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Abstract The molecular signalling pathways that regulate inflammation and the response to hypo-
xia share significant crosstalk and appear to play major roles in high-altitude acclimatization and
adaptation. Several studies demonstrate increases in circulating candidate inflammatory markers
during acute high-altitude exposure, but significant gaps remain in our understanding of how
inflammation and immune function change at high altitude and whether these responses contribute
to high-altitude pathologies, such as acute mountain sickness. To address this, we took an unbiased
transcriptomic approach, including RNA sequencing and direct digital mRNA detection with
NanoString, to identify changes in the inflammatory profile of peripheral blood throughout 3 days
of high-altitude acclimatization in healthy sea-level residents (n = 15; five women). Several
inflammation-related genes were upregulated on the first day of high-altitude exposure, including
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a large increase in HMGB1 (high mobility group box 1), a damage-associated molecular pattern
(DAMP) molecule that amplifies immune responses during tissue injury. Differentially expressed
genes on the first and third days of acclimatizationwere enriched for several inflammatory pathways,
including nuclear factor-κB and Toll-like receptor (TLR) signalling. Indeed, both TLR4 and LY96,
which encodes the lipopolysaccharide binding protein (MD-2), were upregulated at high altitude.
Finally, FASLG and SMAD7 were associated with acute mountain sickness scores and peripheral
oxygen saturation levels on the first day at high altitude, suggesting a potential role of immune
regulation in response to high-altitude hypoxia. These results indicate that acute high-altitude
exposure upregulates inflammatory signalling pathways and might sensitize the TLR4 signalling
pathway to subsequent inflammatory stimuli.
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Abstract figure legend Acute high-altitude exposure (1–3 days) causes systemic hypoxic stress. In this study, we found
that this is associated with upregulation of genes encoding damage-associated molecular pattern (DAMP) molecules,
Toll-like receptors (TLRs) and chemotactic factors in peripheral blood. These changes are suspected to result in enhanced
immune responses to subsequent inflammatory stimuli over this time frame.

Key points
� Inflammation plays a crucial role in the physiological response to hypoxia.
� High-altitude hypoxia exposure causes alterations in the inflammatory profile that might play an
adaptive or maladaptive role in acclimatization.

� In this study, we characterized changes in the inflammatory profile following acute high-altitude
exposure.

� We report upregulation of novel inflammation-related genes in the first 3 days of high-altitude
exposure, which might play a role in immune system sensitization.

� These results provide insight into how hypoxia-induced inflammation might contribute to
high-altitude pathologies and exacerbate inflammatory responses in critical illnesses associated
with hypoxaemia.

Introduction

High altitude is a physiologically stressful environment
owing to lowoxygen availability, low temperatures and low
humidity. Given that maintenance of oxygen homeostasis
is essential for survival, rapid physiological adaptations
occur upon high-altitude exposure to increase tissue
oxygen delivery, including increased ventilation and
red blood cell production (Beall, 2006; Moore, 2017;
Scheinfeldt et al., 2012; Simonson, 2015). Although
many of the mechanisms that modulate high-altitude
acclimatization are well described, it remains unclear how
acute high-altitude exposure influences inflammatory
signalling and immune function.
In typical conditions in a healthy individual, cellular

hypoxia is experienced primarily during infection or
tissue injury. Local hypoxia triggers an inflammatory
response that initiates tissue protection and repair
mechanisms (Walmsley et al., 2014). Owing to this vital
link between inflammation and hypoxia, the signalling

pathways that control these responses have evolved to
share significant crosstalk (Bandarra & Rocha, 2013;
Corcoran & O’Neill, 2016; D’Ignazio et al., 2016; Görlach
& Bonello, 2008; Pham et al., 2021).
The hypoxia-inducible factor (HIF) is a transcription

factor that regulates gene expression in response to
hypoxic stress (Semenza, 2009). Activity of HIF is
regulated by oxygen-sensitive prolyl hydroxylase domain
proteins (PHDs) and factor inhibiting HIF (FIH). As
a result, in normal oxygen tensions, HIF-α is hydro-
xylated by PHD, leading to its degradation. However,
decreased PHD activity in hypoxia allows HIF-α to
accumulate, bind to HIF-β subunits, and translocate to
the nucleus to initiate expression of hypoxia-response
genes. One downstream target of HIF is nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB),
a master regulator of inflammation. Conversely, NF-kB
expression also upregulates HIF1A mRNA expression
(BelAiba et al., 2007; Van Uden et al., 2008). As a result,
several studies have demonstrated that theHIF andNF-kB
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pathways share an interdependent relationship (BelAiba
et al., 2007; Bonello et al., 2007; Frede et al., 2006;
Taylor, 2008; Zhou et al., 2003). Furthermore, PHD is
also involved in regulating NF-kB nuclear translocation
through its action on I-kappaB kinase (IKK) activity,
providing an additional directmechanism bywhich hypo-
xia regulates inflammatory signalling (Cummins et al.,
2006).

Owing to the demonstrated links between HIF and
NF-kB signalling, it is reasonable to suspect that hypo-
xaemia induced by high-altitude exposure might result
in a systemic inflammatory response. Indeed, hypo-
xaemia and systemic inflammation commonly occur
simultaneously in critical illnesses, such as sepsis
and acute respiratory distress syndrome (ARDS) and,
although in vivo data are limited, preclinical data suggest
a key role of oxygen status in modulating inflammatory
and immunological outcomes in these cases (Kiers et al.,
2016). Furthermore, acute increases in inflammatory
cytokine expression might contribute to, or be a down-
stream consequence of, high-altitude illnesses, such as
acute mountain sickness (AMS). Several previous studies
have provided evidence that candidate inflammatory
mediators are upregulated in peripheral blood during the
first few days of acclimatization (Eltzschig & Carmeliet,
2011; Faquin et al., 1992; Hartmann et al., 2000; Heinrich
et al., 2018; Lundeberg et al., 2018; Scholz & Taylor, 2013).
However, whether these changes are associated with
phenotypes including AMS severity remains inconclusive.

In the present study, we expand on this work with
a broad, unbiased transcriptomic approach to improve
our understanding of how inflammatory signalling is
altered in peripheral blood mononuclear cells during
acute exposure to high altitude. We use RNA sequencing
(RNA-seq) and NanoString direct digital detection of
mRNA to identify broad patterns in inflammatory
gene expression. We hypothesized that pro-inflammatory
gene expression would increase upon acute exposure to
high-altitude hypoxia and that higher inflammatory cyto-
kine expression levels would be associated with more
severe hypoxaemia and AMS severity.

Methods

Ethical approval

This study was approved by the University of California,
Riverside (UC Riverside) Clinical Institutional Review
Board (HS 19-076). All participants were informed of the
purpose and risks of the study. Participants provided
written informed consent in their native language
(English). The work was conducted in accordance with
the Declaration of Helsinki, except for registration in a
database.

Participants

The study included 15 healthy participants (n= 5 women,
10 men) between 19 and 32 years of age. Participants
were recruited by word of mouth and flyers on the UC
Riverside campus. All participants reported no known
history of cardiopulmonary disease or sleep disturbances,
including obstructive sleep apnoea, and displayed no
abnormal findings onECGor pulmonary function testing.
The mean age was 25 ± 4 years for men and 26 ± 5
years for women, and body mass index was 26.7 ± 5.4
kg/m2 formen and 28.4± 6.9 kg/m2 forwomen. Exclusion
criteria included travel >2500 meters within 1 month of
the first measurements, a previous history of high-altitude
pulmonary or cerebral oedema, smoking and pregnancy.

Experimental design and physiological measures

In the 2 weeks before ascent to high altitude, participants
completed initial screening for eligibility at UC Riverside,
at ∼400 m elevation (Riverside, CA, USA). Demographic
information including age, height, weight and blood
pressure were collected. Participants also answered
questions about their ancestral background (to determine
the presence of high-altitude ancestry) and medical
history, including current medications. Participants then
completed pulmonary function testing and ECG to verify
the absence of lung or heart disease.
Participants returned to UC Riverside in the early

morning on the day of ascent. Baseline [sea-level
(SL)] physiological measurements were collected at
this time, including blood pressure, peripheral oxygen
saturation (SpO2) by pulse oximetry, heart rate, end-tidal
carbon monoxide (CO), and AMS scores via the 2018
Lake Louise scoring criteria, with an experimenter
asking participants each question (Roach et al., 2018).
Fasting blood samples were then collected via standard
venipuncture procedures. Breakfast was provided to
participants after blood sampling, before travel.
The group then travelled by car to Barcroft Station

(elevation 3800 m) in the White Mountain Research
Centre (Bishop, CA, USA) over a period of ∼6.5 h. At
the field station, fasting blood samples and morning
measurements were collected each day within 1 h of
waking and before 09.00 h to keep timing consistent
with SL measurements. Physiological measurements and
fasting blood samples were collected every morning
for 3 days consecutively (HA1, HA2 and HA3), and
end-tidal CO was measured at night. The end-tidal
CO concentration was measured with a Micro+ Basic
Smokerlyzer (CoVita, Santa Barbara, CA, USA).
Participants held their breath for 15 s, then exhaled
through the device to residual volume. Measurements
were taken in triplicate and averaged. The analyser was
calibrated with 50 ppmCO before the measurements each
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day. Pulse oximetry and heart rate values were collected
using a Nellcor N-600 pulse oximeter (Medtronic,
Minneapolis, MN, USA). Participants sat upright in a
chair without their legs crossed and rested, breathing
normally, for 3 min until values stabilized. Blood pressure
measurements were collected in duplicate using a manual
sphygmomanometer while participants rested in an
upright seated position.
Participants abstained from taking anti-inflammatory

medications or other agents that might interfere with
acclimatization, such as acetazolamide (Basaran et al.,
2016). Participants were permitted to consume caffeine
in moderation after completing morning measurements
but were asked to abstain from caffeine after noon. Three
meals per day were provided, and participants did not
complete any strenuous physical activity. Participants did
not consume alcohol, and fluid intake was supervised to
ensure that participants remained hydrated.

Gene expression

RNA isolation. Peripheral blood was collected into
PaxGene Blood RNA tubes (Qiagen, Germantown, MD,
USA) using standard venipuncture procedures. Samples
collected at SL were incubated at room temperature for
30 min, then frozen at −20°C and stored at −80°C until
further processing. Samples collected at high altitude were
stored at room temperature for 30 min, frozen at −20°C
at the field station, then transported to UC Riverside
in liquid nitrogen and frozen at −80°C until further
processing.
Before RNA isolation, PaxGene Blood RNA tubes

were allowed to thaw and incubate for 4 h at room
temperature according to the manufacturer’s instructions.
The RNA was isolated using a PaxGene Blood RNA
Kit (Qiagen) following the manufacturer’s protocols. The
quantity and quality of RNA were verified via a Nanodrop
2000 (ThermoFisher Scientific, Waltham, MA, USA) and
Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CAUSA).
RNA samples with RNA integrity number (RIN) values
>8 were used for downstream sequencing.

RNA sequencing. Samples of RNA were prepared using
the NEBNext Ultra II Directional RNA Library Prep Kit
(New England BioLabs, Ipswich, MA, USA) according
to the manufacturer’s protocols, with the following
adjustments: 0.8× beads were used during the first
purification step after second strand synthesis; the adaptor
was diluted 1:15; 0.7× beads were used for purification
after adaptor ligand; 13 cycles of enrichment were
conducted; and a dual bead size selection (0.5× and
0.7×) was used for size selection of adaptor ligated
RNA. Samples were then pooled and checked for quality
via qPCR and Agilent 2100 Bioanalyzer. Samples were

stored at −80°C and transported on dry ice to the
University of California San Diego Institute for Genomic
Medicine for sequencing via Illumina NovaSeq 6000
(Illumina, San Diego, CA, USA), which generates 50 bp
paired-end reads.
Raw sequence data were aligned using Rsubread in

RStudio (RStudio, Boston, MA, USA) (R v.4.02) using
the reference genome GRCh38/hg38 (Liao et al., 2019)
and soft-clipping of unmapped read bases and adaptors
with the align function. featureCounts from the Rsubread
package was used to assign and count mapped fragments
(Liao et al., 2014). Normalization and differential gene
expression analysis was conductedwithDESeq2, following
the workflow described by Love et al. (2014). Paired
contrasts were made for the first (HA1) and third (HA3)
mornings at high altitude vs. sea level (SL) separately.
TheP-valueswere adjustedwith the Benjamini–Hochberg
adjustment method for a false discovery rate of 5%,
and genes with adjusted P-values <0.01 were considered
to be significantly differentially expressed. Differentially
expressed genes were examined for gene set enrichment
in Enrichr using GO Biological processes (2021) for gene
ontology (GO) and Panther 2016 for pathway enrichment
(Chen et al., 2013; Kuleshov et al., 2016; Xie et al.,
2021). Significantly enrichedGO termswere clustered and
visualized with REVIGO (Supek et al., 2011).

NanoString. To obtain a more precise measure of
inflammatory gene expression, we also measured mRNA
levels of 250 key inflammation-related genes with the
NanoString SPRINT Profiler (NanoString Technologies,
Seattle, WA, USA). Given that we aimed to determine
whether these expression levels were associated with
phenotypes, this analysis was conducted on samples
collected at SL and after one night at high altitude (HA1),
because AMS scores were highest, SpO2 was lowest,
and both were more variable across subjects on HA1.
RNA profiling was conducted with 50 ng of total RNA,
quantified using Nanodrop 2000. Samples were prepared
for codeset hybridization with NanoString-prepared
reporter and capture probes specific for the Inflammatory
Panel CodeSet Human V2 following the manufacturer’s
protocols. Paired participant samples were placed on the
same cartridge to eliminate replicate bias.
Normalization and differential expression analysis were

performed with the Advanced Analysis add-on to nSolver
software (v.4.0). Counts were normalized to the following
normalization probes: PGK1, CLTC, GADPH, GUSB,
TUBB and HPRT1. These normalization probes are auto-
matically selected using the geNorm algorithm, which
selects probes that minimize the pairwise variation
statistic during housekeeping gene selection.Geneswithin
a sample with mRNA counts ≤2× the maximum back-
ground (the average of the housekeeping gene count
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Table 1. Physiological measures at baseline and over 3 days at high altitude

Variable SL HA day 1 HA day 2 HA day 3 ANOVA

Psys (mmHg) 128 ± 7 125 ± 12 126 ± 45 126 ± 13 0.537
Pdia (mmHg) 79 ± 10 83 ± 9 83 ± 7 85 ± 7 0.054
HR (beats/min) 78.0 ± 8.1 88.3 ± 13.2 89.7 ± 12.1∗ 95.6 ± 12.8∗∗∗ <0.001
SpO2

(%) 94.8 ± 1.6 85.0 ± 4.4∗∗∗ 83.7 ± 2.5∗∗∗ 86.1 ± 2.5∗∗∗ <0.001
AMS 0.2 ± 0.4 3.1 ± 1.8∗∗∗ 2.3 ± 2.0∗∗ 0.7 ± 1.2 <0.001
CO (ppm) 3.9 ± 1.4 5.2 ± 1.5 5.0 ± 1.9 — 0.080

Abbreviations: CO, carbon monoxide; HA, high altitude; HR, heart rate; Pdia, diastolic blood pressure; Psys, systolic blood pressure; SL,
sea level; and SpO2

, peripheral oxygen saturation. Overall P-values for repeated-measures ANOVA are provided. Significant differences
from SL: ∗P < 0.05, ∗∗P < 0.01 and ∗∗∗P < 0.001, via post hoc pairwise comparisons with Bonferroni-adjusted P-values.

of negative controls) in >20% of all samples were
excluded from analysis. Differential expression analysis
included location (SL vs. HA1) as a predictor and sub-
ject as a confounder. The P-values were adjusted with
the Benamini–Yekutieli method. Adjusted P-values<0.05
were considered significant. Given that the NanoString
gene expression panel included a preselected group of
inflammation-related genes, we conducted enrichment
analysis with GOrilla, which allowed a custom back-
ground gene set including only genes on the nCounter
Human Inflammation panel (Eden et al., 2009). The Probe
Descriptive module of the nSolver Advanced Analysis
software was used to examine gene-by-gene correlations,
with location set as a covariate (SL or HA1) and inter-
val identity, and participant as a series identity. Expression
correlation for each pair of genes is expressed as the overall
Pearson correlation coefficient and P-value.

Statistical analysis

Statistical analyses were conducted in R (v.4.1.0; R
Foundation for Statistical Computing). To identify
changes in physiological variables at high altitude
compared with baseline sea-level measures, we used
repeated-measures ANOVA and post hoc Student’s paired
t tests with Bonferroni corrections. To determine whether
fold changes in gene expression were associated with
physiological measures at high altitude (SpO2 and AMS
score), Pearson correlation coefficients and P-values were
obtained with the rcorr function from the Hmisc package
in R. Throughout the paper, data are presented as the
mean ± SD.

Results

Physiological measures

Table 1 provides an overview of physiological measures
at sea level and over 3 days of acclimatization to high
altitude. On the first morning at high altitude, eight of

the 15 subjects indicated mild AMS (AMS score 3−5,
with headache) and one participant indicated severe AMS
(AMS score 6−9, with headache). By the third day, only
one of the 15 subjects scored positive for AMS. The
SpO2 decreased by ∼10 percentage points on the first
day at high altitude and remained lower than SL values
throughout day 3. This was coupled with an increase
in heart rate at high altitude. There was no significant
increase in diastolic or systolic blood pressure at high
altitude. Exhaled end-tidal CO levels were elevated on
average at high altitude, although this was not significant
by repeated-measures ANOVA.

Gene expression at high altitude

RNA sequencing. Three thousand nine hundred and
fifty-eight genes were differentially expressed (adjusted
P < 0.01) on HA1 (2177 upregulated and 1781 down-
regulated), and 4219 genes were differentially expressed
on HA3 (2190 upregulated and 2029 downregulated)
comparedwith SL.When applying a fold change threshold
of one, 88 genes were upregulated and 75 downregulated
on HA1, and 234 were upregulated and 51 down-
regulated on HA3. The top 20 differentially expressed
genes on each day are provided in Table 2. Figure 1
demonstrates that the genes most differentially expressed
on HA1 remained differentially expressed throughout
HA3. However, the genes most differentially expressed
on HA3 were slower responding and were typically not
differentially expressed on HA1. Several genes associated
with inflammation and the immune response were in the
top 20 upregulated genes on HA1, including BCL2A1,
S100A8, HMGB1 and B2M. Additional genes likely to
be involved in the acclimatization process, including
PDCD10, which is involved in vascular development,
were also in the top 20 differentially expressed genes. On
HA3, several genes associated with acclimatization were
upregulated, including BPGM (2,3-DPG), CA1 (carbonic
anhydrase 1), FECH (ferrochelatase),HEMGN (hemogen)

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Table 2. Top 20 differentially expressed genes on days 1 and 3
at high altitude

Gene FC Adjusted P-value

SL vs. HA day 1
BCL2A1 1.73 1.46 × 10−24

EVI2A 1.52 7.87 × 10−20

ERGIC2 0.98 5.60 × 10−18

PPIG 0.66 3.25 × 10−15

PDCD10 1.22 7.17 × 10−15

TXNDC9 1.20 1.28 × 10−14

RGS18 1.04 3.09 × 10−14

SUB1 1.09 3.09 × 10−14

TAF7 0.66 9.58 × 10−14

S100A8 1.58 1.88 × 10−13

NFXL1 0.97 2.53 × 10−13

CCDC82 1.02 2.79 × 10−13

RSL24D1 1.63 4.17 × 10−13

HMGB1 0.80 4.71 × 10−13

MAN1A1 0.89 7.26 × 10−13

NDUFA5 1.35 7.26 × 10−13

ANKRD12 0.76 1.20 × 10−12

B2M 0.94 1.59 × 10−12

NORAD 0.55 1.59 × 10−12

BLOC1S2 0.88 1.70 × 10−12

SL vs. HA day 3
BPGM 2.86 3.65 × 10−38

HEMGN 2.18 3.33 × 10−24

GYPA 4.64 9.63 × 10−24

IFIT1B 2.91 1.35 × 10−22

CA1 3.09 1.35 × 10−22

XK 2.45 1.65 × 10−22

SACS 1.51 2.85 × 10−21

TENT5C 1.69 1.61 × 10−19

FECH 1.95 1.61 × 10−19

EVI2A 1.44 5.45 × 10−18

MBNL3 1.47 8.16 × 10−18

PDCD10 1.30 2.45 × 10−17

ZNF292 1.04 4.31 × 10−17

RIOK3 1.34 4.92 × 10−17

CAPZB −0.56 9.42 × 10−17

YOD1 1.34 1.97 × 10−16

PI3 −1.61 6.91 × 10−16

CREG1 0.99 8.01 × 10−16

NORAD 0.62 1.02 × 10−15

LOC644285 −1.35 1.12 × 10−15

and PDCD10, in addition to several other genes associated
with inflammation and immune function, including
GYPA, IFIT1B and RIOK3.
A gene ontology analysis revealed that on HA1,

differentially expressed genes were enriched for
biological processes including regulation of autophagy,
proteasome-mediated ubiquitin-dependent protein
catabolic processes, endomembrane system organization
and I-kappaB kinase/NF-kB signalling (Fig. 2A). There

were also eight significantly enriched pathways, including
apoptosis signalling, CCKR signalling, ubiquitin
proteasome pathway, PDGF signalling, T-cell activation,
Toll-like receptor (TLR) signalling, RAS and FAS
signalling (Table 3). On HA3, the I-kappaB kinase/NF-kB
signalling GO biological process remained enriched, in
addition to other inflammation and immune function
processes, including neutrophil activation involved in
immune response (Fig. 2B). Nineteen pathways were
significantly enriched on HA3, including several involved
in inflammation and immune function and angiogenesis
(VEGF signalling pathway) (Table 3).
After the GO analysis, we examined key genes of

interest that play significant roles in the top enriched
GO pathways. In particular, we were interested in genes
involved in immune pathway activation, such as TLR4,
HMGB1, LY96 and interleukin-8 (IL8) (Fig. 3). We found
that there was a significant upregulation of TLR4 and
HMGB1 mRNA counts across all participants. However,
LY96 was not found to be significantly differentially
expressed and had low counts. Additionally, wewere inter-
ested in IL8 gene expression because neutrophil activation
was highly enriched. We found there was significant IL8
upregulation upon high-altitude exposure in all but one
participant.

NanoString analysis of inflammatory pathway genes.
To examine specific changes in inflammation-related
gene expression further, we conducted a NanoString
analysis on samples collected on HA1. Of the 250 genes
on the human inflammation panel, 18 genes showed
significant upregulation (Figs 4 and 5). Of the 18 genes
identified as differentially expressed by NanoString, 13
were also detected with RNA sequencing. However,
five differentially expressed genes were identified by
NanoString alone, including LY96. This might be
because the NanoString nCounter targets all isoforms
of each gene and does not need to convert RNA to
complementary DNA for amplification. Seven of the
18 significantly differentially expressed genes are involved
in the significantly enriched GO pathway ‘Regulation of
binding (GO: 00 51098)’ (adjusted P < 0.0001; TGFBR1,
IFIT2, IFIT1, MAPK8, DDIT3, HMGB2 and HMGB1).
Other processes in which significantly upregulated genes
are involved include positive regulation of apoptotic
processes (MAPK8, DDIT3, HMGB1, TGFBR1 and
IFIT2), regulation of DNA binding (MAPK8, HMGB2
and HMGB1), DNA conformational change (HMGB2
and HMGB1) and positive regulation of endothelial cell
proliferation (HMGB2, HMGB1 and TGFBR1).
Given that our inflammation gene panel included

the key hypoxia-response gene, HIF1A, we looked
for significant correlations between HIF1A expression
and expression of our top 18 differentially expressed

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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genes to identify possible relationships between HIF
signalling and inflammatory gene expression in vivo.
Expression of HIF1A was significantly associated with
expression of PTK2,MAPK1,HMGB1, TLR8 andNFE2L2
(Fig. 6).

Phenotype associations

Given that the highest AMS scores and lowest SpO2

levels were observed on the first day at high altitude, we
looked for significant correlations between phenotypes
on the first day at high altitude and inflammatory genes
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Figure 1. Top differentially expressed genes at high altitude
Heat maps with hierarchical clustering of the top 50 differentially expressed genes and volcano plots from high
altitude day 1 (HA1; A and B) and high altitude day 3 (HA3; C and D) vs. sea-level (SL) baseline. In A and C, columns
represent data for individuals. Sample locations are identified by pink (SL), green (HA1) and red (HA3) markers at
the top of each row. Sex differences are identified by green (female) or blue (male). Colours represent relative log2
fold changes from sea level. In B and D, red points represent genes with adjusted P-values <0.01 and absolute
log2 fold change >0.5. [Colour figure can be viewed at wileyonlinelibrary.com]
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Table 3. Significantly enriched pathways on days 1 and 3 at high altitude

Term Adjusted P-value Overlap

High altitude day 1 vs. sea level
Apoptosis signalling pathway Homo sapiens P00006 0.0003 40/102
CCKR signalling map ST Homo sapiens P06959 0.0003 57/165
Ubiquitin proteasome pathway Homo sapiens P00060 0.0024 20/43
PDGF signalling pathway Homo sapiens P00047 0.0033 39/112
T cell activation Homo sapiens P00053 0.0033 28/73
Toll receptor signalling pathway Homo sapiens P00054 0.0033 21/49
Ras Pathway Homo sapiens P04393 0.0064 26/69
FAS signalling pathway Homo sapiens P00020 0.0156 14/31

High altitude day 3 vs. sea level
Apoptosis signalling pathway Homo sapiens P00006 0.0000 49/102
CCKR signalling map ST Homo sapiens P06959 0.0000 62/165
T cell activation Homo sapiens P00053 0.0011 31/73
Toll receptor signalling pathway Homo sapiens P00054 0.0011 23/49
PDGF signalling pathway Homo sapiens P00047 0.0011 42/112
VEGF signalling pathway Homo sapiens P00056 0.0053 23/54
Interleukin signalling pathway Homo sapiens P00036 0.0068 32/86
Glycolysis Homo sapiens P00024 0.0103 10/17
Ras Pathway Homo sapiens P04393 0.0141 26/69
Integrin signalling pathway Homo sapiens P00034 0.0162 49/156
Ubiquitin proteasome pathway Homo sapiens P00060 0.0162 18/43
B cell activation Homo sapiens P00010 0.0171 22/57
Angiotensin II-stimulated signalling through G proteins and beta-arrestin Homo sapiens P05911 0.0176 15/34
Inflammation mediated by chemokine and cytokine signalling pathway Homo sapiens P00031 0.0232 56/188
p53 pathway Homo sapiens P00059 0.0302 25/71
Parkinson disease Homo sapiens P00049 0.0464 27/81
General transcription regulation Homo sapiens P00023 0.0464 12/18
mRNA splicing Homo sapiens P00058 0.0464 4/5
Alzheimer disease-amyloid secretase pathway Homo sapiens P00003 0.0464 20/56
EGF receptor signalling pathway Homo sapiens P00018 0.0464 34/109
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Figure 2. Enriched gene ontology terms with highly variable genes
Clustering of significantly enriched gene ontology (GO) terms into representative subsets using semantic
similarities. Significantly enriched GO terms are provided for genes differentially expressed on day 1 (HA1; A)
and day 3 (HA3; B) at high altitude compared with a sea-level (SL) baseline. Bubble colour indicates the log10
P-value for each term, and bubble size indicates the frequency of the GO term in the underlying GOA database
(more general terms are larger). [Colour figure can be viewed at wileyonlinelibrary.com]

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.



J Physiol 600.18 Inflammatory gene expression during acute high-altitude exposure 4177

measured byNanoString. Resting oxygen saturation (SpO2 ,
as a percentage) was significantly associated with FASLG,
SMAD7, PTGER4 and TRAF2, with a trend towards a
correlation with IL8 (P = 0.05; Table 4). The AMS score
was significantly associated with TNFSF14, FASLG, IL18,
CD40LG, PTGER4, MAPKAPK2, HLADRB1, SMAD7,
AGER,MAFK and IRF5 (Table 4).

Discussion

This study examined how high-altitude acclimatization
influences inflammatory signalling by use of RNA
sequencing and NanoString transcriptome analyses
in whole blood of healthy participants. Our results
demonstrate that upon acute high-altitude exposure,
many inflammation-related genes are significantly
upregulated. These upregulated genes are enriched in
pathways involved in stress responses and regulation
of inflammatory signalling (Fig. 2; Table 3), and the
expressions of several inflammation-related genes,
including FASLG and SMAD7, were associated with AMS
scores and SpO2 levels (Table 4). The release of cellular
stress markers during tissue hypoxia is known to trigger
downstreammechanisms that promote host defence, such
as the TLR signalling pathway (Schaefer, 2014). Therefore,
it is not surprising that we found TLR signalling pathways
to be impacted by acute high-altitude exposure. Many
of the differentially expressed genes we identified also

included damage-associated molecular patterns (DAMPs;
HMGB1, HMGB2 and S100A8), interferon-stimulated
genes (IFIT1, IFIT1B, IFIT2 and IFI44) and markers of
DNA damage (DDIT3; Table 2; Fig. 5; Diamond, 2014;
Schaefer, 2014; Yang et al., 2017). Here, we will discuss the
impact of DAMPs, particularlyHMGB1 and its synergistic
role with LY96 in TLR4 activation.

Upregulation of the TLR4 pathway at high altitude

LY96 is a potential indicator of immune system priming
(Kim et al., 2010; Park & Lee, 2013). LY96 encodes
for MD-2, a coreceptor with TLR4, a key player in
innate immunity defense. LY96 plays an essential
role in the TLR4-mediated inflammatory response
to lipopolysaccharide (LPS; da Silva Correia et al.,
2001; Park et al., 2009). Activation of TLR4 by LPS, a
pathogen-associated molecular pattern (PAMP), triggers
the expression of inflammatory cytokines and chemokines
(Park & Lee, 2013). Given that hypoxia has been shown to
increase TLR4 expression, this might lead to exacerbated
inflammation in response to subsequent inflammatory
stimuli (Kim et al., 2010). In the present in vivo study,
both TLR4 and LY96 gene expression were significantly
upregulated after 1 day of high-altitude exposure (Fig. 5).
Although TLR4 upregulation was found to be significant
only in the RNA-seq data, TLR4 expression approached
significance in the NanoString data (adjusted P = 0.057).
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Figure 3. Normalized individual gene
counts of RNA-seq data
Normalized individual RNA counts at sea
level (SL), first day at high altitude (HA1) and
third day at high altitude (HA3) for TLR4 (A),
HMGB1 (B), LY96 (C) and IL8 (D). The y-axis
is a log10 scale. Subject identity is coded by
colour and sex by shape. [Colour figure can
be viewed at wileyonlinelibrary.com]
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These data suggest that over 1−3 days of exposure
to hypoxia, hypoxic stress primes the innate immune
response and might increase the inflammatory response
to infection. This is supported with in vitro work by
Kim et al. (2010), in which hypoxia exacerbated the
TLR4-mediated inflammation in response to LPS in
murine RAW 264.7 macrophages. However, the duration
of exposure to hypoxia, in addition to the model used,
have varying effects on TLR4 expression.With short-term
exposure (2–4 h) inmacrophages,TLR4was noted to have
increased expression (Kim et al., 2010).With longer hypo-
xic exposure (>24 h) in murine dendritic cells, there was
no significant change in TLR4, but there was a significant
increase in TLR2 and TLR6 expression (Kuhlicke et al.,
2007). Therefore, although it is clear that hypoxic stress is
likely to impact TLR4 signalling in peripheral blood cells,
the details and time domains of this effect require further
study.
To complement LY96 and TLR4 upregulation, HMGB1

also showed one of the strongest signals of increased
expression at high altitude (Table 2). HMGB1 encodes
the high mobility group Box 1 protein, which interacts
directly with TLR4 and functions as a DAMP mediator
of inflammation. Activity of HMGB1 is dependent on its
location and cell type. Intracellular cytosolic HMGB1 has
been shown to inhibit apoptosis and to activate the auto-
phagic response, particularly in response to oxidative
stress (Tang et al., 2011; Zhu et al., 2015). Upon release
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Figure 4. Venn diagram of differentially expressed genes
identified by RNA-seq and NanoString
Differentially expressed genes identified via RNA-seq on high altitude
day 1 (HA1; purple) and high altitude day 3 (HA3; yellow) are
compared with differentially expressed genes identified by
NanoString on HA1 (green). NanoString identified six additional
differentially expressed genes not identified by RNA-seq. [Colour
figure can be viewed at wileyonlinelibrary.com]

Table 4. Relationships between phenotypes and log2 fold
changes in gene expression

Gene R P-value

SpO2

FASLG 0.68 0.005
SMAD7 0.63 0.011
PTGER4 0.56 0.028
TRAF2 0.55 0.035
IL8 −0.51 0.051

AMS score
TNFSF14 −0.74 0.002
FASLG −0.71 0.003
IL18 −0.62 0.013
CD40LG 0.61 0.015
PTGER4 −0.60 0.019
MAPKAPK2 −0.58 0.024
HLADRB1 0.57 0.027
SMAD7 −0.57 0.027
AGER −0.55 0.035
MAFK −0.54 0.037
IRF5 −0.54 0.037

The P-values for Pearson correlations are provided. Negative
values of R indicate that increased expression levels at
high altitude were associated with lower acute mountain
sickness (AMS) scores or peripheral oxygen saturation (SpO2

)
levels.
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Figure 5. Volcano plot from NanoString data
Blue points represent significantly differentially expressed genes.
Values are plotted with raw log10 P-values on the y-axis, with dotted
grey lines indicating adjusted P-value thresholds. [Colour figure can
be viewed at wileyonlinelibrary.com]
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after cell death or active secretion, extracellular HMGB1
can act as a pro-inflammatory mediator by binding
to other pro-inflammatory molecules, such as LPS or
interleukin-1β , to activate TLR4 receptors and initiate
downstream inflammatory signalling (Yang et al., 2020).
This mode of TLR4 activation is particularly important in
immune cell types, such as monocytes, macrophages and
neutrophils. Inmonocytes andmacrophages, extracellular
HMGB1 can bind toMD-2, which forces two TLR4 chains
to form a complex and initiate downstream signalling
and induces production of cytokines and chemokines,
such as tumour necrosis factor (TNF; Yang et al., 2015,
2020). In neutrophils, HMGB1–TLR4 signalling increases
production of reactive oxygen species through activated
neutrophil NADPH oxidase activity (Billiar et al., 2021;
Fan et al., 2010; Yang et al., 2020).

In addition to HMGB1, S100A8 was also significantly
upregulated after 1 day of acute high-altitude exposure

(Fig. 1). Like HMGB1, S100A8 is an endogenous DAMP
that is actively secreted from phagocytes in response to
stress (Ehrchen et al., 2009). S100A8, along with S100A9,
are highly expressed in neutrophils and in phagocytes in
inflammatory conditions, such as inflammatory bowel
and lung diseases (Rugtveit et al., 1994; Zwadlo et al.,
1988). The S100A8/S100A9 heterodimer has pre-
viously been found to be an endogenous activator
of TLR4 (Ehrchen et al., 2009; Foell et al., 2007;
Ma et al., 2017; Vogl et al., 2007). Furthermore,
S100A8 has been found to interact directly with the
TLR4–MD-2 complex to initiate downstream signalling
(Vogl et al., 2007). Previous research has also found
that S100A8/S100A9 significantly increases secretion
of pro-inflammatory cytokines, such as TNF-α and
interleukin-6, in cultured BV-2 microglial cells. When
TLR4 was inhibited, the pro-inflammatory cytokine
secretion was blunted after S100A8/S100A9 stimulation
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Figure 6. Relationships between HIF1A expression and upregulated inflammatory response genes at
high altitude
Expression levels are reported as the normalized log2 counts. Pearson correlation coefficients for sea level (SL)
and high altitude (ALT) are provided independently. Orange items (triangles and dotted lines) represent sea-level
expression levels, and blue items (dots and continuous lines) represent expression levels on the first day at high
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(Ma et al., 2017). Additionally, in a mouse model that
lacked the S100A8/S100A9 complex, these mice were
protected from endotoxin-induced lethal sepsis (Vogl
et al., 2007). Together, these data support the hypothesis
that the TLR4 signalling pathway is sensitized to sub-
sequent inflammatory stimuli following systemic hypoxic
stress, at least after 1−3 days of high-altitude exposure.
Activation of TLR4 might also contribute to the release

of IL8, a chemotactic cytokine that recruits and mobilizes
neutrophils to sites of infection. Previous studies have
shown that damage to the extracellular matrix following
cellular stress contributes to a positive feedback loop that
drives a TLR-dependent chronic inflammation, including
chronic IL8 expression (Valenty et al., 2017). Our data
revealed that IL8 mRNA expression is significantly
upregulated on both the first and third days at high
altitude (Fig. 3) and approaches significance for a negative
association with SpO2 (Table 4). This falls in line with pre-
vious research in ARDS, where Hirani et al. (2001) found
that IL8 levels were negatively correlated with arterial
oxygen saturation in patients with severe ARDS and
that in vitro hypoxic stimuli significantly upregulated IL8
production in human monocyte-derived macrophages.
Overall, the upregulation of several DAMPs and

chemokines essential for immune cell mobilization
demonstrate that acute high-altitude exposure might
prime the immune system to subsequent inflammatory
stimuli. This hypoxia-induced immune sensitization
supports the ‘dangermodel’ theory (Gallucci &Matzinger,
2001; Matzinger, 2003; Pugin, 2012), whereby these
DAMPs serve as an endogenous danger signal to
activate the innate immune system. The ‘danger model’
theory proposes that the immune system requires
two signals to activate: one from the foreign antigen
itself, and one arising from tissue injury (Gallucci &
Matzinger, 2001; Pugin, 2012). In response to hypo-
xaemia and/or tissue hypoxia, cellular stress triggers
the upregulation and release of DAMPs. This massive
release of danger signals could have several negative
implications, such as the development of systemic
inflammatory response syndrome (SIRS) (Bone, 1992;
Chakraborty & Burns, 2022; Pugin, 2007), which is
an exaggerated inflammatory response to a stressor,
such as trauma or acute inflammation, in an attempt
to resolve the endogenous or exogenous source of the
insult, in which patients have an increase in both pro-
and anti-inflammatory mediators in circulation (Bone,
1992; Chakraborty & Burns, 2022; Dinarello et al.,
1993). More importantly, if followed by an infection of
foreign bacterial antigens, this could trigger a synergistic
activation of the immune system, leading to a devastating
result of septic shock and multi-organ failure (Pugin,
2007). Furthermore, DAMPs, particularly HMGB1 and
S100A8/S100A9, have previously been used as biomarkers
for risk of death in septic shock patients (Dubois et al.,

2019; Karakike et al., 2019). This elevated level ofHMGB1
and S100A8 expression found in sojourners to high
altitude potentially indicates that systemic hypoxia causes
immune system sensitization and a potential exaggerated
response to subsequent stimuli (Fig. 1), although this
requires further study. Interestingly, one previous report
finds that pancreatitis patients who also had high-altitude
polycythaemia (and associated baseline hypoxaemia)
developed more severe cases of SIRS compared with
patients who had only acute pancreatitis (Zhu et al.,
2020). This indicates that patients with hypoxaemia
might be at higher risk for an exaggerated systemic
inflammatory response.

Acute mountain sickness and inflammatory marker
expression

Acute mountain sickness commonly manifests in
sojourners to high altitude (>2500 m; Gallagher &
Hackett, 2004; Hackett, 2000; Julian et al., 2011; Luks
et al., 2017). Most individuals affected by AMS develop
headaches, nausea, insomnia and shortness of breath
that resolve on their own within a few days. Current
research has noted that AMS develops as a result of a
complex network of physiological responses to hypoxia
(i.e. inflammation, hypoxaemia, vasogenic oedema and
acidosis) in addition to anatomical factors (i.e. insufficient
cerebrospinal fluid production, varied cerebral venous
blood flow; Hackett, 2000; Luks et al., 2017). Several
studies support the role of inflammation in development
of AMS. For example, multiple groups report that in
individuals acutely exposed to high altitude select
pro-inflammatory cytokine and inflammatory marker
(most notably C-reactive protein, interleukin-1β and
interleukin-6) concentrations are increased compared
with their sea-level concentrations (Hartmann et al.,
2000; Song et al., 2016). Some groups have also
found associations between the incidence of AMS and
expression of these candidate inflammatory markers
(Boos et al., 2016; Kammerer et al., 2020; Klausen
et al., 1997; Liu et al., 2017; Malacrida et al., 2019;
Song et al., 2016). Accordingly, Dumont et al. (2000)
showed a reduction in AMS incidence and severity
with anti-inflammatory drug treatment. Both steroids
and non-steroidal anti-inflammatory drugs reduced the
incidence of AMS, despite their different mechanisms
of action (Gertsch et al., 2010, 2012; Kanaan et al.,
2017; Lipman et al., 2012; Nepal et al., 2020; Rock et al.,
1989; Tang et al., 2014; Zheng et al., 2014). However,
other studies demonstrated no significant association
between pro-inflammatory cytokine concentration
and AMS incidence (Lundeberg et al., 2018; Swenson
et al., 1997). As a result, questions remain about how
high-altitude-induced inflammation might contribute to
AMS.
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In our study, many typical inflammatory markers were
not included in the top differentially expressed genes
via RNA-seq or NanoString after 1 or 3 days at high
altitude and were not associated with AMS severity. This
is not unexpected, because many studies have shown that
inflammatory markers, such as interleukin-6 and TNF-α,
resolve rapidly after expression. Previous studies have
also reported that although the protein expressions of
interleukin-6 andTNF-α in plasma increased significantly
after acute vigorous exercise, there was no change in
mRNA expression in peripheral blood mononuclear cells
(Bernecker et al., 2013; Ostrowski et al., 1998, 1999).
Thus, although protein levels can remain elevated after
24 h of exposure, mRNA expression levels might have
resolved by this time. Nonetheless, we identified other
significant components of inflammatory signalling and
immune system regulation that were activated at high
altitude and significantly associated with AMS severity at
these time points.

Of the genes most significantly associated with AMS
scores, we found that FASLG is not only negatively
associated with AMS severity (R = −0.071; P < 0.01),
but also positively associated with SpO2 (R = 0.68; P
< 0.01; Table 4). Although most of the participants
in our study had mild AMS symptoms, this might
indicate that FASLG and the FAS/FASLG pathway might
play a role in modulating the physiological response to
acute high-altitude hypoxia exposure. FASLG encodes
the Fas ligand, and the FAS/FASLG pathway plays
a crucial role in protection against autoimmunity in
addition to tightly regulating immune system activation
by activation-induced cell death (Brunner et al., 2003;
Griffith et al., 1995; Nagata & Golstein, 1995; Strasser
et al., 2009). This process is crucial to dampen the immune
response. Our findings show that participants with lower
AMS scores had increased FASLG mRNA expression
compared with their baseline SL expression. Furthermore,
we also found that the FAS signalling pathway was
enriched with significantly differentially expressed genes
after the first day of high-altitude exposure (Table 3).
This might have multiple implications. First, evidence
suggests that endothelial cells produce soluble Fas ligand
in hypoxia, which protects them from activation-induced
cell death (Mogi et al., 2001). Second, pro-inflammatory
cytokines (such as TNF-α) can induce expression of
Fas ligand on tissue cells and, in turn, trigger apoptosis
in activated T cells by binding to the FAS receptor
on the T-cell surface (Brunner et al., 2003). Indeed,
protein levels of pro-inflammatory cytokines have been
found to be elevated in plasma upon hypoxic exposure
(Boos et al., 2016; Julian et al., 2011; Song et al., 2016).
Thus, this initial elevation in pro-inflammatory cyto-
kine concentration upon high altitude exposure might
induce Fas ligand expression on tissue cells and cause
apoptosis in activated T cells to dampen the immune

response. However, given that the majority of our RNA
sample should be derived from peripheral blood mono-
nuclear cells, this might not explain the increased FASLG
expression we observed. A final interpretation is that
elevated FASLG expression might be reflective of T cells
inducing mutual activation-induced cell death amongst
the T-cell population (Brunner et al., 2003).
Our data also show that FASLG mRNA expression is

also positively correlated with SpO2 . Mogi et al. (2001)
showed that hypoxia stimulates the release of the soluble
Fas ligand. In contrast to the membrane-bound Fas
ligand, soluble Fas ligand would inhibit the apoptotic
signal in FAS+ cells. Upon high-altitude exposure, Higher
SpO2 and elevated FASLG expression could indicate
that their physiological response to hypoxia quickly
adapts and appropriately blunts the immune response.
This would also protect tissue cells from apoptosis.
However, there is conflicting research regarding the role
of Fas ligand in hypoxia. Kosanovic et al. (2019) showed
that there was a significant reduction of circulating
Fas ligand in sojourners to high altitude and in native
highlanders. It is important to note that circulating
plasma protein can come from multiple sources, such
as endothelial cells, and we were measuring gene
expression in immune cells. Additionally, it was shown
that highlanders with pulmonary hypertension had
a significantly lower circulating levels of Fas ligand
in plasma compared with lowlander control subjects
(Kosanovic et al., 2019; Sydykov et al., 2021). Overall,
these results indicate a potential role of FAS signalling
in high-altitude acclimatization and adaptation and
highlight the importance of immune system regulation
in hypoxia. These promising new findings warrant
future study because they suggest an important role of
immune regulation in high-altitude acclimatization and
adaptation.

Concurrent anti-inflammatory profile

Our data also demonstrate a concurrent upregulation
of anti-inflammatory elements. One such element
is NFE2L2, which encodes for nuclear factor
erythroid 2-related factor 2 (NRF2), an important
transcription factor involved in regulating and attenuating
oxidative damage and toxic insults by regulating the
expression of cytoprotective genes (Kobayashi et al.,
2004; Fig. 5). Previous studies clearly illustrate effects of
hypobaric hypoxia exposure on production of reactive
oxygen species and biomarkers of oxidative damage
(Chandel et al., 1998; Malacrida et al., 2019; Waypa
& Schumacker, 2002). One downstream gene target
of the NRF2 pathway is haem oxygenase-1 (HO-1),
a cytoprotective rate-limiting enzyme that is crucial
for degradation of haem into equimolar amounts of
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Fe2+, biliverdin and CO, all of which play roles as anti-
oxidants and regulators of inflammation, apoptosis
and angiogenesis (Tift et al., 2020). Our study shows a
non-significant trend for increased end-tidal CO after
1 day at high altitude (Table 1). Given that the only
known source of endogenous CO is the haem oxygenase
pathway, increased CO upon acute high-altitude exposure
might indicate increased haemdegradation. Furthermore,
elevated CO levels might provide tissue-protective effects,
such as those described in models of acute inflammation
in ischaemia–reperfusion injury, vascular injury or
disease, and sepsis (Knauert et al., 2013; Minamino et al.,
2001; Ryter & Choi, 2016; Tift et al., 2020).

Limitations

One limitation of our study is our moderate sample
size (n = 15), although the paired design allowed us
to identify changes in numerous inflammatory pathway
markers. Also, although our study group included both
men and women, we did not examine sex-specific
changes in inflammatory gene expression patterns owing
to the low number of women in our sample (n = 5
women). Future work exploring potential differences
in the impact of high altitude on immune function
in women and men will be essential. Furthermore,
only one participant developed severe AMS after acute
high-altitude exposure. Therefore, although we were
still able to identify significant associations between
expression of select inflammation-related genes and AMS
scores, a larger sample size with a wider range of AMS
severity will provide stronger power to identify and
validate these potential associations. Finally, the RNA
samples used in our study were collected from peripheral
whole blood; therefore, our data are representative only
of changes occurring in peripheral blood cells. However,
these findings are significant because they shed light on
the impact of high altitude on immune cell function and
inflammatory status.

Conclusion

In conclusion, we demonstrate that acute exposure
to high-altitude hypoxia triggers significant changes
in inflammation-related gene expression. Specifically,
our analysis has led to the identification of several
inflammatory-related genes that might be involved
in immune system sensitization, such as components
of the TLR4 signalling pathway. Clearly, hypoxaemia
and high-altitude exposure have significant impacts on
inflammatory signalling, but further studies are essential
to elucidate the mechanism behind hypoxia-induced
inflammation in vivo and how high-altitude exposure
impacts immune cell function. Future research studies

should investigate how concurrent hypoxic and
inflammatory stimuli might exacerbate pro-inflammatory
cytokine production in peripheral blood mononuclear
cells in vitro. Additionally, investigating the potential role
of LY96 and HMGB1 in immune system sensitization
might expand our understanding of how hypoxia and
inflammatory response pathways lead to an exacerbated
response to subsequent inflammatory stimuli. This work
will provide valuable insights into how hypoxaemia
modulates inflammatory responses in critical and chronic
illnesses, such as ARDS and coronavirus disease 2019.
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