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Abstract

To reduce the cost of production and the pollution of the environment that is due to the over-

application of herbicide in paddy fields, the location information of rice seedlings and weeds

must be detected in site-specific weed management (SSWM). With the development of

deep learning, a semantic segmentation method with the SegNet that is based on fully con-

volutional network (FCN) was proposed. In this paper, RGB color images of seedling rice

were captured in paddy field, and ground truth (GT) images were obtained by manually

labeled the pixels in the RGB images with three separate categories, namely, rice seedlings,

background, and weeds. The class weight coefficients were calculated to solve the problem

of the unbalance of the number of the classification category. GT images and RGB images

were used for data training and data testing. Eighty percent of the samples were randomly

selected as the training dataset and 20% of samples were used as the test dataset. The pro-

posed method was compared with a classical semantic segmentation model, namely, FCN,

and U-Net models. The average accuracy rate of the SegNet method was 92.7%, whereas

the average accuracy rates of the FCN and U-Net methods were 89.5% and 70.8%, respec-

tively. The proposed SegNet method realized higher classification accuracy and could effec-

tively classify the pixels of rice seedlings, background, and weeds in the paddy field images

and acquire the positions of their regions.

Introduction

Rice is one of the major global food crops that feeds over 65% of the Chinese [1]; however,

weeds in farmland impede the growth of crops. Weeds decrease rice production by competing

for moisture, nutrients, and light in paddy fields [2]. In traditional agriculture, the main weed-

ing method of spraying chemical herbicides extensively without distinguishing between crops

and weeds not only results in the waste of herbicide and labor forces but also causes environ-

mental pollution and health hazards for humans [3]. Precise pesticide spraying via site-specific

weed management (SSWM) in smart farming can reduce the pesticide consumption by

approximately 40–60%, thereby reducing the environmental pollution and increasing the
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economic profits [4]. For realizing these benefits, identifying weeds and their positions accu-

rately and automatically is the foundation of site-specific spraying.

The site-specific spraying of herbicides requires the generation of a weed cover map. How-

ever, in the past, academics only utilized the projection method with a binary image to calcu-

late the weedy areas [5, 6]. With the application of plant protection using unmanned aerial

vehicle (UAVs), weed target detection that is based on UAVs has attracted increasing atten-

tion. Weed overlays were acquired via the projection calculation method from spectral images

at 30, 60 and 90 meters in maize and sunflower fields [7–9]. However, it remains difficult to

obtain accurate information on weed areas on a small scale and to distinguish between crops

and weeds.

As a branch of machine learning, deep learning has been widely applied in various fields

and has developed into a powerful method for image classification [10, 11] and object detec-

tion [12]. The object detection framework of regions with convolutional neural networks

(R-CNN) [13] and Fast R-CNN [14] with selective search with region proposal [15] have pro-

duced breakthroughs. The region proposal network produces fewer and higher-precision pro-

posed regions in Faster R-CNN [16]. In addition to these object detection methods, which are

based on region classification, the bonding box regression method has been used by POLO

[17] and single-shot multi-box detector [18]. This technique overcomes the lower location pre-

cision of the method for region classification and can balance efficiency and precision in object

detection.

Object detection algorithms that are based on deep learning have realized tremendous

improvements in accuracy and speed compared to traditional detection algorithms and exhibit

higher feature extraction performance due to the use of convolutional neural network (CNN).

Typically, these methods perform well in object detection; however, they require a bounding

box that tightly surrounds the object of interest. Because rice seedlings and weeds do not have

definite boundaries and can lead to partial occlusions in the limited space, it will be challenging

to clearly delineate boundaries of rice seedlings and weeds. The method might not be viable

for object detection at the seedling stage. Moreover, the morphological diversity of the growth

stages of weeds creates unprecedented challenges for using object detection with a bounding

box.

The goal of image semantic segmentation was to obtain the categorized results of each pixel

at corresponding position. The method with patch-level is to take an image tile at the center of

some pixel point, and the features of image patches were used as the sample set to train the

classifiers [19]. However, the patch-level method is time consuming. Additionally, one of the

drawbacks of the method was that the performance of algorithm was affected and limited by

the image patch, where the model cannot be performed on the base of larger context informa-

tion. The method with pixel-level is based on fully convolutional network (FCN) [20] was

introduced for obtaining the position of every pixel, and the features of pixel points were used

as the sample set to train the classifiers. What is more, it solved the problem with semantic seg-

mentation of patch-level efficiently and effectively. FCN can accept input image with any size

and retain the pixel spatial information in the original input image, which can classify each

pixel on the feature map. It provides the potential to generate the cover map of weeds in

SSWM applications.

The FCN method overcomes target occlusion and realizes substantial improvements in

image segmentation performance [21, 22] via per-pixel classification. Deep learning has been

widely used in many fields of agriculture [23]. The FCN method was used to generate a weed

cover map with UAV imagery [24–26] over a rice field, which demonstrated that this method

is fast and can be used in the semantic segmentation of weeds. However, UAV imaging mainly
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about large-scale images, which do not meet the requirements for small-area detection with

weeds on small scales in paddy fields.

SegNet, first put forward by Cambridge [27], is a deep full convolutional neural network

used in image segmentation. SegNet uses the symmetric codec structure and index structure of

max pooling to obtain multi-scale information, which has lower computational cost and

higher precision than FCN. Because of using structure of dilated convolution, DeepLab [28]

and PSPNet [29] have better accuracy. But compared to them, SegNet has simpler structure

and its computing speed is faster. Semantic segmentation of rice seedlings and weeds is a sim-

ple classification in three categories, and SegNet is well-suited for processing the segmentation

of small irregular-shaped rice seedlings and weeds in the paddy field.

The novelty and contributions of the paper is that we proposed a robust and fast image seg-

mentation method for rice seedlings and weeds at the seedling stage in the paddy field based

on SegNet, where rice seedlings and weeds shading each other. The main objectives of this

study were to (1) propose a semantic segmentation method that is based on the encoder and

decoder parts and (2) analyze and compare the performance of proposed method with those of

a classical semantic segmentation model, namely, FCN, and U-Net models.

Material and methods

Dataset

Image capture. Sagittaria trifolia, which is a perennial troublesome weed [30], mainly

grows in paddy fields and reduces rice production dramatically. Sagittaria trifolia becomes

widespread and its damage has been increasing year after year [31]. Thus, research on sagit-

taria trifolia in paddy fields is necessary.

Images of weeds in paddy fields were captured using a Canon IXUS 1000 HS (EF-S 36–360

mm f/3.4–5.6 IS STM) camera on April 13, 2018, which was approximately 20 days after the

rice seedlings had been transplanted via mechanization. The row spacing of the rice seedlings

was 300 mm and the plant spacing was 140–160 mm. The image was of size 3648×2048

pixels and included many rice seedlings and weeds in the scene and the acquisition format was

color RGB images. The paddy fields were located in Jiangmen, Guangdong province (22˚

30026.97@N, 113˚05045.54@E). The camera was 800–1200 mm above the water surface of the

fields during image capture. The images were selected in the paddy fields and all weeds were in

early growth stages. Fig 1 shows sample images of the rice seedlings and weeds. A total of 28

images were captured.

Data collection. The original image is 3648×2048, which is much larger than the input

image size in [20, 27] and could lead to the exhaustion of the GPU memory. Therefore,

each image was split into two lines and four columns, which was divided into 8 tiles of size

912×1024 pixels and the tiles number was 224. The ground truth (GT) images were obtained

by manually tagged the semantic labels of each pixel on the original RGB images with three

separate categories (Fig 2): rice seedlings, weeds, and background (including reflection and

water), which used to train the model with the training dataset and calculate the performance

with the test dataset. The data sample included GT images and RGB images. Eighty percent of

the samples were randomly selected as the training dataset and 20% of samples were used as

the test dataset.

Class weight coefficients. As shown in Table 1, the pixel number of weed, rice seedling,

and background accounted for 5.028%, 11.517%, and 83.455% of the total pixel number with

image dataset respectively, and the number of pixels of with three categories were imbalance.

Take the pixel number of rice seedling as the median frequency class weights, we can ascertain

other class weight coefficients of weed and background, and realize the balance with the
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Fig 1. Rice seedlings and weeds images in the paddy field.

https://doi.org/10.1371/journal.pone.0215676.g001

Fig 2. Image-label example. (a) original image and (b) the corresponding GT labels.

https://doi.org/10.1371/journal.pone.0215676.g002

Table 1. Number of pixels with classes and the class weight coefficients.

Pixel type Percentage/% Class weight coefficients

Weed 5.028 2.280

Rice seedling 11.517 1.000

Background 83.455 0.138

https://doi.org/10.1371/journal.pone.0215676.t001

Fully convolution network for rice seedling and weed image segmentation at the seedling stage in paddy fields

PLOS ONE | https://doi.org/10.1371/journal.pone.0215676 April 18, 2019 4 / 13

https://doi.org/10.1371/journal.pone.0215676.g001
https://doi.org/10.1371/journal.pone.0215676.g002
https://doi.org/10.1371/journal.pone.0215676.t001
https://doi.org/10.1371/journal.pone.0215676


number of the classification category. For example, the large pixel number of background sam-

ple should be set to the small weight coefficient, and that of weed sample should be set to a big

one. The calculation method is expressed in (Eq 1).

wj ¼

X

i

Ni

3
X

i

Nij

ð1Þ

where wj denotes the class weight coefficient, Nij denotes the number of pixels in image i that

belong to class j, and Ni denotes the total number of pixels that belong to the ith image.

Methods

Network architecture of SegNet. The framework of SegNet was introduced in 2016 [27],

which realized pixel-level classification via end-to-end training. SegNet was proposed as the

underlying architecture for semantic segmentation with rice seedling and weed images at the

seedling stage in a paddy field, which includes an encoder, a decoder, and a softmax classifier.

The encoder included the first 13 convolutional layers of the pretrained VGG16 [32] and the

structure of decoder was symmetric to that of the encoder. The structure of the encoder and

decoder ensured that the input size of SegNet was the same as the output size. Each encoder

and decoder unit is comprised of five main sections. Each section in the encoder contains a

convolutional layer (Conv), a batch normalization (BN), and the activation function of a recti-

fied linear unit (ReLU). The ReLU is used to activate the output of BN and BN processes the

output of Conv. The network architecture of SegNet is illustrated in Fig 3. The parameters of

the Convs in SegNet are listed in Table 2.

For extracting efficient features through the Convs and the pooling layers in the encoder,

the dimension of the features increases as the Convs deepen. The size of the feature map

decreases continuously and the pixel value decreases with the size of the pooling layer in the

encoder and the size of the feature map can be restored via deconvolution and upsampling in

the decoder. The encoder stores the position information of the pixel in the maxpooling pro-

cess, which ensures the edge completeness via upsampling in the decoder. The missing pixel

values are filled via deconvolution and upsampling.

Transfer learning. As the main structure of SegNet was composed mainly of the pre-

trained CNN model of VGG16 in the encoder, the model of SegNet was trained via transfer

learning. Transfer learning [33] is a new machine learning method that applies the knowledge

from related but different domains to target domains, which aiming to solve the problems that

Fig 3. Network architecture of SegNet.

https://doi.org/10.1371/journal.pone.0215676.g003
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there are few or even not any labeled data in target domains. To the small sample image data

sets in this article, transfer learning with the well trained CNN model of VGG16 in image clas-

sification can migrate to pixels classify model.

Upsampling and deconvolution. Each pixel that corresponds to the rice seedlings, back-

grounds, and weeds in the images was classified based on SegNet. As shown in Fig 4 as the

flow diagram on the left, data were lost and the input of the feature map is half the size of the

output of a maxpooling operation, which leads to the progressive diminishment of the mar-

ginal information on the rice seedlings and weeds and to this information being obscured by

the process of each section of the encoder. In the process of each section of the decoder,

upsampling and deconvolution were utilized to preserve the size of the output image of SegNet

Table 2. Encoder and decoder parameters of SegNet.

Encoder Layer type Feature size Number of features Decoder Layer type Feature size Number of features

1 Conv1_1 3×3 64 5 Conv5_3 3×3 512

Conv1_2 3×3 64 Conv5_2 3×3 512

2 Conv2_1 3×3 128 Conv5_1 3×3 512

Conv2_2 3×3 128 4 Conv4_3 3×3 512

3 Conv3_1 3×3 256 Conv4_2 3×3 512

Conv3_2 3×3 256 Conv4_1 3×3 512

Conv3_3 3×3 256 3 Conv3_3 3×3 256

4 Conv4_1 3×3 512 Conv3_2 3×3 256

Conv4_2 3×3 512 Conv3_1 3×3 256

Conv4_3 3×3 512 2 Conv2_2 3×3 128

5 Conv5_1 3×3 512 Conv2_1 3×3 128

Conv5_2 3×3 512 1 Conv1_2 3×3 64

Conv5_3 3×3 512 Conv1_1 3×3 64

https://doi.org/10.1371/journal.pone.0215676.t002

Fig 4. Pooling and upsampling.

https://doi.org/10.1371/journal.pone.0215676.g004
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and the sharp edges of the rice seedlings and weeds. As shown in Fig 4 as the flow diagram on

the right, data that were lost during the pooling process were replaced during the deconvolu-

tion process. The position index was saved to ensure the unabridged edges, which was the rela-

tive position of the maximum value in the pooling. The 4×4 feature map can generate two

related outputs after maxpooling: a 2×2 feature map and a 4×4 position index. This informa-

tion subsequently served as input during the process of upsampling, where the remaining

numerical values of the position index were filled by 0 s. The deconvolutional layer was the

same as the convolutional layer, which was after the upsampling layer.

Evaluation metrics

The pixel accuracy (PA) is the number of pixels that are correctly classified to an individual

class as a percentage of the total number of pixels. The mean pixel accuracy (MPA) is an exten-

sion of PA, which refers to the percentage of correctly classified pixels for each category and is

calculated as the average of all PAs over all the classes. The intersection over union (MIoU) is

the standard measure of the semantic segmentation, which is calculated as the union of the

ground truth and predicts the segmentation according to the pixel class. The frequency-

weighted intersection over union (FWIoU) is an extension of MIoU in which weights are

assigned according to the frequency of each class. In addition, the speed of image processing is

the key index for practical use. Hence, this paper will consider MPA, MIoU, FWIoU and speed

in the performance analysis of the semantic segmentation model. The calculation process is

expressed in Eqs 2 to 5.

PA ¼

Pk

i¼0
pii

Pk

i¼0

Pk

j¼0
pij

ð2Þ

MPA ¼
1

kþ 1

Xk

i¼0

pii
Pk

j¼0

pij

ð3Þ

MIoU ¼
1

kþ 1

Xk

i¼0

pii
Pk

j¼0

pij þ
Pk

j¼0

pji � pii

ð4Þ

FWIoU ¼
1

Pk

i¼0

Pk

j¼0

pij

Xk

i¼0

pii
Pk

j¼0

pij þ
Pk

j¼0

pji � pii

ð5Þ

where k represents the class of rice seedlings, weeds, and background and k is equal to 2 in this

experiment; i represents the real class; j represents the predicted class; Pii represents the num-

ber of true positives, namely, the number of pixels for which the real class and the predicted

class are the same; Pij represents the number of false positives, namely, the number of pixels

that were misclassified; and Pji represents the number of false negatives, namely, the number

of pixels that were correctly classified.
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Results and discussion

Comparison models

FCN. The network structure of FCN [20] is a classical model with semantic segmentation,

which was improved based on the CNN of AlexNet and was applied to natural images for

pixel-level classification. The framework of AlexNet is divided into two parts: the front part

and the latter part. The front part, which includes convolutional layers and pooling layers, is

used to perform the feature extraction and the latter part consists of three fully connected lay-

ers. FCN includes the feature extraction part of AlexNet and the fully connected layers are

converted into convolutional layers. The output feature map of the last convolutional layer

performs upsampling by deconvolution via the bilinear interpolation algorithm, which leads

to output and input images that are of the same size in the FCN.

U-Net. The framework of U-Net [34] was proposed by Ronneberger in 2015 and performs

well on biomedical images. U-Net has two sections: a shrinking structure and an expanding

structure. Unlike the principles of FCN for the convolution and deconvolution operations of

feature maps, the shrinking structure constantly extracts the context information and the

expanding structure combines the feature maps, where the lost edge information is constantly

replenished. Then, more accurate predictions of the pixel points on the edge can be obtained.

Experiments on SegNet

Training parameters. The pixels of each image were labeled and the model was trained

and validated with the test dataset on the MATLAB 2017b software. The computer was config-

ured with 16 G memory, an Intel@Core(TM) i7-8700K CPU @ 3.70 GHz ×6 processor mem-

ory and a VIDIA GeForce GTX 1080Ti GPU.

The main parameters for this SegNet model were set as follows: the number of iterations

was 30, the batch size was 1, the weight learning speed was 0.001, the momentum was 0.9, the

regularization model was L2, and the regularization parameter, namely, λ, was 0.0005. The sto-

chastic gradient descent is adjusted as needed during the neural network training process.

Feature map visualization. The features were automatically extracted in the convolu-

tional layer from the stack-based feature maps and our method for feature extraction from

pixel-level data was utilized. The SegNet was established based on the encoder and the decoder.

To better understand what the Convs have learned and the learning processes in the encoder

and the decoder, the feature map of the last Conv with each encoder and decoder section is

shown in Fig 5, which was obtained via a visualization method. Four feature maps of the last

Conv were selected as representatives of each section in the encoder and the decoder and

because in the input channel of Conv1_1 in the encoder, the three color components of the

RGB image were the same as in the output channel of Conv1_1 in the decoder, the size of the

feature map of Conv1_1 in the decoder was only 3. The feature extraction of SegNet was based

on CNN of VGG16, where the feature map size become small and the data structure become

sparser by the operation with the pooling layer and Convs. The feature map becomes increas-

ingly abstract and vague as the Convs deepen in the encoder. Because of the deeper the

encoder, the feature map will receive more operation with the pooling layer and Convs. On the

one hand, the reversible process of feature mapping is performed in the decoder via deconvo-

lution and upsampling. So, the output image of the SegNet was the same as the input size.

Comparison of the results. In the equivalent training and testing environments and with

the same test and training datasets, SegNet outperformed the FCN and U-Net models. The

FCN model could accurately detect the pixels of rice seedlings, weeds, and background. The

bilinear interpolation algorithm was used in the processes of deconvolution and upsampling

Fully convolution network for rice seedling and weed image segmentation at the seedling stage in paddy fields
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with FCN, which has the advantages of fewer calculations and easier implementation. How-

ever, it easily overlooks the section details of the border, the edges are thickened and marginal

haziness is observed. The network structure of SegNet was simplified into the encoder and

decoder. The position information of maxpooling was stored in the encoder and the missing

pieces were filled via deconvolution and upsampling in the decoder. However, in contrast to

the bilinear interpolation algorithm, the location property of the characteristic points was pre-

served and the BN layer was introduced into SegNet; hence, SegNet yielded semantic informa-

tion that was closer to the GT and the edge detection precision was higher than that of FCN.

The target detection performance of the U-Net model was superior; however, the misclassifica-

tion rates of pixels that corresponded to rice seedlings and weeds were higher. Experiment

results for SegNet demonstrated the satisfactory segmentation performance for pixel classifica-

tion of rice seedlings, weeds and background, as shown in Fig 6.

The experimental results for the three semantic segmentation models on the test datasets

are listed in Table 3. Comparing the evaluation metrics of the three approaches, SegNet typi-

cally outperformed FCN and U-Net on the three evaluation indices: MPA, MIoU and FWIoU.

Since PA was used to estimate the percentage of correctly classified pixels, regardless of the

class, MPA was an important performance metric for the semantic segmentation network. The

proposed SegNet method realized higher classification accuracy, with an average accuracy rate

of 92.7%, followed by the FCN and U-Net methods, with average accuracy values of 89.5% and

70.8%, respectively. However, the structure of SegNet was more complex and deeper compared

to the other two models and required longer time for the image processing (0.604 s vs. 0.148 s

and 0.331 s with an image size of 912×1024 pixels), which meets the application requirements

in agriculture.

Evaluation of the pixel classification models in terms of precision was carried out by exam-

ining the confusion matrix, which is presented in Table 4. Compared with the existing pixel-

wise classification methods of FCN and U-Net, the proposed SegNet method realized higher

classification accuracy. The accuracy rates for rice, background and weed pixelwise classifica-

tion with the SegNet method were 93.6%, 90.7% and 93.9%, respectively. On rice and weed

pixelwise classification, substantially more accurate results were obtained compared to the

other two approaches. The accuracy rate of background pixelwise classification with U-Net

was 97.7%, which was higher than those of the other approaches. For the rice and weed

Fig 5. Feature map visualization of the convolutional layer.

https://doi.org/10.1371/journal.pone.0215676.g005
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Fig 6. Performance comparison on test images. (a) original images; (b) ground truth; (c) output by our method; (d)

output by FCN; and (e) output by U-Net.

https://doi.org/10.1371/journal.pone.0215676.g006
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pixelwise classifications, the U-Net model yielded low accuracy. The results demonstrate that

the proposed pixelwise classification method, which is based on SegNet, could effectively clas-

sify the rice, background, and weeds in paddy field images. The symmetric structures of the

encoder and decoder were established in SegNet, which were used to extract the multiscale fea-

ture and increase the accuracy of feature extraction. SegNet was well-suited for processing the

pixel classification of images of tiny and abnormally shaped rice seedlings and weeds in the

paddy field.

Conclusions

This paper proposed a semantic segmentation method that is based on fully convolutional net-

work with the SegNet model, which can extract the features from initial RGB images directly

and classify and recognize the pixels that correspond to rice, background, and weeds in paddy

field images. The proposed method is compared with a classic semantic segmentation model,

namely, FCN, and U-Net models in terms of performance. The symmetric structure of encod-

ing and decoding was established in SegNet, which was used to extract the multiscale features

and improve the accuracy of feature extraction. SegNet was well-suited for processing the pixel

classification of images of tiny and abnormally shaped rice seedlings and weeds in paddy fields.

The proposed SegNet method realized higher classification accuracy. The average accuracy

rate of the SegNet method was 92.7%, whereas the average accuracies of the FCN and U-Net

methods were 89.5% and 70.8%. The proposed pixelwise classification method, which is based

on fully convolutional neural networks, could effectively classify the rice, background and

weeds in paddy field images. At the same time, this method could perform pixel classification

of RGB images in real time to meet the application requirements.
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ity Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping. Sensors. 2015; 15

(8). https://doi.org/10.3390/s150819688 PMID: 26274960

10. Krizhevsky A, Sutskever I, E. Hinton G. ImageNet Classification with Deep Convolutional Neural Net-

works. International Conference on Neural Information Processing Systems. 2012;25(2):1097–105.

11. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going Deeper with Convolutions.

arXiv:1409.4842v1. 2014;9.

12. Erhan D, Szegedy C, Toshev A, Anguelov D. Scalable Object Detection Using Deep Neural Networks.

arXiv:1312.2249v1. 2013;12.

13. Girshick R, Donahue J, Darrell T, Malik J, editors. Rich Feature Hierarchies for Accurate Object Detec-

tion and Semantic Segmentation. arXiv:1311.2524v3. 2014;5.

14. Burlina P, editor MRCNN: A stateful Fast R-CNN. 2016 23rd International Conference on Pattern Rec-

ognition (ICPR). 2016;12:4–8.

15. Uijlings J, Sande E. A. K, Gevers T, Smeulders A. Selective Search for Object Recognition. Uijlings

JRR, van de Sande KEA, Gevers T, Smeulders AWM. Selective Search for Object Recognition. Interna-

tional Journal of Computer Vision. 2013; 104(2):154–71. https://doi.org/10.1007/s11263-013-0620-5

Fully convolution network for rice seedling and weed image segmentation at the seedling stage in paddy fields

PLOS ONE | https://doi.org/10.1371/journal.pone.0215676 April 18, 2019 12 / 13

https://doi.org/10.1016/j.cropro.2014.05.016
https://doi.org/10.1016/j.cropro.2014.05.016
https://doi.org/10.1016/j.cropro.2016.08.031
https://doi.org/10.1016/j.cropro.2016.08.031
https://doi.org/10.1007/s11119-008-9097-6
https://doi.org/10.1007/s11119-012-9276-3
https://doi.org/10.1016/j.asoc.2010.01.011
https://doi.org/10.1016/j.asoc.2010.01.011
https://doi.org/10.1016/j.compag.2015.12.016
https://doi.org/10.1016/j.eswa.2015.10.043
https://doi.org/10.1007/s13593-016-0405-7
https://doi.org/10.3390/s150819688
http://www.ncbi.nlm.nih.gov/pubmed/26274960
https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.1371/journal.pone.0215676


16. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Pro-

posal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017; 39(6):1137–

49. https://doi.org/10.1109/TPAMI.2016.2577031 PMID: 27295650

17. Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look Once: Unified, Real-Time Object Detection.

arXiv:1506.02640v5. 2016;5.

18. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S. SSD: Single Shot MultiBox Detector.

arXiv:1512.02325v5. 2015;12.

19. Wei S, Xinggang W, Yan W, Xiang B, Zhang Z, editors. DeepContour: A deep convolutional feature

learned by positive-sharing loss for contour detection. 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR); 2015 7–12 June 2015.

20. Shelhamer E, Long J, Darrell T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence. 2017; 39(4):640–51. https://doi.org/10.1109/

TPAMI.2016.2572683 PMID: 27244717

21. Dai J, He K, Sun J. Instance-Aware Semantic Segmentation via Multi-task Network Cascades.

arXiv:1512.04412v1. 2015;12.

22. Noh H, Hong S, Han B. Learning Deconvolution Network for Semantic Segmentation.

arXiv:1505.04366v1. 2015;5.
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