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Objective(s): Hepatocellular carcinoma (HCC) is a common and lethal type of cancer worldwide. 
The importance of non-coding RNAs such as long non-coding RNAs (lncRNAs), circular RNAs 
(circRNAs), and microRNAs (miRNAs) have been recognized in the development of HCC. In this 
study, we constructed a four-component competing endogenous RNA (ceRNA) network in HCC and 
evaluated prognostic values of the ceRNAs. 
Materials and Methods: The expression profiles of lncRNAs, miRNAs, and mRNAs were retrieved 
from The Cancer Genome Atlas database. GSE94508 and GSE97332 studies from the Gene Expression 
Omnibus database were used to identify circRNAs expression profiles. A four-component ceRNA 
network was constructed based on differentially-expressed RNAs. Survival R package was utilized to 
identify potential prognostic biomarkers.
Results: A four-component ceRNA network including 295 edges and 239 nodes was constructed 
and enrichment analysis revealed important Gene Ontology and Kyoto Encyclopedia of Genes and 
Genomes pathways. A Protein-Protein Interaction network with 118 nodes and 301 edges was also 
established. The enhancer of zeste homolog 2 (EZH2) was the highest degree hub gene in the PPI 
network. Because of the significance of EZH2 in HCC, we presented its axes in the ceRNA network, 
which play important roles in HCC progression. Furthermore, ceRNAs were identified as potential 
prognostic biomarkers utilizing survival analysis.
Conclusion: Our study elucidates the role of ceRNAs and their regulatory interactions in the 
pathogenesis of HCC and identifies EZH2-related RNAs which may be utilized as novel therapeutic 
targets and prognostic biomarkers in the future.
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Introduction
Hepatocellular carcinoma (HCC) is the most common 

type of liver cancer, accounting for approximately 80% of cases 
and ranking fourth cause of cancer-related deaths worldwide 
(1-3). HCC has a poor prognosis because it is usually detected 
at the advanced stages. There are only a few therapeutic 
options with limited health benefits for the treatment of HCC 
(4, 5). Therefore, new prognostic and diagnostic biomarkers 
and novel therapeutic targets are required.

Different types of RNAs have been shown to compete 
for binding to the same microRNAs (miRNAs) through 
their miRNA response elements (MREs). These interactions 
and competitions among RNAs referred to as competing 
endogenous RNAs (ceRNAs) result in the formation of 
ceRNA networks (6). The investigation of these networks 
will contribute to a better understanding of the molecular 
mechanisms underlying cancer progression as well as the 
development of new biomarkers and therapeutic targets.

ceRNA networks are important for HCC progression (7). 
The roles of lncRNAs and circRNAs as ceRNAs in miRNA-
mediated gene expression modulation in HCC have been 
demonstrated over the last decade (8, 9). Xiong Dd et al. 

established a circRNA-miRNA-mRNA ceRNA network 
in HCC and identified 7 hub genes involving in cancer-
related pathways and biological functions (10). Luo Y et al. 
constructed a lncRNA-miRNA-mRNA ceRNA network 
in HCC and identified four genes associating with survival 
(CCNA2, CHEK1, FOXM1 and MCM2) (11). Another study 
established a ceRNA network in HCC and identified 9 
lncRNAs as hub genes enriched in various cancer-related 
processes (12).

Although there are several studies demonstrating the 
vital interactions and functions of ceRNAs in HCC, little is 
known about the four-component ceRNA network in which 
lncRNAs, circRNAs, and mRNAs compete for binding 
to the same miRNAs. These highly informative networks, 
which include four distinct types of ceRNAs, can provide a 
more comprehensive picture of the regulatory interactions 
occurring in cancer.

Using the Cancer Genome Atlas (TCGA) and the Gene 
Expression Omnibus (GEO) databases, we identified 
differentially expressed lncRNAs, miRNAs, mRNAs, and 
circRNAs in cancerous versus paracancerous HCC tissues 
(13, 14). Their interactions were then analyzed, and a ceRNA 
network comprised of all four types of mentioned RNAs 
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was constructed. We used mRNAs of the ceRNA network 
to identify Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways and to construct 
a Protein-Protein Interaction (PPI) network. Furthermore, 
survival analysis was performed to identify ceRNAs which 
may serve as prognostic biomarkers in HCC. The pipeline of 
the current study is depicted in Figure 1.

Materials and Methods
RNA sequencing data

A total of 422 HCC miRNA-seq data samples (372 
cancerous and 50 paracancerous) and 421 HCC RNA-seq 
data samples (371 cancerous and 50 paracancerous) were 
retrieved from the TCGA database using the TCGAbiolinks 
package in the RStudio software (15). Then, samples from 
patients with both RNA-seq and miRNA-seq data (367 
cancerous and 50 paracancerous data samples for each RNA-
seq and miRNA-seq data) were selected for further analysis. 

Batch effect examination and correction
The batch effect is a complication that researchers face 

when analyzing high-throughput data with technical 
differences and results from non-biological conditions that 
affect the results of studies (16, 17). The swamp package 
in the RStudio software was used to identify strong batch 
effects in RNA-seq data (containing Tissue Source Site 
(TSS), portion, and plate) and miRNA-seq data (containing 
TSS, portion, and plate). Then, batch effect correction was 
performed on both RNA-seq and miRNA-seq data by using 
ComBat_seq from the sva package (18).

Microarray data
The raw gene expression profiles of circRNAs in HCC were 

retrieved from the GEO database (https://www.ncbi.nlm.nih.
gov/geo/) consisting of GSE94508 (including 5 cancerous 
and 5 paracancerous samples) and GSE97332 (including 7 
cancerous and 7 paracancerous samples). The two datasets 
were combined, and the batch effect was removed through 
the sva package (19).

Identification of differentially expressed RNAs (DERs)
We compared 367 cancerous and 49 paracancerous 

RNA-seq and miRNA-seq data samples in order to identify 
differentially expressed mRNAs (DEMs), lncRNAs (DELs), 
and miRNAs (DEMis), using the DESeq2 package, with the 
threshold of |log2FC| > 2 and adjusted P-value < 0.01 (20). 
To investigate differentially expressed circRNAs (DECs) in 
12 cancerous and 12 paracancerous samples, the limma R 
package was utilized with the threshold of |log2FC| > 1.5 
and adjusted P-value < 0.05 (21). The ggplot2 and pheatmap 
packages were utilized to generate volcano and heatmap 
plots of DERs in the RStudio software.

Interaction prediction and construction of a ceRNA 
network

We annotated RNA-seq data using the biomaRt R package 
based on the Ensembl genome browser (22). We utilized 
the multiMiR R package to retrieve interactions between 
DEMs and DEMis (23). Three databases, including the 
TargetScan, miRDB, and miRTarBase, were selected via the 
multiMiR package for this aim and 20% of the most reliable 
interactions were retrieved (24-26). The interactions with a 
threshold of Context++ score ≤ - 0.6 were obtained from 
the TargetScan database. Additionally, only interactions 
with strong evidence were selected from the miRTarBase 
database. DELs and DEMis interactions were retrieved from 
the RNAInter online database with a score > 0.5 (27). We 
used the CircInteractome online database to identify DECs 
and DEMis interactions with context+ score percentile ≥ 90 
(28). The ceRNA network was constructed using Cytoscape 
software (version 3.8.1) (29). A sub-network was established 
by using “cytoHubba” (a plugin in Cytoscape software) for 
identification of hub genes in the network based on their 
topological feature (degree) (30).

Functional enrichment analysis
The KOBAS 3.0 online web tool was used to identify 

GO and KEGG pathways relating to the ceRNA networkʼs 
DEMs (31). The corrected P-value < 0.001 was considered 
as a significant cut-off for GO analysis. Moreover, the 
corrected P-value<0.01 was considered as a significant 
cutoff for KEGG analysis. The ggplot2 R package and 
Cytoscape software were used to visualize KEGG pathways 

Figure 1. The main flow-chart of this study. 1- The Cancer Genome Atlas, 2- Hepatocellular carcinoma, 3- Gene Expression Omnibus, 4- Differentially 
expressed mRNAs, 5- Differentially expressed lncRNAs, 6- Differentially expressed miRNAs, 7- Differentially expressed circRNAs, 8- Differentially expressed 
RNAs, 9- Competing endogenous RNA, 10- Gene ontology, 11- Kyoto encyclopedia of genes and genomes, 12- Protein-protein interaction, 13- Enhancer 
of zeste homolog 2
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and the genes associated with them. Furthermore, the 
GOplot R package was utilized to visualize the results of the 
GO analysis (32).

Establishment of a PPI Network and a sub-network
We established a PPI network based on the ceRNA networkʼ 

DEMs, using the online STRING database (33). Subsequently, 
in Cytoscape, free nodes were eliminated, and hub genes were 
detected via cytoHubba. The first hub gene (according to the 
degree feature) was selected to construct a sub-network based 
on its interactions from the ceRNA network.

Survival analysis
Survival analysis was performed on the ceRNA sub-

networkʼs DEMs, DEMis, and DELs to explore potential 
HCC prognostic biomarkers. The survival R package 
was utilized for survival analysis. Cancerous samples 
were divided into low and high expression groups based 
on the mean expression of each RNA, and the Kaplan-
Meier method was employed to perform the analysis. 
P-value<0.05 and Hazard Ratio (HR) ≠ 1 were considered as 
statistically significant thresholds. The clinical information 
of the patients were extracted from the TCGA database 
using the TCGAbiolinks R package. The survminer package 
was utilized for drawing survival plots. Box plots were also 
generated using ggpubr R package.

Statistical analyses
Spearman correlation among miRNA-seq and RNA-seq 

samples were performed separately using the TCGAbiolinks 
R package based on correlation > 0.7. The survivalROC 
package was utilized to examine prognostic values using the 
receiver operation curve (ROC) plot (34).

Results
Batch effects examination and correction in TCGA data

There were 367 cancerous and 50 paracancerous miRNA-

seq and RNA-seq data samples from the same HCC patients. 
The swamp R package was used to generate prince plots to 
investigate batch effects in RNA-seq and miRNA-seq data. 
Both miRNA-seq and RNA-seq data have been shown 
to exhibit significant batch effects based on their plate ID 
(Supplementary Figure 1a and b). Due to the statistical 
limitations of ComBat_seq, data from a paracancerous 
sample with a unique batch ID were omitted from miRNA-
seq and RNA-seq data. Finally, 367 cancerous and 49 
paracancerous data samples remained for RNA-seq and 
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Figure 2. The heatmap plots show detailed expression patterns of 
differentially expressed RNAs between cancerous and paracancerous HCC 
samples. a) Heatmap plot of DEMs, b) Heatmap plot of DELs, c) Heatmap 
plot of DEMis, d) Heatmap plot of DECs. Blue and red colors represent low 
and high expression of RNAs, respectively. The horizontal and vertical axes 
represent samples and differentially expressed RNAs, respectively
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Figure 3. The volcano plots show differentially expressed RNAs between 
cancerous and paracancerous HCC samples. a) Volcano plot of DEMs, b) 
Volcano plot of DELs, c) Volcano plot of DEMis.  |log2FC|>2 and adjusted 
P-value<0.01 are considered as significant thresholds for DEMs, DELs, and 
DEMis. d) Volcano plot of DECs. |log2FC| >1.5 and adjusted P-value<0.05 
are considered as significant thresholds for DECs. Blue and red colors 
represent low and high expression of RNAs, respectively. The horizontal and 
vertical axes represent -log2 (fold change) and -log10 (adjusted P-value)

Supplementary Figure 1. Batch effects examination in RNA-seq and 
miRNA-seq data. a) Prince plot of RNA-seq data before batch effect 
correction, b) Prince plot of miRNA-seq data before batch effect correction, 
c) Prince plot of RNA-seq data after batch effect correction, d) Prince plot 
of miRNA-seq data after batch effect correction
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miRNA-seq data analyses, respectively. The batch effect was 
then corrected according to plate ID in both RNA-seq and 
miRNA-seq data (Supplementary Figure 1c and d).

Differentially expressed RNAs in HCC
Based on the threshold of |log2FC| > 2 and adjusted 

P-value<0.01, 755 DELs (608 upregulated and 147 
downregulated), 1509 DEMs (1089 upregulated and 420 
downregulated) and 113 DEMis (109 upregulated and 4 
downregulated) were identified in HCC. Additionally, 45 
DECs (29 upregulated and 16 downregulated circRNAs) 
were identified based on the threshold of |log2FC| > 1.5 
and adjusted P-value<0.05 in cancerous compared to 
paracancerous HCC samples. The volcano and heatmap 
plots depict DERs and the distribution of their expression in 
cancerous and paracancerous HCC samples (Figure 2 and 3).

Interaction prediction and constructing a ceRNA network
Utilizing the TargetScan, miRTarBase, and miRDB 

databases via the multiMiR R package, 1078 interactions 
existing at least in one of the three mentioned databases were 
identified between DEMs and DEMis containing 95 unique 
DEMis. Among the 95 DEMis interacting with DEMs, 
CircInteractome and RNAInter databases revealed 24 
DECs-DEMis and 8 DELs-DEMis interactions, respectively. 
Collectively, 297 interactions were identified and used 
to construct a ceRNA network. Then, a four-component 
ceRNA network was constructed with 239 nodes and 295 
edges (one axis which had no connection to the other parts 
of the network was deleted (ASB15/ hsa-miR-1251-5p/ hsa_
circ_0072088).

The four-component ceRNA network included 8 
lncRNAs (8 upregulated), 23 circRNAs (16 upregulated and 
7 downregulated), 18 miRNAs (18 upregulated), and 190 
mRNAs (133 upregulated and 57 downregulated) (Figure 
4a). According to the network’s topological feature (degree), 
hsa-miR-182-5p had the highest degree (degree = 41) and 
was selected for extracting its sub-network from the ceRNA 
network (Figure 4b). Moreover, hsa_circ_0007456 was a 
hub gene in the ceRNA network (it was the first hub gene 
based on the degree feature (degree = 6) of all nodes except 
miRNAs). Interestingly, hsa-miR-182-5p interacted with 
hsa_circ _0007456 in the ceRNA network.

 

4 
 

 

  Figure 4. ceRNA network and a sub-network in HCC. a) ceRNA network 
including DELs (orange), DECs (green), DEMs (blue) and DEMis (purple). 
b) A sub-network was extracted from the ceRNA network. hsa-miR-182-
5p has the highest degree in the ceRNA network. Triangle and rectangle 
shapes represent upregulated and downregulated RNAs, respectively
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Figure 5. Significant KEGG pathways relating to the DEMs of the ceRNA network. a) A dot plot showing significant KEGG pathways. The Y axis represent 
the name of each signaling pathway and X axis represent -log10 (adjusted P-value) of each pathway. The size of the dots indicates the number of genes 
involved in the related signaling pathway. The significance level of the pathways is shown by changes in the color scale. b) A network including signaling 
pathways and the genes relating to them. Pink and blue circles represent pathways and genes, respectively
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Functional enrichment analysis
KEGG pathway analysis showed significant pathways 

such as calcium signaling pathway, protein digestion and 
absorption, hepatitis B, microRNAs in cancer, gap junction, 
pathways in cancer, and cellular senescence with corrected 
P-value < 0.01 (Figure 5). On the other hand, GO enrichment 
analysis revealed 30 terms with corrected P-value < 0.001 
(Figure 6). Among these GO terms, biological process (BP), 
cellular component (CC), and molecular function (MF) 
were associated with 11, 11, and 8 terms, respectively. The 
supplementary files contain all significant KEGG pathways 
(corrected P-value < 0.01) and GO terms (corrected P-value 
< 0.001) (Supplementary file 1 and 2).

Protein-protein interaction (PPI) and screening of hub 
genes

The ceRNA network-related mRNAs were utilized 
for constructing a PPI network. A PPI network with 118 
nodes and 301 edges was generated using the STRING 
online database (Figure 7a). There were 10 hub genes in the 
network with degree greater than 15, which the enhancer of 
zeste homolog 2 (EZH2) had the highest degree (Figure 7b). 
EZH2 plays a critical role in HCC (35, 36). As a result, we 
investigated its ceRNA network axes and introduced both 
lncRNAs and circRNAs as competitors for EZH2. EZH2 was 
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  Figure 6. GO analysis based on the DEMs of the ceRNA network. a) The GOChord plot of the most significant three gene ontology terms relating to each 
GO groups (biological process, cellular component, and molecular function). b) GOCircle plot of biological process part of GO analysis. c) GOCircle plot of 
cellular component part of GO analysis. d) GOCircle plot related to molecular function part of GO analysis
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  Figure 7. The protein-protein interaction (PPI) network constructed 
based on the mRNAs from the ceRNA network and its degree-based 
examination. a) The PPI network. b) Hub genes of the PPI network based 
on degree feature. C) EZH2-related sub-network including DELs (orange), 
DECs (green), DEMs (blue) and DEMis (purple). Triangle and rectangle 
shapes represent upregulated and downregulated RNAs, respectively
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found to be associated with 7 axes which correlated with 
circRNAs or lncRNAs (hsa_circ_0040705-hsa-miR-527-
EZH2 / hsa_circ_0040705-hsa-miR-518a-5p–EZH2 / hsa_

circ_0069104-hsa-miR-527-EZH2 / hsa_circ_0069104-hsa-
miR-518a-5p–EZH2 / HAGLR-hsa-miR-217-5p–EZH2 / 
CRNDE-hsa-miR-217-5p–EZH2/CDKN2B-AS1–hsa-miR-

Table 1. Survival-related ceRNAs from the sub-network of EZH2. The columns of group and patients represent the number of patients with high and low 
expression of each RNAs. †: hazard ratio
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 Figure 8. Survival-related and box plots of the three survival-related ceRNAs. a) Survival plot of EZH2, b) Survival plot of ANLN, c) Survival plot of MYEF2. 
Purple and pink colors represent low and high gene expression in samples. Y and X axes represent survival percentage of patients and time, respectively. 
d) Receiver Operating Characteristic (ROC) curve plot of EZH2, e) ROC curve plot of ANLN, f) ROC curve plot of MYEF2. Red, blue and green colors 
represent one, three and five-year survival area under the ROC curve (AUC), respectively. g) Boxplot of EZH2, h) Boxplot of ANLN, i) Boxplot of MYEF2. 
Purple and pink colors represent paracancerous and cancerous HCC samples, respectively
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217-5p–EZH2). Subsequently, the EZH2 sub-network was 
established (Figure 7c).

Survival-related RNAs
Univariate survival analysis was conducted to identify 

survival-related RNAs from the sub-network of EZH2. A 
total of 13 RNAs (10 mRNAs, 2 lncRNAs, and 1 miRNA) 
were revealed as survival-associated RNAs in HCC based 
on P-value<0.05 and HR ≠ 1 (Table 1). Among these DERs, 
EZH2, ANLN, and MYEF2 had the highest HR and HCC 
patients who expressed higher levels of these RNAs had 
poorer survival rate (Figure 8a-f). Roc curve plots indicated 
that these three RNAs could be effective prognostic 
biomarkers in HCC patients (Figure 8d-f). The expression 
changes of these three RNAs between cancerous and 
paracancerous samples have also been shown (Figure 8g-i).

Discussion
HCC is the fourth cause of cancer-related death in the 

world (1). While numerous studies have been conducted 
to elucidate the molecular mechanisms underlying the 
progression of HCC, they have not been completely 
understood. lncRNAs and circRNAs are two types of 
ceRNAs which their competition affects the development 
of cancers, including HCC (8, 9). Identification of these 
interactions will aid in our understanding of the molecular 
mechanisms underlying HCC and the development of novel 
diagnostic and prognostic biomarkers.

The current study investigated the interactions among 
four types of RNAs in HCC, including lncRNAs, circRNAs, 
mRNAs, and miRNAs and their four-component ceRNA 
network. After correcting batch effects, we identified 755 
DELs, 1509 DEMs, 113 DEMis, and 45 DECs between 
cancerous and paracancerous HCC samples. A ceRNA 
network with 239 nodes and 295 edges was constructed based 
on the predicted interactions of DERs. Enrichment analysis 
was then performed based on the mRNAs from the network 
and revealed significant signaling pathways and GO terms. 
These results can help us to better understand molecular and 
cellular processes involving in the development of HCC. 
The mRNAs from the ceRNA network were then utilized 
to establish a PPI network. EZH2 had the highest degree 
among the hub genes in the PPI network.

Examining ceRNAs from the ceRNA network revealed 
hsa-miR-182-5p as the highest degree hub gene and hsa_
circ_0007456 as a hub gene based on degree of all nodes 
except miRNAs. The two hub genes directly interact with 
each other in the ceRNA network, and their sub-network 
was extracted. miR-182-5p induces proliferation of HCC 
cells through AKT/FOXO3a signaling pathway, and its 
increased expression is associated with poor prognosis in 
HCC patients (37). Downregulation of hsa_circ_0007456 in 
HCC tissues has been reported and it can affect natural killer 
cell-mediated cytotoxicity through the hsa_circ_0007456/
miR-6852-3p/ICAM-1 axis in HCC (38).

EZH2, a critical transcription regulator, is a subunit of the 
poly comb repressive complex 2 (PRC2), which can influence 
the expression of its target genes in various ways, such as 
methylation of Lys-27 in histone 3 (39, 40). Overexpression 
of EZH2 has been identified in various cancers, including 
gastric cancer, thyroid carcinoma, prostate cancer, and HCC 
(36, 41-43).

EZH2 overexpression is associated with HCC progression 

and metastasis (35). EZH2 can induce tumorigenesis by 
affecting tumor-suppressive genes and initiating cancer-
related molecular processes like miRNA silencing, non-
canonical transcription regulation, and NF-kB activation 
(44). Therefore, new strategies for manipulation of EZH2 
may be developed to improve cancer therapy in the near 
future (44). 

Different studies have identified the role of EZH2 as an 
epigenetic modifier in HCC. In a study conducted by Au SL 
et al. it was revealed that EZH2 can epigenetically inhibit 
the expression of tumor-suppressor miRNAs, such as miR-
139-5p, miR-125b, miR-101, let-7c, and miR-200b in HCC 
(35). Another study demonstrated that the expression of 
immune checkpoint inhibitor, programmed death-1 ligand 
1 (PD-L1), can be suppressed by EZH2 in HCC through 
methylation of its encoding gene and IRF1 which is an 
essential transcription factor for the expression of PD-L1 
(45). Xu L et al. revealed that ectopic overexpression of 
miR-101 as a tumor suppressor inhibits the progression, 
invasion, and proliferation of HCC by directly targeting and 
decreasing the expression of EZH2 (46). A study published 
in 2019 constructed a ceRNA network in HCC and 
demonstrated the interaction of EZH2 and its competitors 
with hsa-mir-217. Some of its competitors are also identified 
in this study such as DACH1 and CRNDE (47).

In the EZH2 related sub-network, three miRNAs 
(hsa-miR-527, hsa-miR-518a-5p, and hsa-miR-217-5p) 
interacted with EZH2. It has been reported that miR-527 
may be involved in the progression of HCC by targeting 
Glypican-3 (48). Contribution of miR-217 in tumor 
progression of several cancer types including hepatocellular 
carcinoma has been documented (49).

In the present study, we demonstrated that overexpression 
of EZH2 was negatively associated with overall survival 
in HCC patients, with the highest hazard ratio of all 
survival-related RNAs. Previous studies have established 
that overexpression of EZH2 is associated with a poor 
prognosis in various types of cancer (50). Notably, it has 
been reported that overexpression of EZH2 is associated 
with tumor progression, aggressiveness, and poor prognosis 
in HCC (45, 51-54). A recent study conducted by Zhang  
et al. revealed that EZH2 is overexpressed in HCC and 
correlates with poor survival. They indicated that silencing 
EZH2 inhibits the viability, migration, and invasion of 
HCC cells via the TGF-β-MTA1-SMAD7-SMAD3-SOX4-
EZH2 signaling cascade (52). Additionally, Guo et al. 
reported that high EZH2 expression is associated with poor 
overall survival, disease-specific survival, progression-free 
survival, and relapse-free survival in nearly all patients 
with HCC. Furthermore, they discovered a relationship 
between EZH2 and major MHC class I antigen presentation 
molecules, indicating that it plays an immunosuppressive 
role (53). In another study, Xu et al. revealed that increased 
EZH2 expression is associated with increased tumor size, 
metastasis, relapse, and an unfavorable prognosis in HCC 
(54). Collectively, these findings suggest that EZH2 may be 
a useful prognostic biomarker in patients with HCC. 

Conclusion
Our study identifies a novel four-component ceRNA 

network consisting of four types of RNAs in HCC and reveals 
EZH2-related ceRNA axes. Future studies will elucidate 
the precise roles of these axes in the pathogenesis of HCC. 
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Three miRNAs (hsa-miR-527, hsa-miR-518a-5p, and hsa-
miR-217-5p) interacting with EZH2, may be used to inhibit 
EZH2ʼs oncogenic function in the future. Furthermore, 
we identified ceRNAs associated with survival in the sub-
network of EZH2, which may be helpful in survival-related 
research aimed at identifying prognostic biomarkers in 
HCC. Further studies are needed to examine and validate 
these conclusions experimentally.
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