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ABSTRACT: TiO2 nanoparticles were synthesized by green chemistry
where organic solvents are replaced by an aqueous extract solution of
lemongrass leaves that act as a reducer and growth-stopper agent. The
nanoparticles were codoped with N−Fe to modify the absorption range in
the electromagnetic spectrum and were characterized by Fourier-transform
infrared (FTIR), scanning electron microscopy/energy dispersive X-ray
spectroscopy (SEM/EDS), and UV−vis/diffuse reflectance spectroscopy
(DRS). The modified samples with Fe and N resulted in smaller
nanoparticle size values than pure TiO2. Similarly, the band-gap energy for
doped nanoparticles decreased to 2.22 eV in relation to the value of 3.09
eV for pure TiO2, due to the introduction of new energy levels.

1. INTRODUCTION

Titanium dioxide (TiO2) is characterized by being a
photosensitive semiconductor, having good optical and
electrochemical properties,1 good dispersibility in organic
solutions, and low toxicity.2 These properties have led to
numerous investigations directed to applications such as the
removal of contaminants by photocatalysis3−5 and photo-
electrochemical devices for hydrogen generation.6,7 TiO2 can
present several different phases in the nanometric range at
different temperatures, which are anatase, brookite, and rutile,
though anatase has excellent physical and chemical properties
for environmental remediation.8 However, the successful
application of TiO2 is still limited by its band gap energy9

because the photoinduced reactions in TiO2 are restricted to
the UV region, which comprises only 4% of the solar
spectrum.10 Therefore, recent research aims to improve the
optical and morphological properties of TiO2, by codoping
with different metal ion oxides in conjunction with nonmetals.
This is due to the low rate of charge carrier recombination and
the highly visible photocatalytic yield resulting from the
synergistic effect of the codopant elements, compared to the
results of doping with a single element.11−14 Accordingly, in
this work, TiO2 codoped with Fe−N is prepared; the ionic
radius of the N atom is close to the O atom in the TiO2 lattice,
resulting in the fusion of the N 2p orbital with the O 2p states,
modifying the electronic structure of the valence band to easily
transport load carriers.15 Therefore, the simultaneous use of a
metal and a nonmetal as codoping elements can be an effective
modification. The aim of this research is to improve the optical
and morphological properties of TiO2 nanoparticles by
codoping iron and nitrogen for hydrogen generation using a
photoelectrochemical cell. Anatase phase TiO2 nanoparticles

were synthesized from a green synthesis mechanism by
lemongrass extract; samples were prepared at different
concentrations of Fe3+ and N, which have been characterized
by scanning electron microscopy/energy dispersive X-ray
spectroscopy (SEM/EDS), UV−vis, and Fourier-transform
infrared (FTIR) spectroscopy.

2. RESULTS AND DISCUSSION

2.1. FTIR Spectra Analysis. FT-IR spectra analysis has
been carried out to determine the functional groups present in
the prepared samples (Figure 1). A strong absorption band is
observed at the spectra of codoped TiO2 (Figure 1b−d)
between 3200 and 3400 cm−1, corresponding to the stretching
vibration mode of the hydroxyl bond (−OH), and the
absorption band located around 1630 cm−1 can be assigned
to the mode of bending of −OH vibration of absorbed water
molecules in synthesized nanoparticles.20 At low frequencies, a
descent band in the range of 500−880 cm−1 has also been
determined in all samples, corresponding to the Ti−O−Ti
bond, indicating the formation of TiO2.

2121 These patterns of
vibrations are nearly similar to those identified in the
unmodified TiO2 sample, which are shown in Figure 1a.
However, for codoped samples, in addition to the vibrations
mentioned above, a peak in the wavenumber of 1082 cm−1 is
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observed, which confirms the presence of a substituted N atom
in the TiO2 lattice, corresponding to the Ti−N vibration.22,23

Also at low frequencies, a peak in 500−800 cm−1 can be
attributed to the symmetric Fe−O−Fe stretching vibration.24

The bond vibrations of the samples are in accordance with that
reported in literature. In addition, for all codoped samples,
characteristic peaks were observed at 500−880, 500−800, and
1082 cm−1, confirming the presence of TiO2, Fe, and N,
respectively. The addition of Fe in the TiO2 matrix results in
changes that lead to the absorption of more amounts of OH
groups.
2.2. SEM/EDS Analysis. The morphology of pure and Fe−

N codoped TiO2 nanoparticles has been determined through
SEM images. Figure 2 shows the surface of the synthesized
nanoparticles; a nonuniform distribution is observed. In
addition, there are agglomerations in some regions, which
can be attributed to the calcination treatment to which the
nanoparticles were subjected.25

Furthermore, using ImageJ Software, it has been found that
with Fe−N codoping, the size of the nanoparticles is in the
range of 37−58 nm, as shown in Table 1, which is lower than
the particle size of unmodified TiO2 nanoparticles (70 nm),18

whose SEM image is shown in Figure 2a. The decrease in
particle size suggests that the codoping caused alterations in
the structure of TiO2, since the growth of the particle size is
obstructed, which can be associated with the incorporation of
Fe3+ ions in the crystal structure of TiO2 due to differences in
the atomic radius of Fe3+ and Ti4+, as determined in the
investigations of Othman and co-workers.26,27 However, a
significant trend of increasing concentration in nanoparticle
size is not observed; the particle sizes reported by Realpe
Jimenez et al.18 were smaller when they were doped with Cu.
The analysis shows that codoping radically affects the size of
TiO2 nanoparticles when is compared to the nondoped
sample.
Peaks corresponding to O, Cl, Ti, and Fe have been found

with the elemental chemical analysis EDS, as shown in Figure
3, indicating the formation of TiO2.
Although the presence of Cl corresponds to ammonium

chloride (the nitrogen precursor), no peaks have been detected

for N, due to the detection limit of the EDS analysis for
nitrogen, since there are interferences of lines of lighter
elements superimposed with heavier elements.28,29 The
presence of Na, Mg, K, Ca, and V has also been identified;
these lines are attributed to impurities or the equipment
used.25

Table 2 shows the percentage by mass of iron, over the total
sample, measured by EDS analysis, which indicates that Fe is
incorporated into the TiO2 support. A similar variation of the
Fe concentration values given by EDS was observed by Kashale
et al.30

2.3. UV−Vis Diffuse Reflectance Spectroscopy (UV−
Vis/DRS). Figure 4 shows the optical properties of diffuse
reflectance for pure TiO2 and codoped with N and Fe TiO2 in
a wavelength range from 200 to 800 nm. For unmodified TiO2,
a wide absorbance band for wavelengths lower than 400 nm
can be observed, which indicates that its range of photoactivity
is limited to the UV region of the spectrum. However, for
codoped samples, there is a shift of the absorption band toward
wavelengths greater than 400 nm, and this shift increases with
increasing Fe3+ concentration while N keeping constant
(Figure 4k). Therefore, the valence band of the modified
samples can be excited with photons of lower energy. On the
contrary, absorbance decreases with increasing N concen-
tration keeping Fe constant.
The band gaps of the modified samples were determined

through the Tauc graphical method to analyze the optical
properties of the nanoparticles, as shown in Figure 5 using eq
1.

α = −hv A hv E( ) ( )n1/
g (1)

where α is the absorption coefficient, A is constant, hv is the
photon energy, Eg is the band gap, and n denotes the nature of
the electronic transition interband. The variable n can have the
values 1/2, 2, 3/2, and 3 corresponding to direct allowed,
indirect allowed, direct forbidden, and indirect forbidden
transitions, respectively. In this case, n = 2 for the indirect
transition allowed to graph (αhv)1/2 vs hv.31,32 Figure 5 shows
the extrapolation of the linear part on the energy axis,
obtaining the band gap of the synthesized samples.

Figure 1. FT-IR spectra of (a) pure TiO2 nanoparticles and Fe-doped TiO2 nanoparticles at (b) 10%w/w N (c) 20%w/w N, and (d) 30%w/w N.
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Figure 6 shows the band gap for modified TiO2 nano-
particles; these results were lower compared to the unmodified
TiO2 (3.09 eV). It is noted that when the percentage of Fe is
kept constant, the band gap increases as the N concentration
increased. On the other hand, when nitrogen percentage is
kept constant, the band gap decreases as Fe percentage
increased, which is consistent with the results found by Realpe
Jimenez et al.17 They worked with equal percentages (1, 0.7,
and 0.5% w/w) of Fe, but performed only doping with Fe,
concluding that the band gap decreases as the percentage of
iron increases and obtaining their lowest band gap of 2.66 eV
for 1.0% w/w Fe−TiO2. However, in the current work, the
lowest band gap of 2.22 eV was also found for TiO2 codoping
with 1.0% w/w Fe and 10% w/w N. This result supports the
positive effect of doping with N. Furthermore, this entails that
with doping there is a modification in the electronic structure
of TiO2, so that additional electronic states can be provided
through Fe within the TiO2 band gap.33

As reported by Ali et al.,34 doping with Fe3+ in a TiO2 lattice
decreases the band gap due to the overlap of the conduction

Figure 2. SEM images of pure TiO2 and codoped TiO2. (a) Pure
TiO2, (b) 1% Fe−10% N, (c) 0.7% Fe−10% N, (d) 0.5% Fe−10% N,
(e) 1% Fe−20% N, (f) 0.7% Fe−20% N, (g) 0.5% Fe−20% N, (h) 1%
Fe−30% N, (i) 0.7% Fe−30% N, and (j) 0.5% Fe−30% N.
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band due to the Ti (d-orbital) and metal (d-orbital) of the Fe3+

ions. Furthermore, the mechanism of the photocatalytic
process in Fe-doped TiO2 proposes that the Fe3+ ions induce
the formation of new electronic states (Fe4+ and Fe2+) that
extend along with the TiO2 band separation.
These electronic states can act as electron trapping sites and

holes, and ultimately improve photocatalytic activity.34 On the
other hand, the influence of nitrogen in the decrease of the
band gap is due to the fact that nitrogen can lead to a mixture
of the N 2p orbital with the O 2p orbitals to form intermediate
energy levels and move the absorption edge toward the visible
light region.35

Finally, it should be noted that codoping with nitrogen and
iron causes a stronger impact on the decrease of the band gap
in comparison to the samples doped only with N or Fe3+ or not
doped at all. As shown in the results found by Ali et al.,34 the
band gap of TiO2 nanoparticles decreased when doped with
Fe, but not down to the level achieved in this work. In other
research, Nassoko et al.35 performed N-doping, reaching a
similar tendency of decreasing band-gap values per increment
of N concentration. In addition, Grigorov et al.36 found that
doping N−TiO2 decreases the optical gap; however, a similar
behavior was presented, since, with the lowest concentration of
N, the lowest band gap was reached. Likewise, this increment
did not reach the level of the codoping with Fe and N, showing
that codoping is favorable compared to just a single element
because it maximizes the absorption range up to visible light.
When comparing with other dopants, such as KI and Cu/S-
codoped TiO2,

37,38 it is observed that the band gap decreased
more with Fe−N-doped TiO2, extending the absorption to the
visible light region even more than the other dopants.

3. CONCLUSIONS
TiO2 nanoparticles codoped with Fe and N have been
prepared at different concentrations by green chemistry using
the lemongrass leave extract. The synthesized nanoparticles are
explored for possible applications in photoelectrochemical

cells. TiO2 codoping shows a reduction in the particle size
from 70 to 38 nm and the band gap energy from 3.09 to 2.22
eV with respect to the undoped TiO2. Finally, the codoping
method with Fe and N was successful, and FT-IR and EDS
analyses reveal that these species are present in the samples.
Therefore, the synthesis route of the codoped TiO2 is
interesting for its simple methodology and potential to
synthesize various other nanocomposite materials.

4. MATERIALS AND EXPERIMENTAL SECTION

4.1. Materials. The materials used for the synthesis of
titanium dioxide nanoparticles were titanium isopropoxide
(Ti[OCH(CH3)2]4, 95%, Alfa Aesar) as a titanium precursor
and natural lemongrass extract as a reducing agent. Ethanol
(C2H5OH, Chemi) was used to wash the nanoparticles. The
codoping of the titanium dioxide nanoparticles was performed
using ammonium chloride (NH4Cl, Chemi) as a nitrogen
precursor and nonahydrated ferric nitrate (Fe(NO3)3·9H2O).

4.2. Experimental Section. To obtain titanium dioxide
nanoparticles, the process was divided into two stages, which
began with the production of the natural lemongrass extract
and subsequent reduction synthesis by means of a chemical
reaction. For the preparation of the reducing extract, fresh
leaves of lemongrass (Cymbopogon citratus) were washed with
abundant distilled water, cut and dried in an oven at 60 °C;
then they were cut into smaller pieces and milled. The infusion
was prepared by immersion of 100 g of ground leaves in 500
mL of distilled water (0.2 g/mL) at a temperature of 90 °C.
This extract was filtered several times to leave no solid residue
and then concentrated by evaporation at 70 °C to 100 mL of
solution.16

The titanium dioxide nanoparticles were made from a
reduction mechanism, using a green chemistry process in
which organic solvents are replaced by natural extracts. The
nanoparticles were synthesized through the reduction of
titanium tetra-isopropoxide (TTIP) with natural lemongrass
extract. An aqueous solution of 850 mL of titanium tetra-
isopropoxide at 10 mM was subjected to ultrasonic agitation
for 30 min; then, 100 mL of lemongrass extract was added and
subjected to magnetic agitation for 24 h at room temperature.
The nanoparticles were separated by centrifugation at 3500
rpm for 15 min, and then, they were washed with ethanol and
submitted to the same centrifugation conditions to be finally
washed with distilled water and calcined up to 550 °C for 3 h,
as reported by Realpe Jimenez and co-workers.17,18 The
nanoparticles of titanium dioxide were codoped using the wet
impregnation method;19 this process was divided into two
parts, initially Fe3+ doping was performed and then doping
with N. An aqueous suspension of the synthesized nano-
particles was subjected to ultrasound agitation for 30 min, and
then an aqueous solution of nonahydrated ferric nitrate was
added and ultrasound shaken for 1 h and then magnetic
agitated with heating to 80 °C to evaporate the solvent
(water). Finally, Fe-doped nanoparticles were calcined in a
muffle at 400 °C during 2 h. For the N codoping of the TiO2−
Fe nanoparticles, the same method described above was used.
The concentrations of both dopants were modified to
determine their effect and interaction on the optical and
charge-transfer capabilities of the photoelectrode. Thus, the
factors studied are Fe doping, N doping, and the levels at
which they are evaluated are the concentrations in % wt/wt
with respect to the amount of TiO2.

Figure 3. EDS spectra of TiO2 nanoparticles codoped at 1% Fe−10%
N.

Table 2. Percentage of Fe in Each Synthesized Sample
Determined by EDS Analysis at Different Percentages of N
and Compared to the Amount of Fe Initially Added

amount of Fe measured by EDS at different
N concentrations

amount of Fe initially added 10% N 20% N 30% N

1% Fe 0.9% Fe 1.2% Fe 1.21% Fe
0.7% Fe 0.94% Fe 0.9% Fe 0.83% Fe
0.5% Fe 0.61% Fe 0.33% Fe 0.66% Fe
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4.3. Characterization. FT-IR spectra were performed to
determine the functional groups present in the synthesized
samples according to the characteristic peaks at different
wavelengths between 500 and 4000 cm−1. The size and

morphology of the synthesized nanoparticles were determined
through an SEM analysis using a JEOL JSM 540 scanning
electron microscope. Finally, the spectrum of UV−visible
diffuse reflectance was measured in the wavelength of 200−800

Figure 4. UV−vis diffuse reflectance spectroscopy (UV−vis/DRS) for the unmodified TiO2 sample and TiO2 modified with Fe3+ and N. (a) Pure
TiO2, (b) 1% Fe−10% N, (c) 0.7% Fe−10% N, (d) 0.5% Fe−10% N, (e) 1% Fe−20% N, (f) 0.7% Fe−20% N, (g) 0.5% Fe−20% N, (h) 1% Fe−
30% N, (i) 0.7% Fe−30% N, (j) 0.5% Fe−30% N, and (k) N−Fe codoped TiO2 at different Fe concentrations keeping 10% N to easily observe the
change in absorbance.
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nm using a Thermo Scientific model EVOLUTION 600 UV/
VIS spectrophotometer. This analysis allows determining the
absorption range of the nanoparticles.
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