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The substantial progress in the last few years toward uncovering genetic causes and risk
factors for autism spectrum disorders (ASDs) has opened new experimental avenues
for identifying the underlying neurobiological mechanism of the condition. The bounty
of genetic findings has led to a variety of data-driven exploratory analyses aimed at
deriving new insights about the shared features of these genes. These approaches
leverage data from a variety of different sources such as co-expression in transcriptomic
studies, protein–protein interaction networks, gene ontologies (GOs) annotations, or
multi-level combinations of all of these. Here, we review the recurrent themes emerging
from these analyses and highlight some of the challenges going forward. Themes
include findings that ASD associated genes discovered by a variety of methods have
been shown to contain disproportionate amounts of neurite outgrowth/cytoskeletal,
synaptic, and more recently Wnt-related and chromatin modifying genes. Expression
studies have highlighted a disproportionate expression of ASD gene sets during mid fetal
cortical development, particularly for rare variants, with multiple analyses highlighting
the striatum and cortical projection and interneurons as well. While these explorations
have highlighted potentially interesting relationships among these ASD-related genes,
there are challenges in how to best transition these insights into empirically testable
hypotheses. Nonetheless, defining shared molecular or cellular pathology downstream
of the diverse genes associated with ASDs could provide the cornerstones needed to
build toward broadly applicable therapeutic approaches.

Keywords: autism, ASD, WGCNA, systems biology, network analysis, review, CSEA

Introduction

Autism spectrum disorder (ASD) is a pervasive developmental disorder, affecting around one
of every 100 children. ASD is characterized by profound deficits in communication and social
interaction as well as restricted interests and resistance to change. ASD clearly has a strong genetic
component, with a 60–90% concordance betweenmonozygotic twins. However, the disorder shows
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BOX 1 | | Definitions of key terms.

Network: A graphical representation of entities and their relationships. Entities are represented as nodes and relationships between pairs of entities, as defined by
some experimental measure, are represented as weighted or unweighted edges (lines) between the corresponding node pairs. Experimental measures might include
correlated expression, weighted evidence of protein–protein interaction, or number or presence of curated connections from the literature. Many of the capstone
analyses used network-based tools.
Module: A subgraph of a network that contains nodes that are more highly interconnected to each other than to other nodes in the network. Various formal definitions
exist, but we use this general intuitive definition for the purposes of this review. Modules are typically identified using clustering or graph partitioning algorithms.
Gene set: A group of genes that share a particular feature. Straightforward statistics exist for determining if two gene sets overlap more than expected by chance.
Some examples include:

1. A candidate gene set (for example, all genes implicated in ASD in a particular study).
2. A set of genes that all belong to the same co-expression module.
3. A set of genes sharing known features as exemplified by gene ontologies categorization. For example, a set of genes sharing a molecular function (e.g., all

kinases) or presumed biological process (e.g., members of the Krebb cycle metabolic pathway).
4. A set of genes expressed in a given cell type during a specific developmental period.

Pathway: A series of events that link molecules and leads to a final product or change in the cell or organism. There are varied uses of this word in the literature.

1. A metabolic pathway might be a series of enzymes that progressively alter a metabolite (for example, the Krebb cycle).
2. A signaling pathway is a series of molecules, usually proteins, that transmit biological information, primarily using chemical modifications to activate or inhibit

signaling activity of downstream targets.
3. A genetic pathway is a set of genes that contribute to a common final phenotype in a related manner, as determined by epistatic analyses. Note that additive

effects on phenotype are not sufficient to place two genes into the same pathway. To be firmly placed in the same genetic pathway, gene products must be
shown to be complementary, dominant, or suppressors of one another.

For the purposes of this review, metabolic and signaling pathways are referred to and treated simply as gene sets. The term ‘pathway’ will be used to refer
exclusively to genetic pathways. Note that discovery of genetic pathways historically has led to the elucidation of a corresponding specific type of pathway (e.g., a
signaling pathway such as Wnt signaling), though initial definition of a genetic pathway requires no knowledge of molecular function, only measurement of an effect
on a phenotype.
Circuit: Generally, a course along which chemical and electrical signals travel. While a cellular circuit has some analogy to a ‘molecular circuit’ or signaling pathway,
here we are distinguishing between these two levels of analysis. For the purposes of this review, circuits only refer to series of interconnected neural cells that mediate
a particular behavior.

remarkable heterogeneity in the genetic risk factors. Common
variant analyses have identified few reproducible associations
across studies, and meta-analyses suggest that what common
variants do exist likely have small individual effects (odds ratios
less than 1.2) and act in a highly polygenic manner (Anney
et al., 2012; Klei et al., 2012; Gaugler et al., 2014). Thus, the
recent focus has been on rare variants, including copy number
variations (CNVs), and exome sequence analyses (Pinto et al.,
2010; Sanders et al., 2011, 2012; Chahrour et al., 2012; Malhotra
and Sebat, 2012; Neale et al., 2012; O’Roak et al., 2012b; Yu
et al., 2013; De Rubeis et al., 2014; Iossifov et al., 2014). These
studies collectively have identified a clear role for rare and
private deleterious coding mutations, both de novo and inherited.
However, though of larger effect size, the rarity of these individual
events limits statistical power. For example, while de novo loss-
of-function mutations may collectively account for around 10%
of ASD cases, any given gene might be seen to be mutated only
in 2 or 3 cases out of the thousands now sequenced (Sanders
et al., 2011; De Rubeis et al., 2014). Nonetheless, since 2012 a
number of de novo, apparent loss-of-function mutations have
been described that are found primarily in individuals with ASD,
and a growing number of the same genes have been mutated
frequently enough to indicate clear association. Ongoing efforts
are poised to discover many more. Current estimates indicate
there will be several hundred genes implicated by this approach
when sufficient sample size is obtained (Krumm et al., 2014),
in addition to the >100 genetic syndromes which already show

some shared genetics or comorbidity with ASD (Betancur, 2011;
Yu et al., 2013). With the number of new ASD variants being
discovered the research bottleneck now is the identification of
the neurobiological mechanisms by which they act. Since the
genetic heterogeneity is so substantial, it is hoped that the
identification of common neurobiological mechanism(s) across
these diverse genetic causes may suggest some common routes to
treatments.

The relatively recent advent of computational science has
produced tools that enable opportunities to unveil truths
that are not reachable using only theoretical or experimental
approaches alone (Reed et al., 2005). Consequently, many
recent scientific advancements have materialized thanks to
two alternating and complementary modes of reasoning (Kell
and Oliver, 2004). Discovery-driven approaches focus on
inductive reasoning; they examine wide sources of data and
attempt to define hypotheses from the emergent patterns that
describe cause and effect relationships. In contrast, hypothesis-
driven approaches leverage deductive reasoning to identify
the logical consequences of a specific theory or hypothesis;
consequences that can then be tested in an experimentally
rigorous manner. The dawn of the genomic era, with the ability
to measure the expression of thousands of genes, protein–
protein interactions, epigenetic marks, etc., has produced fertile
grounds for discovery-driven analyses, and many groups are
leveraging these data resources in joint analyses with human
genetics data for ASD to provide novel insights into any shared
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characteristics of the genes and potential mechanisms of this
disorder. Here, we review these studies with a particular focus
on what bioinformatic approaches may have indicated about
the molecular or cellular mechanisms of ASD. Then, we also
highlight some of the successes and the challenges facing these
approaches, along with a limited number of recommendations
toward possible solutions. The overall aim of this review is
to spur robust, critical, and creative thinking to advance the
field.

Evolution of Discovery-Driven Applications for
ASD-Related Genes
Studies of ASD genetics have evolved substantially over the last
15 years. As it was realized that common variants of large effects
would be truly rare, it became evident that large sample sizes
would be necessary to power both common and rare variant
analyses. To amass these samples, large gene discovery projects
required the coordinated efforts of hundreds of researchers
with specialized expertise (clinicians, biologists, statisticians,
programmers, etc.). The end results of these studies were
essentially tables: tables of SNPs showing tentative association,
linkage, or transmission disequilibrium (Ma et al., 2009; Wang
et al., 2009; Weiss et al., 2009), or tables of CNVs (Sebat et al.,
2007; Marshall et al., 2008; Bucan et al., 2009; Glessner et al.,
2009; Pinto et al., 2010; Levy et al., 2011; Sanders et al., 2012), or
de novo and recessive single nucleotide variants (SNVs; Gilman
et al., 2011; Chahrour et al., 2012; O’Roak et al., 2012b; Sanders
et al., 2012; Yu et al., 2013; De Rubeis et al., 2014; Iossifov et al.,
2014) occurring, with some statistical confidence, in individuals
with ASD and other forms of developmental delay. These tables,
collectively, have provided the foundational resource to begin
understanding the human biology of ASD.

The results in these tables are arguably significant enough that
a study is complete when they are generated. But they are difficult
to reduce to a single statement for a title, or to summarize in an
abstract, and perhaps aesthetically unpleasing as a final figure.
Thus, the emergence of a ‘capstone analysis.’ Early on, if only
a single candidate region or two arose from a study, such an
analysis might be as assessing association between a SNP and
gene expression (e.g., CDH9) or between cases and controls for
gene expression (e.g., SEMA5A), which were the capstone figures
of two early common variant GWAS studies (Wang et al., 2009;
Weiss et al., 2009). But as the tables became longer, the capstone
analysis was often focused on summarizing the likely candidate
genes on the table as a whole, i.e., to provide a systematic
gestalt of these genes. Examples included leveraging the GOs
resource to identify disproportionately represented categorical
terms [e.g., Cytoskeletal elements or Rho GTPases (Pinto et al.,
2010), known to regulate neurite outgrowth (Hall and Lalli,
2010)], or an attempt to organize all the resulting genes into
some kind of network (Box 1) using other data resources. In
more recent years, these capstones have expanded in scope and
in effort (Gai et al., 2012; De Rubeis et al., 2014; Pinto et al.,
2014), sometimes sufficiently to become companion and post
hoc analytical manuscripts focused on finding common themes
to the discovered genes, and presumably the disorder (Gilman
et al., 2011; Ben-David and Shifman, 2012; Parikshak et al.,

2013; Willsey et al., 2013; Krumm et al., 2014; Xu et al., 2014;
Chang et al., 2015; Hormozdiari et al., 2015). In a review by
Willsey, the earlier works have been characterized as initially
using ‘static’ data resources to contextualize the findings, but
eventually turning to more ‘dynamic’ resources such as gene
expression across brain regions or cell types in the CNS (Willsey
and State, 2015). As gene expression inherently includes an aspect
of brain region and developmental time, they could be equally
described as moving from trying to find a shared molecular
pathology for these genes, to trying to find a shared regional or
cellular pathology. Below, we review capstones from both types
of analyses and highlight recurrent themes that may be emerging
across groups.

A Shared Molecular Pathology for ASD-Related
Genes?
Given a set of genes, a variety of mature tools exists for
identifying disproportionately shared molecular functions for
these genes, mostly based on researcher-curated collections of
gene functions (e.g., GO), or empirically determined sets of
protein–protein interactions, derived from literature mining or
high throughput screens in simplified model systems (e.g., yeast
2-hybrid; Ashburner et al., 2000; Lage et al., 2007; Rossin et al.,
2011; Szklarczyk et al., 2015). These approaches have highlighted
a variety of enriched molecular functions amongst ASD related
gene sets (Table 1). However, the utility of the results from these
approaches have two limitations; they are dependent onmanually
curated annotations, and they do not lead directly to falsifiable
hypotheses.

First, while these GO-based tools are indescribably preferable
to the alternative (attempting to manually curate the literature
for dozens or 100s of genes simultaneously), it is clear that they
also suffer from a derivative of one of the classic barriers to
unadulterated inductive reasoning described by Francis Bacon –
a sort of collective version of his ‘idols of the cave.’ The term
classically refers to how an individual’s interpretations of data
are colored by their prior knowledge and experiences (Bacon,
1620). Likewise, GO terms are assigned based on the collective
experiences of researchers, as reflected in the literature, and thus
they can only be readily leveraged for well-annotated genes. In
addition, even known genes may have unidentified pleiotropic
molecular functions. For example, FMRP, the RNA binding
protein disrupted in Fragile X syndrome, has recently been shown
to also physically regulate presynaptic voltage gate potassium
channels through protein–protein interactions (Deng et al.,
2013), independent of any RNA binding activity. It may likewise
be found that genes currently annotated as chromatin modifiers
(e.g., CHD8) or histone deacetylase (e.g., HDAC5), may have as
yet unknown roles in directly modifying cytoskeletal elements
regulating neurite morphogenesis. Simply put: analyses based
on curated knowledge cannot account for currently unknown
functions.

Second, it is not always clear how the insights from these
molecular gene set analyses might be actionable for identifying
mechanistic hypotheses for ASD or developing new therapeutics.
Results such as an enrichment of genes in the GO gene set
0045216 (intercellular junction assembly and maintenance),
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which contains 159 genes, provides limited insight on which
direction to pursue. In addition, the specificity of the 159 genes
in the entire GO gene set to ASD or a particular question (e.g.,
drug targets, causative genes, and temporal expression of ASD
genes) is unknown. It has been long shown in model systems
that genes that perform functions in the same genetic pathway or
encode for proteins in the same protein complexes lead to similar
phenotypes when disrupted, but it is not clear how closely linked
a particular genetic pathway (Box 1) is with a given GO gene
set. Thus, it would be ambitious to assume that disrupting any of
the 159 genes associated with this GO gene set will lead to ASD.
This is also because the 159 genes could be expressed in markedly
different locations in the brain and the behavioral manifestations
of such molecular disruptions will be highly dependent on the
specific neural circuits that utilize each of these proteins.

In contrast, there are clear successes – that have led to
purposeful experiments and meaningful treatments – arising
from identifying the relevant neural circuit for a particular
disorder. Note the rich variety of treatments arising from the
knowledge that Parkinsonism is due to loss of dopaminergic cells
of the Substantia Nigra. Long before any genes were identified
that contributed to the development of this disorder, knowledge
of the afflicted circuit (Box 1) led to the identification of viable
treatment strategies. If the dysfunction of particular circuits in the
brain manifests as explicit behavioral abnormalities (e.g., specific
symptoms), then it is reasonable to assume that the shared
symptomatology across distinct genetic causes of ASD implies
some convergent neural circuit disruption downstream of these
distinct genetic pathways. Encouragingly, if the diverse set of rare
causative genetic mutations in ASDdoes share a common cellular
or circuit mechanism, then we do not need to devise treatments
for each specific rare mutation. Rather, treatments focused on
correcting the common cellular dysfunction could be applied to
individuals who have a variety of underlying causes, analogous to
the common treatments used regardless of which genetic factor
or environmental exposure was the underlying cause for a case of
Parkinson’s disease. Thus, identifying common cellular circuits
mediating the behavioral disruptions seen across a variety of
distinct ASD genetic etiologies is essential for designing practical
treatments for this disorder.

A Shared Cellular Pathology for ASD-Related Genes?
To address the two limitations outlined above and to attempt
to identify some shared neurobiological circuit disrupted
across distinct genetic causes, we and others have focused
on complementary analyses leveraging gene expression data
resources. As gene expression is readily measured even for
unannotated genes, it is unbiased and does not suffer from the
‘idols of the cave.’ And, as gene expression varies substantially
across cell types or circuits, it may be possible to implicate
particular circuits by expression alone. At an extreme, a disease
gene selectively expressed in a single cell type in the brain
(e.g., the narcolepsy-related peptide Hypocretin found only in
a population of cells in the hypothalamus; Peyron et al., 2000),
clearly implicates that cell type as a vulnerable population in
the disorder and any related circuits as targets for treatment.
While such all-or-none expression of genes in a single cell type

is rare, the logic of this ‘selective expression’ hypothesis may be
somewhat extensible to a more moderate statistical enrichment
of expression as well: disproportionately enriched expression of
a large number of disease genes in a particular cell type or tissue
could indicate a relevant anatomical intermediary of a disorder.
Indeed, we have now shown that retinopathy-causing genes are
disproportionately expressed in rods and cones (Xu et al., 2014).
Likewise, SNPs associated with autoimmune diseases by GWAS
tend to be eQTLs for genes expressed in the blood where immune
cells are prevalent (Ardlie et al., 2015). And knowledge of
anatomical intermediaries leads to testable hypotheses: individual
cell types can be disrupted inmodel organisms quite readily using
Cre/Lox, optogenetics, and related approaches, and behavioral
consequences examined.

Before summarizing the results of the analyses leveraging
expression data, it is worth noting that while gene expression data
have the advantage that they are relatively unbiased for specific
genes, several caveats remain. First, determination of expression
levels can be affected by variations in sample collection and
preparation, technician experience, equipment calibration, and
choices of pre-processing algorithms, statistical tests, thresholds,
microarray/RNAseq platforms, and other aspects of study design
(Gudjonsson et al., 2010; Suárez-Fariñas et al., 2010). However,
stringent consistency throughout the study and prudent design
choices can help to ensure reasonable accuracy with regard to
relative differences between expression levels, and these relative
differences are adequate for most subsequent analyses. Second,
covariates such as differences in gender, age, cause of death,
time to preservation of the sample, and batch effects are sources
of potential bias that are typically corrected using standard
methods, such as ANCOVA (Huitema, 2005). While commonly
overlooked, in order to ensure spurious relationships do not slip
past these corrections, it is important that covariate information
is double-checked following subsequent analyses. For example,
if a co-expression module of a couple dozen genes is identified,
the individuals bearing most, or all, of the expression pattern
should be extracted and the degree of correlations with covariates
should be determined. Third, variations in ancestry or overlooked
sample relatedness can present unexpected sources of bias. An
effective, albeit not always practical, way to identify either of
these potential pitfalls is to collect genotype data and analyze
them using packages such as Structure (Pritchard et al., 2000)
and PLINK (Purcell et al., 2007). If this additional data collection
is impractical, thorough screening of study participants can
help alleviate these possible sources of bias. Finally, inadequate
sample size can lead to serious issues as described later in this
review.

If these issues are addressed, then two approaches can be
taken to leverage gene expression data. The approach we took
in our particular analyses were ‘top down.’ We defined sets of
genes with enriched expression in different tissues based upon
available body-wide RNAseq data resources (GTEX: Ardlie et al.,
2015), in different cell types based on cell specific profiling
technologies from mouse data (bacTRAP: Doyle et al., 2008), and
profiles of human brain regions across development (Brainspan:
Kang et al., 2011). We then examined the overlap of these lists
with candidate disease genes, in a manner very analogous to
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the tools overlapping candidate gene sets with GO. However,
there are weaknesses to this approach. Our use of mouse
data assumes conservation of gene expression in particular cell
types across mammals – a reasonable, but clearly not perfect
assumption (Zeng et al., 2012). And our approach also does not
explicitly leverage the correlation structure of gene expression
across tissues. Likewise, human brain-region and tissue-wide
data sets lose the cellular level resolution that may be most
useful for identifying targets for treatments. Both data resources
are limited of course to the samples that were collected, and
other cell types, tissues, or perhaps key developmental windows
might be absent from a particular analysis. Human data in
particular have focused heavily on cortex, potentially under-
representing other regions that may be of importance (e.g.,
hypothalamus or brainstem). Thus, these analyses are moving
toward being potentially usable as cornerstones for developing
hypotheses of the cellular mechanisms underlying ASD, and
will hopefully provide additional insights as more data become
available.

A complementary set of ‘bottom up’ data-driven studies
address some of these concerns. Several groups used a variety
of clustering analyses to first organize the ASD related genes
into networks, often leveraging their correlated expression across
human brain development to group them into co-expression
modules using WGCNA (Ben-David and Shifman, 2012;
Parikshak et al., 2013), or philosophically similar approaches
using additional data resources (Willsey et al., 2013; Chang
et al., 2015). Resulting modules can be used for GO analyses or
examined for enriched expression in particular developmental
windows, brain regions, or cell types. It is worth noting here that
it has long been recognized that one of the primary drivers of
correlated gene expression across different brain regions is the
consistent changes in proportions of different cell types (e.g.,
neurons and glia) across regions (Geschwind, 2000). Thus it is
likely that many co-expression modules might correspond to
genes enriched in a particular cell type. Our cell-type specific
expression analysis (CSEA) approach (Doyle et al., 2008; Xu et al.,
2014) or other datasets (Cahoy et al., 2008; Zhang et al., 2014) can
be used to rapidly identify this. Regardless, in the above analyses,
either co-expression or somewhat more inclusive human genetics
criteria has been used to expand these ASD-related gene sets
into larger modules. This allows for more genes to be included
in these analyses, facilitating better network insights, though
it is currently unclear if there is a particular cost in terms
of a potentially inflated false positive rate associated with this
expansion of gene sets.

However, in spite of the moderate differences in the precise
ASD-related gene sets, differences in leveraged data resources,
differences in the use of ‘top down’ or ‘bottom up’ methods
and statistical approaches, some themes seem to be emerging
regarding where ASD-related genes show enriched expression
(Table 2). First, amongst the rare mutations that were highlighted
in the recent exome studies, several groups have reported
disproportionate expression in the mid fetal developing cortex
and/or striatum (Parikshak et al., 2013; Willsey et al., 2013; Xu
et al., 2014). Though there is some disagreement on the exact
lamina that might be implicated (frankly, relatively few gene

expression differences define distinct cortical lamina (Doyle et al.,
2008; Dougherty et al., 2010; Xu et al., 2014) relative to the robust
expression differences between cell types in other brain regions
such as the cerebellum), many of these genes show relatively
high expression in forebrain development. This is consistent
with the long known roles in telencephalic development for at
least two of the recently implicated genes (TBR1 and RELN;
Caviness and Sidman, 1973; Hevner et al., 2001), and suggest
that mutations profoundly affecting forebrain development may
have ASD as one (of perhaps many) deleterious consequences.
This is consistent with the replicated finding that individuals
with de novo loss-of-function mutations have lower IQ than
other individuals with ASD (Samocha et al., 2014). Second,
genes downregulated in human ASD postmortem transcriptomic
studies (Voineagu et al., 2011; Gupta et al., 2014), and ASD
candidate genes compiled prior to exome studies (Basu et al.,
2009) seem to map most strongly to cortical interneurons, as well
as a striatal cell type: medium spiny neurons (Xu et al., 2014).
These findings suggest that perhaps there might be some shared
abnormalities in cortical and striatal circuits across distinct
genetic causes of ASD. In contrast, for example, none of the
analyses have implicated cell types of the cerebellum, suggesting
these are perhaps less commonly involved in ASD.

While overall both ‘top down’ and ‘bottom up’ discovery-
driven approaches have highlighted potential circuits of interest
in ASD, it is also clear that this disorder is not like
retinopathies, which have a dominant signal in one or two
cell types (minimum p-values < 10e−20). The significant, yet
relatively modest statistical signal in ASD studies (minimum
p-values around 10e−3 for medium spiny neurons or cortical
interneurons) indicate there may be substantial heterogeneity in
cellular mechanisms for the disorder, just as there is extensive
heterogeneity in genetic mechanisms. Further, as many of these
methods start from largely similar ASD-related gene lists, and
leverage a small number of overlapping data resources, they do
not truly represent independent replications. Thus, in the final
section, we outline some of the challenges facing application
of these approaches to ASD and present some examples of
solutions and recommendations. The recommendations are not
exhaustive and it is likely other elegant solutions exist as well.
The challenges can be organized into three groups. First, how do
we best identify and rule out alternative explanations that may
also account for the relationships between these genes? How do
we define the null hypothesis? And what are likely sources of
false negatives? Second, how do we assess the reproducibility of
a discovery-driven network analysis result? What constitutes a
replication of one of these findings? Finally, how do we convert
discovery-driven network-based insights into empirically testable
hypotheses, and from there into informed treatments?

Challenges Posed by Systems Biology
Approaches using ASD-Related Genes
Challenge 1: Selecting the Correct Interpretation of a
Network Analysis Result
Networks are graphical descriptions of the relationships between
the embedded entities. They provide the ability to display more
numerous relationships than could be efficiently conveyed with
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Key for both tables.

Approaches

1. CSEA: cell specific expression analysis. A method to define sets of genes with enriched expression in particular samples – i.e., to create datasets that can serve
as a “Gene Ontologies” for expression of genes in specific cell types. Applied initially to bacTRAP data.

2. DADA: disease aware disease-gene association: A method for prioritizing candidate genes within protein–protein interacting (or other networks) accounting for
connectedness to other disease genes.

3. DAWN: detecting association within networks. A method leveraging gene expression data and genetic association scores to generate networks of related genes
and prioritize additional candidate autism genes.

4. MAGI: merging affected genes into integrated networks. A method leveraging PPI and expression data to identify modules enriched in ASD genes. Can be used
to prioritize additional candidate genes.

5. NETBAG: network based analysis of genetic associations. A method of constructing networks of related genes based on a variety of data sources including GO,
KEGG, and PPI data.

6. WGCNA: weighted gene coexpression network analysis. A method of defining modules of genes with correlated expression patterns across samples.

ASD geneset sources

1. ASD postmortem: Microarray data comparing cortex and cerebellum of ASD patients and controls (Voineagu et al., 2011);
2. CNV: copy number variant studies;
3. SNP: single nucleotide polymorphism (common variant) studies;
4. Exomes/SNVs: single nucleotide variants (rare and de novo) studies;
5. SFARI/AutDB: a curated database of autism genes (initially AutDB), now hosted by Simons Foundation (Basu et al., 2009).

Resources leveraged

1. GOs: gene ontologies. Curated lists of functional annotations for all genes based on a defined hierarchical vocabulary. Accessed through a variety of portals
across studies.

2. KEGG: Kyoto encyclopedia of genes and genomes. A curated collection of metabolic and signaling pathways, and associated genes.
3. Interpro: database of annotating the domains found in proteins.
4. PPI: protein–protein interaction data. Various sources across the studies (e.g., StringDB, Szklarczyk et al., 2015).
5. TADA: transmission and de novo association. A method for weighting genes by their likely contribution to ASD based on multiple sources of information (He

et al., 2013). Here, used to refer to gene lists deriving from that method. Can also be used to prioritize genes, and is integrated with DAWN.
6. bacTRAP: gene expression profiles of ∼25 genetically defined cell populations in adult mice (Doyle et al., 2008).
7. Cahoy: gene expression profiles of the four major classes of cells in developing mouse brain (Cahoy et al., 2008).
8. GeneAtlas: a microarray study of dozens of distinct tissues in mouse and human (Su et al., 2004).
9. FMRP: the set of transcripts detected as binding the RNA binding protein FMRP in mouse brain (Darnell et al., 2011).

10. Brainspan: a collection of human brain transcriptomic data across multiple developmental time points and regions (Kang et al., 2011). Accessed through different
portals in different studies.

11. Lamina: a collection of transcriptomic data using laser capture microdissection to harvest RNA from specific layers of developing human and mouse cortex (Miller
et al., 2014).

12. BrainMap: a collection of human brain transcriptomic data from a single time point but across multiple regions from two individuals generate by Allen Institute as
part of the Human Brain Atlas Microarray Survey.

13. Transfac: transcription factor database. A collection of sequence motifs known to bind specific transcription factors.
14. ENCODE: encyclopedia of DNA elements. A collection of many different types of data focused on identifying regions of genome covered by specific sets of

epigenetic marks found on DNA in a range of tissues and cultured cell types.

words. However, a mind presented with such a large amount
of data will rapidly organize it by drawing on examples from
our own experience as researchers (idols of the cave yet again).
Cortical development researchers might tend to migrate toward
the cytoskeletal and Rho-GTPase genes, while physiologists may
be most stimulated by the channel genes. One who has worked
for many years with the transcriptional profiles of different cell
classes in the brain, when looking at a network (or gene set),
might have a bias to interpret it in terms of the cell types
these genes are expressed in (i.e., one could view an ‘immune’
module in transcriptomic data as reflecting changes in the
proportion of microglia in the tissue, rather than immune genes
being upregulated in neurons). Thus, all investigators must be
careful to recognize their individual biases for what they are
and shield analytical approaches as best possible from them.
In addition, there can be biases in the discovery methods and
resources themselves that might create statistically significant

results for scientifically insignificant reasons (Figures 1 and 2).
Therefore, we also need to define as carefully as possible our
null hypotheses and be attentive to circularity and alternative
explanations.

Recommendation 1: define the null and rule out
alternative explanations
Not all genes are equally likely to be implicated in genetic
studies. A simple example is that longer genes will tend to,
by nature of their size, overlap with more markers present on
SNP microarrays, provide more bases that could have a de
novo SNV and are more likely to be disrupted by a random
CNV mutation. And of course, mutations are not randomly
distributed: different regions of the genome, or even particular
nucleotide contexts, have different rates of mutation (Krawczak
et al., 1998; Michaelson et al., 2012; Samocha et al., 2014).
Furthermore, transcript length, and potentially gene body size,
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FIGURE 1 | Genes with enriched expression in the brain are long. (A) Genes with enriched expression in the brain are longer both as mature transcripts (right)
and in terms of gene body length (left), when compared to protein coding genes as a whole. (B) Random GWAS results show enrichment in a network of
brain-related GO terms: using a uniform distribution between 0 and 1, random p-values were assigned to SNPs in the genome, and SNPs were mapped to genes
using ANNOVAR. The SNP with the lowest p-value in a gene was used to determine the 500 most significant genes that were then used for a GO analysis and
displayed as a network using BINGO. Dozens of categories related to CNS function were significant (examples shown in table at bottom).
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FIGURE 2 | Choice of effective genome size in GO analysis of transcriptomic data can substantially influence statistical results. Boxplots show
distribution of −Log10 p-values for Fisher’s Exact Test overlapping the GO:007268, Synaptic transmission, with 100 different sampled lists at each effective genome
size indicated. Dashed line is p = 0.05 Power to detect differential expression in RNAseq is influenced by total count number for a particular gene, and thus longer or
higher expressed transcripts in a tissue are more likely to be found as significantly different (Bullard et al., 2010; Young et al., 2010). To determine if this could create
spurious GO results from a brain transcriptomic experiment, we randomly sampled genes from the 10% most robustly detected genes in a brain RNAseq experiment
(Ouwenga and Dougherty, 2015) to mimic results a 100 hypothetical differential expression experiments. If it was assumed these genes were randomly drawn
without bias from the whole genome (n = 46030 genes) this consistently resulted in a statistically significant, but scientifically meaningless, enrichment in the GO
category 0007268 (Synaptic Transmission). More conservative estimates which only include genes at least lowly expressed in the brain (CPM > 0.3 or CPM > 1) still
frequently yield spurious overlap (blue, purple). Because of this, using an effective genome or ‘background gene set’ based on the transcripts which are
well-powered for differential expression is recommended.

bear some relationship to biological function. Notably, genes
expressed in the nervous system tend to be longer in both
regards (Figure 1A). For example, randomly sampling SNPs
from the genome and mapping them to overlapping genes
will result in an enrichment for brain-related GO categories
(Figure 1B). Likewise in transcriptomic studies, the appropriate
background ‘genome’ needs to be carefully defined (Figure 2).
Transcripts clustering inmodules or being differentially regulated
in a particular tissue, by necessity must first be expressed
in that tissue. Thus, the effective genome and genome size
for statistical analysis of overlap should be restricted to those
genes whose transcripts could have plausibly been identified
in the analysis. As an example, both length and expression
can come into play when considering overlaps with the known
Fmrp-interacting RNAs (Darnell et al., 2011), as for potentially

methodological reasons these tend to include long transcripts
that are highly expressed in the brain. Therefore, the overlap of
these RNAs with gene sets derived from either human genetic
studies or potentially transcriptomic studies may reflect these
primary features of the transcripts rather than a central role for
Fmrp in the particular experiment (Ouwenga and Dougherty,
2015).

Overall, correcting for gene body length, transcript length,
and brain expression level are challenging. For example, simply
down-weighting GWAS results for those genes that are tagged
by more SNPs, under the assumption that every gene in the
genome is equally likely to contribute to disease, would be too
conservative – long genes could legitimately be more vulnerable
to mutation/polymorphism because of their length. And, an
evolutionary argument could be made that genes requiring more
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careful regulation have evolved to be longer – permitting the
presence of more potential regulatory sites (e.g., enhancers in the
genome, or protein binding motifs in the RNA) to finely tune
final protein levels. Indeed, genes that do not appear to tolerate
heterozygous mutations in humans (Samocha et al., 2014), tend
to be longer than the average gene. Thus, there is a risk that
fully removing the influence of gene or transcript length in
some analyses might be too conservative. Nonetheless, these are
issues that should be explicitly addressed in analyses and chosen
parameters should either be well-justified, or systematically
varied to demonstrate robustness.

Therefore, an appropriate null for discovery-driven analyses of
ASD-related genes should take these primary sequence features
into account. A common approach is to conduct comparison
analyses using sampled control sets of genes that share length,
connectivity, or mutability with the ASD related genes (Willsey
et al., 2013; Krumm et al., 2014; Chang et al., 2015). An
additional control commonly used are genes actually detected
as mutated (SNVs or CNVs) from control populations such
as unaffected siblings, population databases of variation, or an
unrelated disease (Pinto et al., 2010, 2014; Gilman et al., 2011;
Chahrour et al., 2012; Parikshak et al., 2013; Krumm et al., 2014;
Samocha et al., 2014; Chang et al., 2015; Hormozdiari et al., 2015).
This controls for both the known biases highlighted above and
any currently unrecognized biases in the ASD gene discovery
methods.

Challenge 2: Independent Replication of a Network
Analysis Result
One of the tenants of the scientific method is reproducibility.
Experiments should be able to be reproduced by other labs and
result in substantially identical findings. Furthermore, following
the deductive tradition, tests of the same hypothesis using
different methods should produce convergent results if the
model is correct and the methods are robust. While discovery-
driven analyses are typically insight- or hypothesis-generating
rather than hypothesis-testing endeavors, reproducibility and
replication are criteria that are still applicable.

Recommendation 2: parameter choices and code sharing
Just as in biological studies, where minor changes in the
composition of a buffer can sometimes substantially alter
biochemical findings, minor alterations in parameters in
bioinformatic analyses can result in substantial differences in the
results. For example, the choice of the effective genome size can
dramatically influence p-values in analyses overlapping two gene
sets with a Fisher’s Exact Test (Figure 2), and parameter choices
in aligners have at times created misleading results such as an
overestimation of RNA editing (Schrider et al., 2011). Frequently
there may not be a strong a priori reason for choosing a particular
parameter setting, which might lead to a ‘parameter placebo:’ an
accidental or subconscious tuning of the parameter to produce
the most striking results. To avoid this, key parameters can be
varied systemically with the results presented in such a way
that allows the reader to judge for themselves the robustness.
For example, we were interested in overlapping sets of genes

with ‘enriched’ expression in a particular cell type with ASD-
related gene sets. We could rank genes from most enriched to
least, but justifying a precise threshold was challenging. Uniquely
expressed in these cells? In them, but in a few other populations
as well (i.e., moderately enriched)? As there was no clear answer,
we designed the analysis to systematically vary the parameter and
present the results at multiple thresholds, with the most intuitive
confidence given to overlaps that occurred significantly across
some or all thresholds (Xu et al., 2014).

Thus the researcher’s choice for how parameters are set (or
the range of values tested) needs to be well-justified. Code for
conducting the entire analysis should be made available on
request, or perhaps even hosted in its entirety on a public forum.
However, to enable this, the discovery of a bug in code that has
been made available should be treated as an opportunity to raise
the quality of the scientific analyses as a whole, rather than as an
opportunity to cast stones at a competing lab.

Recommendation 3: replication replication replication. . .
It is a common experience at the bench – the first replicate of
an experimental series that matches predictions perfectly or that
hints at exciting new biology. And then the second replicate
that does not match the first, and then third, fourth, fifth, until
it becomes apparent that the first experiment was the outlier,
whether due to some technical mishap or simple winner’s curse.
At the bench one has the (dubious) luxury of being able to
repeat an experiment as many times as cost and time constraints
allow to convince ourselves of the reproducibility of an outcome.
However, in systems biology, there is often only one starting
candidate disease gene set with which to seed your network. And
largely only one GO or Brainspan resource to compare it with.
One can rerun the analysis to make sure the same result occurs
(analogous to a ‘technical replicate’ at the bench), but this is not
as reassuring as a true independent biological replicate would be.
In general, replications of transcriptome analyses in independent
samples have been difficult historically, and these discrepancies
have been attributed to variations in study design, processing of
samples, and/or computational methods (Gudjonsson et al., 2010;
Suárez-Fariñas et al., 2010). Thus, assessing the reproducibility of
a bioinformatic analysis is inherently challenging.

A fundamental question that must be faced is whether the
inability to reproduce is due to systemic variations, such as
those previously suggested, or due to failure to capture true
biological signatures. A major obstacle for these studies is the
difficulty in amassing large sample sizes and unfortunately, this
issue is seldom addressed. Network construction is typically
achieved by conducting some type of similarity or correlation
tests across pairs of genes/proteins. Inadequate sample size can
produce seemingly promising networks with strong community
structure due to the clustering of false-positive correlations.
Unfortunately, significant correlation thresholds are not one-
size-fits-all and vary between datasets due to sample size,
heterogeneity of samples and other factors. For this reason,
we strongly recommend the use of a rigorous method for
determining an appropriate threshold for edge placement during
the construction of networks. For example, permutation trials
provide a simple and robust method for determining appropriate
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correlation thresholds. For each trial, the data values for each
gene are permuted across individuals, thereby retaining all of
the properties of each gene except for inherent correlations with
other genes. After running an adequate number of trials, e.g.,
1000 trials, the highest correlation values computed across the
uncorrelated permuted data can be used to determine a threshold
with a desired p-value.

Assuming bona fide network construction, there are at least
three, albeit imperfect, options for replication. First, borrowing
from machine learning or human genetics studies, the starting
ASD-related gene sets could be broken into artificial ‘discovery’
and ‘replication’ subsets, or even K subsets, so some form
of K-fold cross-validation of the results could be conducted
(assuming adequate sample size). Then at least the robustness
of the results with regards to sample selection could be assessed
(Refaeilzadeh et al., 2009). Second, comparisons of results with
those identified by independent groups using distinct analytical
approaches may yield strong evidence of biological validity. To
an extent, it is very reassuring that multiple groups have drawn
fairly similar conclusions when applying these approaches to
ASD (Tables 1 and 2), though of course these are not true
replications because they are not independent – as they draw on
similar comparison data resources (i.e., regardless of whether GO
is accessed through DAVID, Panther, BinGO, GOrilla or other
portal, the gene sets are largely identical). Further, the Brainspan,
bacTRAP, and Cahoy datasets have seen similar widespread use
(Cahoy et al., 2008; Doyle et al., 2008; Kang et al., 2011). Thus, it
will be even more reassuring if similar results about these ASD-
related gene sets hold when additional comparison data resources
come online, such as single cell expression studies (e.g., Zeisel
et al., 2015). The third option is replication through the increasing
size of the ASD-related gene sets through time. In this regard it
is reassuring that many of the patterns seen in the early Capstone
analyses (e.g., neurite morphogenesis/cytoskeletal elements) have
been reproduced in later discovered gene sets (Table 1).

Challenge 3: Converting Discovery-Driven Insights
into Empirically Testable Hypotheses
How does one test a network result functionally? The recent
application of a variety of these inductive discovery-driven
approaches to ASD-related genes have highlighted potential
molecular gene sets or cell types common to different genetic
causes of ASD (Tables 1 and 2). As gene discovery and post
hoc analyses are expected to continue apace, a key challenge is
the conversion of these insights into clearly stated hypotheses
from which we can deductively define a set of empirically testable
predictions. This is not a straightforward endeavor – as a key facet
of any good hypothesis is that it be falsifiable, and it is not clear
that is the case with the insights emerging from capstone analyses.
Assuming there are no artifacts in the analysis, how does one
falsify the hypothesis that chromatin modifiers are important in
ASD? If, following the discovery of many more ASD risk genes
in the next rounds of sequencing there is no longer a significant
enrichment of this class of genes, does that mean the chromatin
modifiers are now unimportant? One could argue no. Because
for that small subset of ASD cases who carry a mutation in a
chromatin modifier like Chd8, chromatin modifiers still play an

important role. Rather, it would argue that chromatin modifying
genes play a role, but only in rare cases. Thus, the implications
of the insights garnered from a properly conducted discovery-
driven analysis can change in scale, but never really go away.
Only if the assumptions of the analysis itself change (e.g., Chd8
turns out not to be a chromatin modifier) can the insight be
falsified.

Yet, sometimes discovery-driven analyses can lead to the
generation of falsifiable hypothesis. In a simple example, one
could mutate the chromatin modifying function of Chd8 or other
candidates and measure whether that phenocopies complete loss
of function in a model system. Other predictions can also be
made about increased ASD risk or shared biological functions for
genes that share many edges in a network. Below we highlight
some experiments and suggest others that might meet this
challenge.

Recommendation 4: testing network predictions with
human genetics
The networks described in several of the recent analyses cited
above by design both included genes confidently associated
with ASD, and included genes that were either less confidently
associated from human genetics, or were implicated by ‘guilt-by-
association’ (Quackenbush, 2003) in post hoc analyses: e.g., that
were perhaps co-expressed, co-annotated (GO), co-published
(Text mining), or co-immunoprecipitated (PPI) with the more
confidently associated genes. One prediction of these networks
might be that mutations or polymorphism in these guilt-by-
association genes will also cause or contribute to ASD risk.
This concept can be tested informatically (e.g., looking for
an increased common variant risk near such genes, though
controlling appropriately for gene length, etc.; Ben-David and
Shifman, 2012; Parikshak et al., 2013). More directly, O’Roak
et al. (2012a), tested their network’s prediction by targeted
resequencing of such genes in a large cohort of ASD patients,
demonstrating novel statistical association for several of them,
and showing the utility of the initial network analyses. Thus,
these discovery-driven analyses can successfully serve to direct
new studies in human genetics and additional studies may
assist in more rapid identification of additional causative
genes. This approach will continue to be useful for a few
years, though eventually it is likely to be supplanted as
sequencing costs decrease and targeted analyses are replaced
by routine exome or whole genome sequencing. Likewise,
inclusion in a particular gene set has been used to reweight
the probability that a variant of unknown significance should
be considered pathogenic (e.g., with the TADA algorithm De
Rubeis et al., 2014), though the most compelling evidence
continues to be the presence of recurrent mutations in cases of
ASD.

Recommendation 5: phenotypic clustering in man and
models
Another apparent feature of these analyses is that genes in
the networks are somewhat clustered by function. Thus, these
networks may be making testable predictions regarding the
shared function of closely connected genes. If the genes do indeed
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share some function at the molecular or cellular level, then the
prediction is that genes that are closer in the network will be
closer in their consequences in cell models, animal models, or
potentially even patient symptoms.

A point of caution is that failing to identify a significant similar
phenotype or any phenotype at all when investigating a set of
genes highlighted by a network analysis does not necessarily
reject that hypothesis that the genes share some function. There
are a myriad of possible phenotypes to evaluate, and all cannot be
exhaustively tested. However, considering the information used
to create the network and the resulting gene set can provide
limits to the scope of phenotypes to test and prioritize primary
outcomes of interest. And, at least the hypothesis that these genes
have shared impact on those particular phenotypes does become
testable and falsifiable.

A second point of caution is that the novelty of these
predictions depends on whether functional data (e.g., PPI),
or functional annotations (GO) were not used to build the
networks in the first place – a caveat that cannot be taken lightly.
Otherwise the network is not really making new predictions, just
redisplaying known relationships in a different form. Likewise,
there are no generally enforced standards for how these networks
are displayed, and in some cases the authors may have selected the
presentation of the nodes that maximally illustrates the functional
clustering they would like to discuss. Overall, care must be taken

to assure that circular logic does not creep into the conclusions
drawn from these analyses.

Nonetheless, a variety of methods exist which could test any
novel predictions regarding shared impact on phenotype. Deeply
phenotyped sets of patients (such as the Simons collection;
Fischbach and Lord, 2010) could be studied to determine whether
individuals with mutations in genes that are closely spaced in the
network share more clinical features. Specific mutations could
be isolated or introduced in IPSC derived neural cells and their
consequences studied with data rich methods such as hi-content
imaging or RNAseq, with the prediction that there will be more
similar phenotypic consequences for genes that are closer in the
network (Figure 3). However, cultured cells have limitations in
terms of the cell types that can be generated. They also have a very
limited behavioral repertoire. Thus, it is our opinion that there
is also a strong need to study the commonalities in behavioral
disruptions across a variety of mice modeling these mutations.
Though mouse behaviors are not meant to be perfect proxies
for human symptoms, behaviors are highly sensitive readouts of
the functions of particular CNS circuits in an intact organism.
Shared behavioral disruptions across these can indicate shared
circuit level disruptions, and particularly cell-type predictions
(Parikshak et al., 2013; Willsey et al., 2013; Xu et al., 2014;
Chang et al., 2015) might be best tested in the context of a
complex nervous system. Cre-Lox and optogenetic technologies

FIGURE 3 | Hypothetical example of phenotypical clustering and epistasis analysis in a culture model. (A) A hypothetical network constructed with five
ASD genes (black) has resulted in two modules of 5–6 genes that are connected by expression and PPI data that include both ASD genes and tightly connected
genes (white) not yet implicated in ASD. (B) The network result leads to a hypothesis that genes that are in the same module regulate the same phenotype. This is
tested using single gene knockdown in iPSC derived neurons followed by high content imaging of neuronal morphology and behavior. Knockdown of the members
of the two modules results in distinct cellular phenotypes, consistent with them potentially representing two distinct mechanisms of developing ASD (potentially two
subtypes requiring different treatments). In this hypothetical example the tightly connected genes show the same phenotype. (C) Epistasis analysis for neurite length
is used to test the hypothesis that all genes in module 1 are in the same pathway regulating neurite growth and are distinct from genes in module 2. Single gene
knockdowns of all genes are transiently transfected with constructs expressing each individual gene. Green squares are normal neurite length, red squares are
shortened neurites. These hypothetical results suggest several conclusions: (1) negative control genes from module 2 can’t rescue short neurites, again indicating
they are not in this genetic pathway. (2) As a control, expression of each gene in module 1 can rescue (complement) its own phenotype. (3) The pattern of
complementation can be used to infer the functional relationship between the genes (D). For example, gene 4 can be rescued by any other gene in the module,
suggesting it must be before the others in the pathway, while gene 6 can rescue all others, but cannot be rescued by any of them, indicating it must be last. (D) The
resulting pathway from the genetic analysis of neurite length. This result indicates that the original module did indeed represent a set of genes that regulate the same
neurobiological phenomena. If indeed the shortened neurites lead to ASD, this also suggests that treatments targeting gene 6 (even though it was not itself an ASD
gene), may be effective at treating individuals with ASD who have mutations in genes 3, 4, or 5.
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in particular provide the opportunity to explicitly test shared
contributions of particular circuits downstream of a genetic
lesion. There is also a clear need for a more systematic approach
to behavioral phenotyping, as the current one-lab-evaluates-one-
model approach, often in different genetic backgrounds, makes
careful and systematic post hoc comparisons across models nearly
impossible.

Recommendation 6: epistasis analysis in models and mice
Genetic formalism has a lot to offer in the context of testing these
networks. Genes that are closer in the networks (or perhaps co-
expressed in the same cell type), may be in the same functional
pathway. Studying compound mutations in humans might be
informative (Pinto et al., 2014; Krumm et al., 2015). Indeed,
examination of >100 million medical records has been used
to test for epistatic effects of combinations of rare Mendelian
diagnoses on risk of developing comorbid complex disease traits
(Blair et al., 2013). But with currently available sample sizes for
exome-sequenced cases, multiple ASD-related rare variants are
unlikely to occur in the same individual frequently enough for
formal testing of specific pairs of ASD-related genes. However,
both in animals and in cell lines it is straightforward to make
compound mutations and introduce rescue constructs with
modern genome editing technologies. Thus, not only can we
test whether network-associated genes have similar phenotypes
(Figures 3A,B), we can also test whether any gene is in the same
pathway and if it is dominant, complementary or suppressive
of others (Figures 3C,D). Again, this could leverage both cell
lines and mouse models for their relative strengths of either
throughput or complexity.

Finally, all recommendations 4–6 might also provide
the opportunity to subtype ASD cases into functionally
distinct categories based on their molecular causes or cellular
consequences – separate categories which may indeed be most
amenable to different treatment strategies or that warrant
stratification during clinical trials. Already results from exome
studies are being used to define new subtypes of ASD starting
from knowledge of the implicated gene (Bernier et al., 2014).

Understanding commonalties in different subtypes of patients
might be key to identifying routes to treatments for each.

Conclusion: Building New Cornerstones
from Old Capstones

Over the last few years, discovery-driven bioinformatics analyses
of ASD-related genes have moved from final figure capstone
analyses to stand alone manuscripts. In architecture, the capstone
is the coping, the final layer of finer, flat stone on the top of a
wall of a that is somewhat functional (e.g., to end the structure, to
protect from weather) but also somewhat decorative. Meanwhile,
the cornerstones, classically, are the first stones placed in a new
building – the seeds from which new buildings arise. Thus, the
time has come to push these systems biology analyses away from
capstones and toward cornerstones: studies from which we can
derive empirically testable theories regarding commonalities of
mechanism(s) for the diverse genetic risk factors contributing to
ASD. The overall challenge now is to define criteria with which
to systematically evaluate these discovery-driven insights, and to
generate falsifiable hypotheses from these ideas. The hypotheses
that survive rigorous empirical testing have the potential to
become the foundations of new edifices rising toward ASD
treatments.
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