstract: Numerous studies have shown that cf nDNA significantly rises in stress caused by exercise.
However, during nuclear decondensation, released DNA is followed by histones. Histones are also
a common disease marker. After PAD4 mediated hypercitrullination extracellular H3Cit exhibits
high toxicity contributing to tissue damage which, in cases of systemic inflammation, may lead to
multiorgan failure and finally to death. We tested whether circulating histones rise in response to
strenuous exercise. Eleven average-trained men performed three treadmill exercise tests to exhaus-
tion at speed corresponding to 70% VO2max separated by 72 h of resting. Blood was collected before
and just after each bout of exercise and plasma proteins were measured using enzyme-linked im-
munosorbent assay, whereas platelet activity was estimated with Light Transmission Aggregometry.
Both, circulating histones and PAD4 raised in response to exercise. Plasma citrullinated histones
increased from 3.1 ng/mL to 5.96 ng/mL (p = 0.0059), from 3.65 ng/mL to 6.37 ng/mL (p = 0.02),
and from 3.86 ng/mL to 4.75 ng/mL (p = 0.033) after the first, second, and third treadmill run,
respectively. However despite the parallel increase, no significant correlation between citrullinated
histone and aggregation or cell-free nDNA was found. Furthermore, positive correlations of cf nDNA
with aggregation and PAD4, lactate with aggregation, and lactate with citrullinated histone have
been observed.
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1. Introduction

Histones which together with DNA form nucleosomes, the basic units of chromatin,
can be found in circulating plasma both in healthy subjects and in those with some diseases.
Extracellular histones released mainly due to cell death have been implicated in the patho-
genesis of various serious diseases such as trauma-induced multiple organ dysfunction,
sepsis, autoimmune diseases, ischemic heart disease, or even as markers of severity in
COVID-19 infection [1–5]. Histones and nuclear DNA (nDNA) might be released from the
cellular nucleus separately, simultaneously as nucleosomes or as a component of neutrophil
extracellular traps (NETs) when internal structures are released to bind and kill invading
microbes [6]. This process is accompanied by a rise in a variety of circulating cytokines
including IL-6 and IL-10 [7]. Modification of histone H3 by citrullination is catalyzed
by the enzyme peptidylarginine deiminase 4 (PAD4). Weakened binding of citrullinated
histone H3 (H3Cit) to negatively charged DNA leads to chromatin decondensation and
PAD4/CitH3 dependent NETs formation [8]. Thus, H3Cit is recognized as an in vitro and
in vivo marker of NETosis [9,10]. Apart from pathological processes, increased NETosis
was described as an integral part of body’s response to vigorous physical exercise [6]. Some
studies have proved that cell-free nuclear DNA (cf nDNA) rises in response to various
types of exercises [11–14]. The exercise-induced increase in cf nDNA was many times
higher than changes in other biomarkers of metabolic adaptation and muscle damage.
Hence, the plasma concentration of cf nDNA seems to be an efficient marker of exercise
load and its persistent elevation could be associated with the increased risk of occurrence
of overtraining syndrome in athletes [15]. In our previous studies, we found that three
repeated bouts of exhaustive treadmill exercise caused the increase in cf nDNA without
development of tolerance and decreased the integrity of post-exercise cf nDNA correlated
with increased post-exercise whole blood chemiluminescence [11,16]. Because nDNA is
wrapped around an octamer of (two H2A, two H2B, two H3, and two H4) histones, it may
be expected that exercise would result in an increase in plasma histones concentrations.
This hypothesis is supported by the observation of exercise-induced increment of another
nuclear protein HMGB1 in humans [12,17]. Extracellular histones can act by the direct
interaction with the phospholipid bilayer proceeded by the loss of endothelial membrane
barrier function [18], whereas endothelial cells are crucial regulators of vascular hemostasis,
and play a pivotal role in the mechanism underlying the development of vascular disor-
ders [19]. Extracellular histones are also able to interact with platelets indirectly, through
TLR receptors. Moreover, in vitro-generated NETs induced distinct aggregation of washed
human platelets, while excess and prolonged interaction of NETs with platelets in vivo
can cause severe inflammation and host organ damage [20,21]. Pharmacological inhibition
of histone release, their neutralization in the circulation or inhibition of histone-evoked
signal transduction reduced significantly mortality in an animal model of multiple organ
injury [22]. To the best of our knowledge, none of the previous studies has investigated the
effect of exercise on the concentration of extracellular histones in humans plasma. There-
fore, in this study, we aimed to evaluate changes in the extracellular H3Cit, and PAD4 in
response to three bouts of exhaustive treadmill run separated by seventy two hours resting
period. Furthermore, the associations between plasma histone concentration and cf nDNA,
platelet activity, selected cytokines, and markers of metabolic response to exercise were
analyzed. In this study we would like to verify how selected factors behave in response to
exercise and thus also confirm or deny the harmful impact of circulating histones.

2. Materials and Methods
2.1. Studied Group

The studied group involved eleven, non-smoking healthy men. All their characteristics
as well as the inclusion/exclusion criteria were the same as in our previous articles [11,16].
Briefly, all volunteers who met inclusion criteria were members of the Medical University
of Lodz, mean age was 34.0± 5.2 years, mean body weight 87.4± 13.8 kg, mean body mass
index 26.2 ± 3.1 kg/m2, maximal oxygen consumption 49.6 ± 4.5 mL/kg*min, forced vital
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capacity (FVC) 6.09 ± 0.41 L, 106.4 ± 6.4% of predicted, forced exhaled volume in the first
second (FEV1) 4.93 ± 0.45 L, FEV1/FVC 80.9 ± 5.6%. All volunteers provided a written
informed consent. The protocol was reviewed and approved by the Ethics Committee of
the Medical University of Lodz (RNN/95/14/KB).

2.2. The Study Design

The study design was the same as in our previous reports [11,16]. Figure 1 shows
point by point:

(1) Those male volunteers who fulfilled the inclusion/exclusion criteria underwent a
treadmill VO2max test at the first visit (day 1st).

(2) At the three consecutive visits separated by 72 h of resting period (day 7th, 10th, and
13th), participants performed a treadmill exercise to exhaustion at speed matching to
70% of their personal VO2max.

(3) Venous blood (2.7 mL) was collected into vacutainer tubes with EDTA and sodium
citrate (Becton Dickinson, Franklin Lakes, NJ, USA) before and just after each bout of
exhaustive exercise.

(4) Light Transmission Aggregometry (LTA) was executed immediately after the blood
collection, while the obtained plasma was aliquoted, frozen, and stored at −80 ◦C
until the measurements.
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Figure 1. Study design flow chart.

2.3. Variables Measured with ELISA Test

Histones/PAD4 and interleukins were measured in EDTA plasma. Quantitative plasma
levels of citrullinated histone H3 and PAD4 were measured using ELISA Kit purchased from
Cayman Chemical (Ann Arbor, MI, USA), the assay range was 0.15–10 ng/mL. IL-6 and
IL-10 were tested using Diaclone kit (Besançon, France) with kit sensitivity 2 pg/mL. Pre-
exercise interleukin 6 levels remained below the detection limit below the detection limit of
ELISA kit (2 pg/mL), thus half of the detection limit has been calculated (which corresponds
to a normal level of this interleukin in healthy individuals (0.8–1.0) [23]. Samples were
carried out according to the manufacture’s instruction. Readings were performed on 96 plate
reader VICTOR X Multilabel Plate Reader (Perkin Elmer, Wellesley, MA, USA) at 450 nm.
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The linear interval was defined as the linear section of the best-fit standard curve. Each
standard curve was fitted using a four-parameter logistic (4PL) regression, and the 95%
confidence interval (95% CI) was considered.

2.4. Platelets Function Measurement

Platelet function testing was measured using LTA (Light Transmission Aggregom-
etry) [24]. In brief, blood was collected on citric acid and then platelet aggregation was
measured photometrically using a Chronolog 700 Aggregometer (Chronolog Corp., Haver-
town, PA, USA). Aggregation was induced by 1 µmol/L adenosine diphosphate (ADP)
(Sigma-Aldrich, Vienna, Austria). The duration of platelet aggregation run ranged from 5 to
10 min. The intensity (A), lag (L), time (T), and the rate (V) of aggregation were determined
from the aggregation plot.

2.5. Other Variables

The measurement of serum creatine kinase (CK), aspartate aminotransferase (AST),
alanine aminotransferase (ALT), as well as concentrations of C-reactive protein (CRP),
lactic acid, glucose, urea, and creatinine used for correlation analysis, have been described
previously [11].

2.6. Statistical Analysis

Statistical analysis has shown that the estimated total sample size was calculated
on the basis of an analysis of covariance (ANOVA) test with 5 categories. We assumed a
significance level of 0.05, a power of approximately 0.95, a medium effect size 4 and sigma
= 5. The desired sample sizewas 34 samples whereas we had in total 66 cases.

Results were expressed as a mean (SD) and median (interquartile range). Data distribu-
tion was tested with the Shapiro–Wilk’s W test. The analysis of variance was applied using
ANOVA rang test for repeated observations followed by the Scheffe’s test or Friedman
ANOVA followed by the post hoc Wilcoxon test. Detailed p-values have been shown in
supplemental Table S6. The Spearman rank correlation (non-parametric test) was used to
measure the degree of association between two variables. Statistical significance was set at
p < 0.05. Statistical analysis was performed with the Statistica software v13.

3. Results

All included men successfully completed the protocol of three repeated exhaustive
treadmill exercises. A significant increase in H3Cit and PAD4 was observed after each
exercise session. The mean concentration of circulating citrullinated histones increased by
93.5, 67.9, and 23.5 percent in response to the first, second, and third bout of performed
exercise (Table 1). While PAD4 increased 51.7, 84.8, and 36.55 percent in response to the
first, second, and third bout, respectively. Pre-exercise H3Cit did not change during the
study, although the analysis of variance for repeated measures showed that the decreasing
trend of analyzed H3Cit is statistically significant (p = 0.000617). Individual results are
shown in supplemental Tables S1–S5 and Figures S1–S2.

Table 1. Level of H3Cit and PAD4 before and after each of three bouts of exhaustive treadmill exercise.

Parameter
Bouts of Exhaustive Treadmill Exercise

1st Bout 2nd Bout 3rd Bout
Before After Before After Before After

H3Cit
ng/mL

3.08 ± 2.9
(1.96 ± 2.9)

5.96 ± 3.0 *
(4.63 ± 4.4)

3.65 ± 3.5
(2.23 ± 3.4)

6.37 ± 5.2
(4.29 ± 5.4)

3.86 ± 3.1
(2.57 ± 4.4) †

4.75 ± 3.04 *
(5.05 ± 5.7)

PAD4
ng/mL

2.03 ± 3.2
(0.68 ± 0.6)

3.08 ± 3.7 *
(1.40 ± 1.3)

1.91 ± 3.4
(0.41 ± 0.6)

3.53 ± 4.1 *
(1.42 ± 1.8)

2.38 ± 3.6
(0.67 ± 1.6)

3.25 ± 3.8 *
(1.67 ± 2.4)

Results are expressed as mean ± SD (median; IQR). * vs. corresponding value before the bout, p < 0.05.
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The mean level of Light Transmission Aggregometry (LTA) significantly increased
by about 34.8, 74.3, and 43.5 percent in response to the first, second, and third bout of
exhaustive exercise respectively (Table 2). However, each bout seems to be an independent
event because no adaptation or accumulation has been observed. The individual results
are shown in supplemental Tables S1–S5.

Table 2. Level of LTA status before and after each of three bouts of exhaustive treadmill exercise.

Parameter
Bouts of Exhaustive Treadmill Exercise

1st Bout 2nd Bout 3rd Bout
Before After Before After Before After

LTA
U/min

40.8 ± 14.7
(37.2 ± 15.5)

55.0 ± 14.3 *
(56.7 ± 11.7)

33.3 ± 16.8
(31.1 ± 24.6)

57.0 ± 14.7 *
(63.1 ± 17.2)

39.3 ± 12.4
(35.3 ± 13.3)

56.43 ± 14.77 *
(57.05 ± 7.68)

LTA- Light Transmission Aggregometry. Results are expressed as mean ± SD (median; IQR). * vs. corresponding value before the bout,
p < 0.05.

Both IL-6 and IL-10 raised consequently in response to each bout of exercises. Inter-
leukin 6 increased 8.4-, 8.1-, and 7.3- times, respectively in the first, second and third bout
of exercise, whereas the increase of interleukin 10 was_2.6-, 2.9-, and 2.9-times, respectively,
in the first, second, and third exercises session, respectively (Table 3). Individual results are
shown in supplemental Tables S1–S5.

Table 3. Level of IL-6 and IL-10 before and after each of three bouts of exhaustive treadmill exercise.

Parameter
Bouts of Exhaustive Treadmill Exercise

1st Bout 2nd Bout 3rd Bout
Before After Before After Before After

Il-6
(pg/mL)

1 ± 0
(1 ± 0) †

8.44 ± 12.84 *
(2.43 ± 6.27)

1 ± 0
(1 ± 0) †

8.12 ± 9.59
(2.49 ± 6.31)

1 ± 0
(1 ± 0) †

7.28 ± 7.54 *
(3.01 ± 6.3)

IL-10
(pg/mL)

2.63 ± 1.25
(2.66 ± 1.2)

6.81 ± 6.27 *
(4.18 ± 5.56)

2.34 ± 1.13
(2.23 ± 0.26)

6.99 ± 11.09 *
(2.77 ± 1.62)

2.02 ± 1.04
(2.08 ± 1.51)

6.04 ± 6.59 *
(2.37 ± 6.1)

Results are expressed as mean ± SD (median; IQR). * vs. corresponding value before the bout, p < 0.05. †—Pre-exercise interleukin 6 levels
remained below the detection limit of ELISA kit (2 pg/mL), thus half of the detection limit has been calculated (which corresponds to a
normal level of this interleukin in healthy individuals (0.8–1.0) [23].

A strong correlation r = 0.79 has been observed between CitH3 and PAD4. Moreover
there was a positive correlation between Il-6 and IL-10, H3Cit, and LTA. Additional analysis
of the previously collected data confirms the positive correlation of LTA with cf nDNA and
lactate both with aggregation and citrullinated histone H3 and PAD4. It is worth noting
that although CitH3 and cf nDNA have no confirmed correlation, there was a positive
correlation between PAD4 and cf nDNA. All correlations were shown in Table 4.

4. Discussion

Many markers of strenuous exercise rise to the same extent as changes caused by
trauma, sepsis, or cardiac arrest. The increase in various classical biochemical markers such
as troponin, creatine kinase, or aminotransferases have been observed also in response to
exercises [11]. Numerous research have shown that cf nDNA rises over a dozen times in
stress caused by exercises, which is similar to the increase caused by traumatic incidents,
spread infection, or shock [3,6,11,12]. During nuclear decondensation, released DNA is
followed by histones. It is worth mentioning that extracellular histone exhibits many
similarities with cf nDNA as a pathology marker of sepsis or cancer [5,11,22,25]. However,
to the best of our knowledge, extracellular histones have not been studied in response
to exercises. This fact is essential for understanding post exercises physiological well-
being since histones exhibit high cytotoxicity, and the ability to cause multiple organ
endothelial cell dysfunction and inflammatory response [1–5]. In the present study, all
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healthy individuals had a normal low level of pre-exercises H3Cit/PAD4, but each bout of
exercise raised the level of these proteins [22]. However, the growth of CitH3 was smaller
with each subsequent treadmill run and decreased from 93 to 23 percent between the first
and third bout of exercise.

Table 4. Spearman’s (ρ) correlations between selected analyzed parameters before and after three
repeated bouts of exhaustive treadmill exercise.

Spearman Rang Correlation
Variables

Correlation Coefficient (r)
Spearman R p-Value

H3Cit vs. PAD4 0.786 (below 0.000005)
IL-10 vs. IL-6 0.374 (p = 0.0021)

H3Cit vs. Aggregation 0.157 (ns)
H3Cit vs. IL-6 0.312 (p = 0.0078)
PAD4 vs. IL6 0.485 (p = 0.000036)

H3Cit vs. IL-10 0.207 (ns)
Aggregation vs. IL-6 0.409 (p = 0.00049)
Aggregation vs. IL-10 0.051 (ns)
H3Cit vs. cf nDNA * 0.224 (ns)
PAD4 vs. cf nDNA 0.348 (p = 0.0041)

PAD4 vs. Aggregation
0.487 (p = 0.000092)

Aggregation vs. cf nDNA *
Aggregation vs. Lactate * 0.412 (p = 0.00058)

H3Cit vs. Lactate * 0.266 (p = 0.030)
PAD4 vs. Lactate * 0.369 (p = 0.0023)

Calculations were performed in absolute numbers. * This research is a continuation of the previously published
articles [11,16] which allows us to study the correlation with any previously investigated and published data;
ns—non significant.

In our previous study, we have observed the exact opposite trend regarding cf nDNA
(rose 12-fold in the first bout vs. 17 times in the third one). Furthermore, the increase
in histones is still six to eight times lower than the increase in cf nDNA. Basing on our
previously published results, we have studied the association of cf nDNA with extracellular
histone, but no correlation has been found. This was surprising, but we assume that it might
be due to different cellular releases (transport from the nucleus) or more probably dissimilar
kinetics of degradation of these molecules. Both cf nDNA and circulating histones have
very dynamic degradation kinetics. Though, cell-free nDNA is degraded mostly by serum
DNase activity, while extracellular histones are caught by kidneys or liver [26]. Both are
cleared from circulation within minutes after release. In our study, blood was collected
immediately after cessation of exercise, so such significant differences should be caused
by degradation or capture occurring during the period of exercise. Alternatively, histones
might bind to plasma proteins or endothelial cells thus, consequently, being undetermined
by ELISA antibodies.

Once cell-free nDNA or histones are released into the extracellular space, they can
be called DAMPs (damage-associated molecular patterns). DAMPs, called also alarmins,
are host biomolecules that can initiate and spread a non-infectious inflammatory response
and might be partly responsible for negative side effects of physiological stress. Histones
binding to the cell membranes induce Ca2+ influx into the cells causing harmful effects
in adjacent cells [27]. Beither et al. reported that level of chromatin nonhistone protein,
HMGB1 (High Mobility Group Box 1), increased in response to strenuous treadmill run 3.3
times, whereas cf nDNA increased 14 times. Moreover, in their study, the authors observed
a positive correlation between these molecules [12]. On the other hand, twelve weeks of
Nordic walking activity, combined with vitamin D supplementation, in a group of elderly
women, decreased serum HMGB1. This suggests that regular exercise might diminish the
alarmins response in healthy adults [17]. We have observed a significant trend of CitH3
between bouts which might confirm this phenomenon.
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The presence of citrullinated histones seems to be the most reliable marker of NETo-
sis [28]. Further observed repeated response of PAD4 might confirm association of NETosis
with strenuous exercises. MPO (myeloperoxidase) concentration, which is another common
marker of NETosis, rises in response to exercise and correlates with the amount of cf nDNA
released [13]. It is noteworthy that, the lactate accumulation, characteristic for exercises,
might impair the release of histones and NETs formation [29]. However, how leukocytes
release histones (or cf nDNA) is still uncertain, it might be NETosis, spontaneous release,
or less likely apoptosis or necrosis. However, apoptosis or necrosis takes even a few hours
to release nuclear compartments; therefore, it seems be to too long to occur during a single
bout of exercise.

Extracellular histones might function as microbicidal proteins by the pro-thrombotic
activity, limiting the spread of infection or isolating areas of injury, which allows for im-
munological activity. However, H3Cit toxicity is not specific to pathogens and contributes
as well to tissue damage, which, in cases of systemic inflammation, may lead to multiorgan
failure and finally to death. Research of the processes of histone release in acute inflamma-
tion and the mechanisms of histone-related tissue toxicity allows to develop therapeutic
strategies, for targeting histones in acute inflammatory diseases [1–4,22]. To this end, we
sought to examine how significantly histones contribute to exercise-induced pathologies.
Here, we observed that H3Cit increased slightly, compared to sepsis or trauma. In trauma,
the median H3Cit level was 28.6 ug/mL vs. 2.3 ug/mL in healthy volunteers [1]. In sepsis,
H3Cit was increased fourteen times for the whole seven day period [30,31]. Thus, in this
context, a very low increment of H3Cit might suggest limited histone induced cytotoxicity
caused by exercise.

Platelets play a fundamental role in normal hemostasis, while their acquired dys-
functions are involved in a variety of thrombotic events or cardiovascular disease (CVD)
development [32]. Platelet activation can be triggered by several specific platelets stimu-
lating mediators including ADP. In our study, we observed a significant increase in ADP
induced platelet aggregation. Furthermore, the increase was repeatable in each bout of
exercise, and presented no signs of tolerance or accumulation. Similarly, Tozzi-Ciancarelli
et al. showed that a single bout of strenuous exercise to exhaustion induced a significant
increase in evoked platelet aggregation, whereas exercises at moderate intensity decreased
platelets sensitivity. Our study design included three treadmill runs to exhaustion and LTA
increased similarly. Their research showed a rise from 38 to 65 percent, whereas in our study
the increase of LTA was from 41 to 55 percent in the first bout [33]. We might speculate
that, if a participant reaches a much higher distance, exercises have a lower load for him
than for the others. A phenomenon in which moderate exercises decreases platelet activity
in contrast to exhaustive ones seems to be confirmed by other studies [34,35]. To sum up,
reports considering platelet aggregation induced by ADP and association with exercises
are inconclusive. The results of some studies are in contrast to our results and suggest a
decreased platelet activity or personal-dependent mechanism, which divides participants
into responders and non-responders [35,36].

Neutrophil extracellular traps (NETs) are suspected to be an important link between
inflammation and thrombosis. However, in our study, we did not observe any association
between citrullinated histones/PAD4 and aggregation [28]. We might speculate that either
histones interact insufficiently or rise too low to trigger platelet aggregation [26]. The
mechanism which explains the influence of physical activity on platelet responsiveness
is probably very complex and involve many different processes such as free radicals,
leucocyte activity, and metabolites including cf nDNA. In this context, circulating histones
might not be fundamental. However, histones origin from histone-DNA complex and the
effect should not be separated. Furthermore, a correlation has been observed when we
combine them with our previously published results of cell free nDNA. Platelets activating
effect might be shielded when cf nDNA is in complex with histone component [37]. It is
worth emphasizing, when the positive charge of histone H3, and H4 was neutralized, then
the induced aggregation was inhibited [38].
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In the present study, experimental results indicated that exercise increased IL-6 and IL-10
to approximately 8 pg/mL and 6 pg/mL, respectively, and similarly in every accomplished
bout. These data are analogous to those of other similar research [7]. The cytokine hypothesis
considers that inadequate recovery induces musculoskeletal trauma, increasing the produc-
tion and release of proinflammatory cytokines, mainly IL-6 [7]. The anti-inflammatory effect
of physical exercise training can be mediated through the induction of an anti-inflammatory
environment, such as IL-10 [39,40]. IL-6 is released by immune cells and after the stimula-
tion of skeletal muscle fibers. This protease-dependent release of IL-6 might be initiated by
lactate production, linking training intensity and lactate production to IL-6 release during
strenuous exercise [11]. Moreover, epidemiological studies on healthy individuals reveal that
significantly higher levels of IL-6 are associated with the risk of cardiovascular events [41].
Recently, Thalin et al. in cancer patients have reported that IL-6 positively correlated with
H3Cit. In addition, in our study, we have observed that IL-6 was positively correlated not
only with H3Cit but also with IL-10, and blood aggregation confirmed the proinflammatory
association of these variables [42].

Study Limitations

(1) Our study has several limitations, a relatively small number of subjects, and hence the
inability to divide participants into subgroups (well-trained/untrained volunteers,
female/male).

(2) Second, the lack of kinetic analysis makes it impossible to confirm the trend of
citrullinated histones or explain the mechanism that disrupts the relationship between
circulating histone and cfDNA.

(3) Finally, since CitH3 ELISA kit detects both DNA bound and free histones this may
result in uncertainty in some observations.

5. Conclusions

Herein we have noticed:

(1) This is the first study showing that the level of circulating histone and PAD4 protein
increases in exhaustive exercises. Moreover, the presence of circulating histones in
post-exercise serum might confirm the increase of NETosis process during exercise.

(2) Blood aggregation status and interleukin expression increase in response to each bout
of strenuous exercise.

(3) Despite the parallel increase, no significant correlation between citrullinated histone
or blood aggregation was found. However, positive correlations of cf nDNA with
blood aggregation, and lactate with blood aggregation, and lactate with citrullinated
histone have been observed.

(4) Although each bout caused an increase in histones, all parameters normalized three
days after the treadmill run. However, histones showed a downward trend in their
increment.

(5) The increment of H3Cit is relatively low comparing to the other diseases what might
suggest limited exercise induced histone cytotoxicity.
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Abbreviations

PAD4 peptidylarginine deiminase 4
nDNA Nuclear Deoxyribonucleic acid
NETs Neutrophil extracellular traps
H3Cit Citrullinated histone H3
IL Interleukin
LTA Light Transmission Aggregometry
CVD Cardiovascular disease
DAMPs Damage-associated molecular patterns
HMGB1 High Mobility Group Box 1
MPO Myeloperoxidase
ADP Adenosine diphosphate
CK Creatine kinase
AST Aspartate aminotransferase
ALT Alanine aminotransferase
CRP C-reactive protein
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