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Distributed learning for heterogeneous clinical data with
application to integrating COVID-19 data across 230 sites
Jiayi Tong1, Chongliang Luo2, Md Nazmul Islam3, Natalie E. Sheils 3, John Buresh3, Mackenzie Edmondson1, Peter A. Merkel1,
Ebbing Lautenbach1, Rui Duan4 and Yong Chen 1✉

Integrating real-world data (RWD) from several clinical sites offers great opportunities to improve estimation with a more general
population compared to analyses based on a single clinical site. However, sharing patient-level data across sites is practically
challenging due to concerns about maintaining patient privacy. We develop a distributed algorithm to integrate heterogeneous
RWD from multiple clinical sites without sharing patient-level data. The proposed distributed conditional logistic regression (dCLR)
algorithm can effectively account for between-site heterogeneity and requires only one round of communication. Our simulation
study and data application with the data of 14,215 COVID-19 patients from 230 clinical sites in the UnitedHealth Group Clinical
Research Database demonstrate that the proposed distributed algorithm provides an estimator that is robust to heterogeneity in
event rates when efficiently integrating data from multiple clinical sites. Our algorithm is therefore a practical alternative to both
meta-analysis and existing distributed algorithms for modeling heterogeneous multi-site binary outcomes.
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INTRODUCTION
Starting from the 2010s, the adoption of Electronic Health Record
(EHR) systems grows rapidly in the United States. A large range of
detailed clinical data, including medications, laboratory test
results, disease status, and treatment outcomes, are available to
facilitate research. The real-world data (RWD), including EHRs,
claims, and billing data among others, have become an invaluable
data source for comparative effectiveness research (CER) during
the past few years1,2. Synthesis of the RWD stored electronically in
the EHR systems from multiple clinical sites provides a larger
sample size of the population compared to a single site study3.
Analyses using larger populations can benefit the accuracy in
estimation and prediction. The integration of research networks
inside healthcare systems also allows rapid translation and
dissemination of research findings into evidence-based healthcare
decision making to improve health outcomes, consistent with the
idea of a learning health system4–9.
In the past few years, several successful networks have been

founded and become beneficial to multicenter research. One of
them is the Observational Health Data Sciences and Informatics
(OHDSI) consortium10. OHDSI was founded for the primary
purpose of developing open-source tools that could be shared
across multiple sites. OHDSI developed the Observational Medical
Outcomes Partnership (OMOP) Common Data Model (CDM) for
data standardization11. The OMOP allows each institution to
transform the local EHR data to the CDM’s standards. This
procedure makes it feasible for the researchers to develop
methods that can be simultaneously applied to the datasets from
many institutions. The conversion and standardization of the data
format decrease the probability of translation error and also
increase the efficiency of data analysis. Another successful
network is the National Pediatric Learning Health System
(PEDSnet), a National Pediatric Learning Health System, within
the PCORnet system12,13. This network contains eight large

pediatric health systems in the US. Comprising clinical information
from millions of children, PEDSnet offers the capacity to conduct
multicenter pediatric research with broad real-world evidence.
Other significant efforts include Sentinel System, which is a multi-
site network of a national electronic system for monitoring
performance of FDA-regulated medical products14 and the
Consortium for Clinical Characterization of COVID-19 by EHR
(4CE)15, which is an international consortium for electronic health
record (EHR) data-driven studies of the COVID-19 pandemic,
among others.
In multi-center studies, maintaining privacy of patient data is a

major challenge16–19. Due to data privacy policies, directly sharing
patient-level data, especially demographic, comorbidity, and
outcome data, is restricted and poorly feasible in practice. The
Health Insurance Portability and Accountability Act of 1996
(HIPAA) introduced a privacy rule to regulate use of protected
health information (PHI) often found in EHRs, requiring de-
identification of PHI before use in biomedical research17. De-
identified PHI has been shown to be susceptible to re-identifica-
tion, causing concern among patients20,21.
In light of patient privacy concerns, many multicenter studies

currently conduct analyses by combining shareable summary
statistics through meta-analysis22–24. While relatively simple to
use, meta-analysis has been shown to result in biased or imprecise
estimation in the context of rare outcomes, as well as with smaller
sample sizes25. Other than meta-analysis, several distributed
algorithms have been developed and considered in studies with
multi-site data. In these distributed algorithms, a model estimation
process is decomposed into smaller computational tasks that are
distributed to each site. After parallel computation, intermediate
results are transferred back to the coordinating center for final
synthesis. Under this framework, there is no need to share patient-
level data across sites. For example, GLORE (Grid Binary LOgistic
Regression) was developed for conducting distributed logistic
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regressions26, and WebDISCO (a Web service for distributed Cox
model learning) was developed to fit the Cox proportional hazard
model distributively and iteratively27. Both algorithms have been
successfully deployed to the pSCANNER consortium28. Through
iterative communication of aggregated information across the
sites, these two algorithms provide accurate and lossless results,
which are equivalent to fitting a model on the pooled data from
all sites. However, in practice these methods can be time-
consuming and communication-intensive due to the need for
iteratively transferring data. To overcome this limitation, non-
iterative privacy-preserving distributed algorithms (specifically,
one-shot algorithms, which only require one round of commu-
nications across sites) for logistic regression (termed as ODAL) and
Cox model (termed as ODAC) through the construction of a
surrogate likelihood have been proposed25,29,30.
However, all of the aforementioned distributed algorithms rely

on the assumption that data across clinical sites are homoge-
neous. This assumption is often not reflecting the reality in
biomedical studies because often there are intrinsic differences
across clinical sites in terms of population characteristics, types of
interventions, data collection procedures, and so on. Ignoring
heterogeneity across clinical sites can induce biases in estimating
associations between the exposures of interest and outcomes16,31.
There was a limited amount of effort in addressing this issue. For
binary outcomes, to account for the situation that some studies
are substantially different from the others in multi-site studies, a
Robust-ODAL algorithm, built on robust statistics in data
aggregation, was proposed32. Duan et al. (2021)33 proposed a
framework of distributed inference for heterogeneity-aware
distributed algorithms. By parametric modeling of the data

generating mechanism of all data sites, a density ratio tilting
technique was developed in characterizing the impacts of
between-site heterogeneity and an efficient score function was
developed to reduce the impacts of the between-site
heterogeneity.
Despite the existing limited efforts on accounting for hetero-

geneity, all of them are based on fully parametric models, which
require full characterization of data generating mechanism of the
data. In this paper, we plan to develop an alternative distributed
algorithm based on models that allow site-specific effects, without
the need for specification of the distribution of the site-specific
effects, which brings robustness to statistical inference. We devise
our algorithm to be communication-efficient, which only requires
one-round of communication from the collaborative sites.
Our motivating example is a claims data derived from the

insurance claims of 14,215 patients who were diagnosed with
COVID-19 prior to June 29, 2020. Containing demographic,
diagnosis, and procedural codes, the claims data are collected
from 230 sites documented in the UnitedHealth Group Clinical
Research Database. There is a substantial difference in clinical
practices across these sites due to such factors as geographical
variability in disease patterns, variations in patients’ characteristics,
and regional differences in practice patterns. Specifically, large
variation in the COVID-19 hospitalization distribution exists across
47 states in the U.S. (Fig. 1(a), created by open-source R package
usmap34). The rate of the interested outcome, defined by
combining both hospitalizations (days) and the status of patients
being expired, ranges from <1% to 6% across the 230 sites as
shown in Fig. 1(b). Therefore, developing methods to account for
the heterogeneity in the data is especially needed when analyzing
multi-site data within the networks.
To fill the above methodology gap, in this paper, we develop a

privacy-preserving distributed pairwise conditional logistic regres-
sion (dCLR) algorithm. The proposed dCLR algorithm accounts for
between-site heterogeneity by a construction of pairwise like-
lihood, and facilitates data integration by efficient communication
(i.e., only requires one round of communication of aggregated
information from collaborative sites). Instead of using the standard
conditional logistic regression model by Breslow and Day35, the
pairwise conditional likelihood31 has the advantage of computa-
tional advantages by reducing the computational cost from a
permutation (i.e., n! where n is the sample size in a site) to all
possible pairs (i.e., O(n2)). Based on the seminal work on surrogate
likelihood proposed by Jordan et al. (2019)36,37, we construct a
surrogate pairwise likelihood through approximating the target
pairwise likelihood by its surrogate. The construction of pairwise
likelihood avoids estimating the site-specific intercepts in the
regression model, and leads to robust estimation of regression
coefficients. Different from existing work on surrogate like-
lihood36,37 where data are assumed to be homogeneous, to deal
with heterogeneous data, we use U-statistics theory to show that
the proposed surrogate pairwise likelihood leads to a consistent
and asymptotically normal estimator, and is asymptotically
equivalent to the maximum pairwise likelihood estimator based
on the pooled data. We evaluate the empirical performance of the
proposed method through simulation studies and a study of the
risk factors associated with increased length of stay outcomes from
14,215 patients across 230 clinical sites admitted with COVID-19.

RESULTS
The dCLR algorithm is privacy-preserving, heterogeneity-
aware, and communication-efficient
Figure 2 shows the comparisons between the pooled analysis,
meta-analysis method, iterative distributed algorithms, and the
proposed method from various aspects. Accuracy is evaluated
through mean squared error (MSE) and bias to the true value: the

Fig. 1 Summary of real-world data from 230 sites. a COVID-19
cases distribution: number of COVID-19 hospitalizations included in
the study are represented across 47 states created by open-source R
package usmap34 (https://cran.r-project.org/web/packages/usmap/
usmap.pdf) (b) Box plots of the prevalence rates of composite
outcomes of 230 hospitals.
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smaller the MSE or bias is, the better the accuracy is. Privacy is
evaluated based on if the method is an aggregated data-based
approach without sharing patient-level information. Heterogene-
ity refers to the different disease prevalence values or baseline
risks, which can be evaluated by calculating the variance or the
range of the intercepts of the model32,38 The evaluation of
communication is through the number of rounds of transferring
aggregated data across sites and the number of digits to be
communicated within each round. The proposed method, which is
based on the surrogate pairwise likelihood approach, can retain
high accuracy in estimated model parameters, protect patient
privacy, handle heterogeneity, while being communication
efficient.

The dCLR algorithm provides highly accurate estimation of
model parameters
In our simulation study, we consider a setting where a binary
outcome is associated with two risk factors. Three total numbers
of sites were simulated (i.e., five, twenty, and two hundred clinical
sites in total). We simulated three scenarios of the disease
prevalence to mimic the real-world common disease and relative
rare disease. For simplicity, we only present the results for the
estimation of one of the two risk factors’ coefficients and the
results for the other coefficients are similar.
Figure 3 shows the violin plot of the relative bias compared with

the pairwise likelihood method under different numbers of sites
and event rates. Upper panel represents the moderate hetero-
geneity in the prevalence rates and the lower panel represents a
larger heterogeneity. The first row in each panel is for the results
when the total sites number is five, the second row is for the
setting when total sites number is twenty, and the third row is for
the setting when total sites number is two hundred. The black
dashed line represents zero relative bias compared with the gold
standard method. From the figure we observe that for all
scenarios, the proposed method obtains almost the same or
smaller relative bias compared with meta-analysis. Importantly, as
the event rate decreases under both less and more heterogeneous
cases, the meta-analysis estimator is observed to have larger bias.
When the event rate is <5%, the relative bias of the proposed
estimator is 30% smaller than that of the meta-analysis estimator.
In summary, the proposed method can provide better

performance than the meta-analysis estimators to handle the
heterogeneity across the clinical sites when the event is rare.

The dCLR algorithm can integrate data across heterogenous
clinical sites
Administrative claims data for 14,215 hospitalized patients who
were diagnosed with COVID-19 prior to June 29, 2020, from 230
clinical sites were used to estimate the association between
clinical-and-demographic covariates (i.e., age, sex, line of business,
and Charlson comorbidity index) and therapeutic patient
outcomes.
We primarily focus on estimating and comparing parameter

estimates by the proposed method and the meta-analysis
method. We stress that the parameter estimates need to be
interpreted with caution since the effects’ magnitudes or
directions might be misleading without adjusting for potential
confounders in the model. Figure 4 illustrates the results obtained
by the pairwise likelihood method (i.e., gold standard method with
pooled patients’ patient-level data), the proposed method, and
meta-analysis. As the prevalence rate decreases (i.e., in rare
events), the proposed method outperforms meta-analysis in terms
of estimating parameters. Specifically, the odds ratio (OR) of the
proposed method remains closer to that of the gold standard
approach, compared with the OR of meta-analysis. The proposed
estimates have a relative bias <9% when the event rate is <1%,
whereas the meta-analysis estimates have a relative bias at least
10% higher than that of the proposed method. With the bootstrap
method with 100 replications, the differences with respect to the
gold standard method (black, top) between the proposed
algorithm (middle, blue) and the meta-analysis method (bottom,
red) are all statistically significant with the p-values smaller than
0.001 across all settings for all covariates. This observation
matches with that of the simulation study.
Besides, meta-analysis underestimates variance (or standard

error of estimates) leading to far narrower confidence intervals
relative to those of the gold standard method, especially for rare
events. Ignoring between-and-within sites correlation in meta-
analysis is likely to induce bias and underestimate uncertainty in
parameter estimates leading to conflicting inference about the
testing of significance of the effect size. For example, 95%
confidence intervals of ORs for Charlson score based on meta-

Fig. 2 Existing methods comparison. Comparisons between pooled analysis, meta-analysis, iterative distributed algorithms, and the
proposed method. The proposed method can retain high accuracy when estimating association between exposures and outcome of interest.
In addition, the proposed method can handle heterogeneity across the sites and protect patient privacy with efficient communication.
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Fig. 3 Simulation study results. Comparison between the relative bias of meta-analysis method (pink) and the proposed dCLR algorithm
(cyan). Upper panel: relative bias of the continuous risk factor’s coefficient estimation compared with the pairwise likelihood method (gold
standard) under three scenarios (i.e., median prevalence 20%, 5%, and 0.5%) with moderate heterogeneity in prevalence when the total
number of sites is 5, 20, or 200. Lower panel: relative bias of the continuous risk factor’s coefficient estimation compared with the pairwise
likelihood method (gold standard) under three scenarios with median prevalence 20%, 5%, and 0.5% with larger heterogeneity (i.e., larger
prevalence range than upper panel) when the total number of sites is 5, 20, or 200.
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analysis does not contain OR value of one implying its
significance, which is inconsistent with the inference based on
the gold standard method. In contrast, the proposed method
produces comparable inferences to the gold standard method.

DISCUSSION
In this paper, we proposed a robust privacy-preserving distributed
algorithm for modeling binary outcomes while accounting for
heterogeneity across clinical sites. The proposed method only
requires one round of communication of aggregated data. Our
algorithm provides an estimator that is robust to heterogeneity in
event rates. In simulations, the proposed method is shown to have
higher accuracy than meta-analysis when the outcome is relatively
rare, suggesting its utility in a rare-event context.
There are several advantages of our proposed algorithm

compared to existing methods for privacy-preserving data
analysis. Relative to meta-analysis, our method accesses patient
data at a higher granularity while requiring minimal additional
effort to institute. For multi-site studies operating under a
common data model, such as OHDSI, analyses using our method
can be carried out at individual sites concurrently without the
need for any site-specific modifications. In addition, there are
several benefits of using our method compared to existing
distributed algorithms. First, the proposed algorithm does not
require iterative communication across the sites, leading to the
reduction in communication costs and administrative efforts.
Secondly, to implement the proposed method, the access of
patient-level data is required only at a single site. For the other
sites within the network, the aggregated information will be used
instead of patient-level data transfer across the sites to construct
the surrogate pairwise likelihood function. Given the under-
standable privacy- and proprietary-related sensitivities health
systems have to provide “outside” collaborators with access to
patient-level data, limiting the need to use such data to only one
site would be extremely beneficial to a multi-site project in terms
of feasibility, costs, and time. Thirdly, by eliminating the site-
specific parameter in the conditional logistic regression model, the
proposed method can handle the heterogeneity across the sites
without modeling their distribution. In this paper, we specifically
focused on the binary outcome to illustrate the proposed method
based on the motivating example. Generally, the proposed
algorithm can consider the models within the generalized linear

model (GLM) and further to the semi-parametric extension of
GLM, for example, the semiparametric proportional likelihood
ratio proposed by Luo and Tsai (2012)38. With the conditioning
technique, the proposed distributed algorithm does not require
parametric assumption on the baseline distribution of patient
characteristics. The aforementioned advantages of our algorithm
comes with the price of higher computational cost, as the
algorithm involves computation of likelihood constructed by all
pairs of patients within a site. To alleviate this limitation, we
implemented an algorithm with R calling C, which is about 50
times faster than using the R programming language alone. We
have demonstrated its applicability to real-world data with a large
number of patients in a database with 14,215 patients across 230
clinical sites.
Nevertheless, the proposed method has several limitations that

require further investigation and evaluation. First, the proposed
pairwise likelihood function can only handle the heterogeneity of
the intercepts (i.e., site-specific effects) in the regression model.
There exist other types of data heterogeneity, such as hetero-
geneous effects of the predictors, and heterogeneity in data
structure. To handle these types of heterogeneity, further
development of distributed algorithms is needed. Secondly, in
the proposed dCLR algorithm, we focused on the heterogeneous
baseline risks (i.e., prevalence values) but did not investigate the
intra-site heterogeneity where subpopulations within a site may
have different outcomes. To account for the intra-site hetero-
geneity, there are several strategies. For example, we can include
interaction terms between dummy variables for the subpopula-
tions (such as ICU patients vs other patients) and the covariates in
other to account for heterogeneous effect sizes of the covariates.
Further, high-dimensional extensions of the pairwise likelihood,
such as Ning et al. 201739, with added interaction terms among
covariates should be considered in accounting for intra-site
heterogeneity. Thirdly, the proposed dCLR algorithm is considered
privacy-preserving because there is only one round communica-
tion of aggregated data from the clinical sites needed. The
aggregated data are made available only to the participants of the
collaborative investigation. Nevertheless, the release mechanism
of our aggregated data has not been rigorously studied to ensure
the privacy-preserving criteria such as k-anonymity or differential
privacy have been met. The aim of k-anonymity is to protect
against the risk of re-identification, which arises from linking
potential quasi-identifiers (i.e. combinations of patient’s

Fig. 4 Real-world data analysis results. Point estimates and 95% confidence intervals (CI) for the association (in odds ratio scale) between the
LOS (i.e., length of stay) and covariates (i.e., sex, age, Charlson score, line of business, from left to right). Each row represents an event rate of
the outcome: 6%, 2%, and <1% from top to bottom. Each column represents the estimation of the covariate.
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characteristics in our study) to external sources. For the proposed
dCLR algorithm, it can potentially meet the k-anonymity require-
ment if all the cell counts in the aggregated data are not sparse. In
the future collaborative studies using dCLR, we suggest the data
contributors review the aggregated data to avoid sparse cells
before sending them to other sites. In the future, we plan to
further extend our algorithms under the abovementioned
heterogeneity settings and assess the probability of privacy
leakage and improve our dCLR algorithm using approaches such
as differential privacy and multiparty homomorphic encryption.
In the future, we also plan to extend our algorithm in several

aspects. We plan to develop methods for other types of
outcomes, such as time-to-event data and count data. Recently,
a number of one-shot distributed algorithms have been devel-
oped for analyzing heterogeneous multi-site time-to-event data
allowing for site-specific baseline hazard functions, count data
allowing for site-specific over-dispersion parameters, and zero-
inflated count data with Hurdle regression40–42. Another strategy
to account for between-site heterogeneity in multi-site data is to
use hierarchical models with site-specific random effects, such as
linear mixed effects model and generalized linear mixed effects
model. Lossless distributed algorithms have been recently
developed where the results from the distributed algorithms
are identical to the results from the analysis on the pooled data.
These algorithms have been applied to investigate clinical factors
that impact the length of stay during hospitalization for patients
admitted with COVID-19 and evaluations of performance of
hospitals during pandemic43–45. In addition, the development of
distributed algorithms to handle the missingness in the long-
itudinal data is also needed in the future. Additionally, we have
been working on the development of the open-source software R
package to implement the proposed distributed algorithm within
a multicenter network. We believe that the proposed algorithm
would be a useful contribution to distribution algorithms that can
account for the heterogeneity across multiple clinical sites, which
will ultimately advance the next generation data sharing and
multi-site collaborations.

METHODS
The proposed distributed conditional logistic regression
(dCLR) algorithm
To handle the site-specific effect, we develop a privacy-preserving
distributed pairwise conditional logistic regression (dCLR) algorithm. As
shown in Fig. 5, there are two steps required to implement the proposed
algorithm: initialization and surrogate estimator estimation. In the first step
(i.e., initialization), each site fits a conditional logistic regression model with
its own local patient-level data. Then, the sites shared the initial estimates
of the parameters of interest (i.e., regression coefficients) across the
collaborative sites within the network. With all the initial values, an overall
initial estimate, β(i.e., average or weighted average of the initial values) is
calculated. In Step 2 (i.e., surrogate estimator estimation), each site first
shares the intermediate results (i.e., first and second gradients of the local
log likelihood function, which are calculated using the overall initial
estimate β). Then, the intermediate results are assembled to construct the
surrogate pairwise likelihood, which is maximized by the surrogate
estimator. More details on the formulas, derivation and inference of the
proposed method are provided in Supplementary Method 1 and 3.
Here are the remarks of the proposed algorithm:
REMARK 1: We implemented the proposed algorithm with R calling C

programming language, which is a few dozen times faster than using R
programming language only. We also parallelized the running and
optimization. Such implementation is necessary for the application of
our algorithm to real-world settings where the number of patients in each
site is relatively large.
REMARK 2: In the situation that each site is treated as the local site, each

site can obtain its own surrogate pairwise likelihood estimate. These
estimates can be further synthesized together with the inverse variance
weighted average method to obtain an overall estimate.
REMARK 3: Given the pairwise conditioning technique used in the

proposed algorithm, the proposed dCLR algorithm can handle the
missingness in the data, especially some missing not at random
mechanisms as outlined in our earlier investigation; see Chen et al
201546; and also see Chan 201347, and Ning et al 201739. If the data are
missing at random, imputation methods such as inverse probability
weighting and imputation48 can be considered before implementing the
dCLR algorithm.

Numerical evaluation of the dCLR algorithm
To evaluate the empirical performance of the proposed algorithm, we
conduct a simulation study to cover a wide spectrum of practical settings.

Fig. 5 Illustration of the proposed method. Step I: Using data from each local site to estimate initial estimates and broadcast the values to
calculate the weighted initial valueβ. Step II: With the initial value β, calculating the intermediate terms at each site and then transfer the
results back to the local site. With the intermediate results and initial value β to construct the surrogate pairwise log-likelihood function in the
local site. Maximizing the surrogate pairwise likelihood to obtain the surrogate estimator.
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We set the total number of sites, K= 5, 20, and 200. The sample size of
each site is randomly sampled from a discrete uniform distribution from
800 to 1200.
We simulated three scenarios of the disease prevalence. The medians of

the prevalence are 20%, 5%, and 0.5%. Specifically, the prevalence of the
sites is randomly generated from a range of values as presented in Fig. 3.
We also simulated two scenarios of heterogeneity under each disease
prevalence to mimic moderate heterogeneous cases (upper panel) and
larger heterogeneous cases (lower panel), where the prevalence ranges are
larger than those of the moderate heterogeneous cases. We considered a
setting where a binary outcome is associated with two risk factors, where
one represents a continuous predictor (e.g., age) and the other is a binary
predictor (e.g., sex, race). Under each scenario, we compared the proposed
method with the pairwise likelihood method31, which can be treated as
the gold standard and the commonly used meta-analysis. In the pairwise
likelihood method, we assume that we have the access to all of the
patient-level data. The simulation was conducted with 100 replications.
The numerical details of the simulation settings are provided in
Supplementary Method 2.

COVID-19 data from the UnitedHealth Group (UHG) Clinical
Discovery Database
In the real-world data evaluation, the data were obtained from the
UnitedHealth Group (UHG) Clinical Discovery Database, which contained
one or more claims from 5 million Medicare Advantage enrollees and 20
million commercially insured individuals. Suspected COVID-19 inpatient cases
are manually reviewed daily by health plan clinical staff via clinical notes to
determine an individual’s COVID-19 status. Each case is then manually flagged
as either negative, confirmed, presumed positive, or needs clinical review.
Our analytical dataset is composed of hospitalized patients who were

diagnosed with COVID-19 prior to June 29, 2020 from a single large
national health insurer, which covers a broad swath of the population.
The data are from multiple EHR systems including EPIC49, Cerner50, and

others. The data are recorded from 230 sites with 14,215 insured
(Commercial and Medicare) patients based on the inclusion-exclusion
criteria, such as age at least 18 and enrollment duration (see Figure A1 in
Supplementary Figure for more details). Our objective is to develop an
association model between clinical-and-demographic covariates (i.e., age,
sex, line of business, and Charlson comorbidity index, which is the sum of
the individual’s comorbidities weights developed by Charlson et al.51) and
therapeutic patient outcomes. More details about the data quality are
provided in Supplementary Note 4.

Outcomes are defined by combining both hospitalizations (days) and
the status of patients being expired (i.e., a binary value taking value 1 if a
patient is deceased or 0 otherwise). We considered three composite binary
outcomes on the same cohort—14,214 patients from 230 hospitals. The
binary outcomes take values 1 if the event occurs, and 0, otherwise. Here
the events are defined as (a) LOS > 1 week and patient died, (b) LOS >
3 weeks and patient died, and (c) LOS > 4 weeks and patient died,
respectively. Figure 1(a) shows the number of COVID-19 hospitalizations
included in the study across 47 states in the U.S. and Fig. 1(b) illustrates the
prevalence rates of composite outcomes by 230 hospitals. These two
figures exhibit substantial variation in prevalence rates across sites.
Moreover, patients admitted within the same hospital are subject to
somewhat similar care, administrative facilities, and treatments provided
by the same physicians. For details of the covariates, we refer to Table 1,
which is the summary of characteristics of the 14,214 patients.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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