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Abstract

Background: Anti-tuberculosis drug induced hepatotoxicity (ATDH) is a major

adverse drug reaction associated for anti-tuberculosis therapy. The glutathione S-

transferases (GST) plays a crucial role in the detoxification of hepatotoxic

metabolites of anti-tuberculosis drugs.An association between GSTM1/GSTT1 null

mutations and increased risk of ATDH has been demonstrated in adults. Given the

ethnic differences and developmental changes, our study aims to investigate the

potential impacts of GSTM1/GSTT1genotypes on the development of ATDH in Han

Chinese children treated with anti-tuberculosis therapy.

Methods: Children receiving anti-tuberculosis therapy with or without evidence of

ATDH were considered as the cases or controls, respectively. The GSTM1 and

GSTT1 genotyping were performed using the polymerase chain reaction.

Results: One hundred sixty-three children (20 cases and 143 controls) with a mean

age of 4.7 years (range: 2 months-14.1 years) were included. For the GSTM1, 14

(70.0%) cases and 96 (67.1%) controls had homozygous null mutations. For the

GSTT1, 13 (65.0%) cases and 97 (67.8%) controls had homozygous null

mutations. Neither the GSTM1, nor the GSTT1 polymorphism was significantly

correlated with the occurrence of ATHD.

Conclusion: Ourresults did not support the GSTM1 and GSTT1 polymorphisms as

the predictors of ADTH in Chinese Han children treated with anti-tuberculosis
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drugs. An age-related association between pharmacogenetics and ATHD need to

be confirmed in the further study.

Introduction

Tuberculosis is a threat to worldwide public health. Globally, about a third of the

world’s population is infected by the tuberculosis bacteria. In 2009, there were an

estimated 9.4 million incident cases (equivalent to 137 cases per 100 000

population) of tuberculosis [1]. Among 22 countries with the highest burden of

tuberculosis, China is the second highest after India. According to the Chinese

national epidemiological survey, the infection rate of tuberculosis bacteria was

around 44.5% in the whole population and 9.0% in children below 14 years. The

active tuberculosis rate was about 91.8 cases per 100 000 population [2].

Anti-tuberculosis drug therapy plays an important role to control tuberculosis

epidemic in children [3]. The standard pediatric anti-tuberculosis therapy

includes a combination of isoniazid, rifampicin, pyrazinamide and ethambutol.

Anti-tuberculosis drug induced hepatotoxicity (ATDH) is a major adverse drug

reaction associated for anti-tuberculosis therapy [4, 5]. The reported incidence of

ATDH ranged from 2.46% to 32.1% [6, 7]. Asymptomatic increase of

transaminases is the most common clinical manifestation of ATDH, but lethal

hepatic failure may also occur when treatment is not interrupted in time [8].

ATHD is a multifactorial disorder and different risk factors have been identified,

e.g. ethnic, age, sex, pre-existing liver disease etc. [9–13].

In recent years, the pharmacogenetic research has received much attention to

identify the genetic predictors of ATDH in order to individualize anti-tuberculosis

therapy. Researches on the glutathione S-transferases (GST) genes have obtained

promoting results to identify/predict special patient at risk of ATDH. The GST

genes code for a superfamily of enzymes that are involved in the phase-II drug

metabolism andplay a crucial role in the biological detoxification processes of

many drugs including anti-tuberculosis drugs. They catalyze the conjugation

reactions of glutathione and toxic intermediary metabolites and facilitate toxicant

elimination, thereby, decreasing the risk of the drug-induced hepatotoxicity. The

recent meta-analysis, which involved 13 case-control studies and more than 900

ATHD cases, has demonstrated that the GSTM1 homozygous null genotype was

associated with an increased risk of ATDH [14]. Moreover, this association seems

to be ethnic-dependent. East Asian patients with GSTM1 null genotype had a

higher risk than Caucasians [15], Whereas, GSTT1 homozygous null genotype was

a risk factor of ATHD in Caucasians [16], but not in Chinese [17].All of the

published studies were conducted in adults. There was no study conducted in

children. Given the ethnic difference in the correlation between the GST genetic

polymorphism and ATDH, and apotential impact of age, our study aims to
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investigate the impacts of the GSTM1 and GSTT1 genotypes on the development

of ATDH in Han Chinese children receiving anti-tuberculosis therapy.

Materials and Methods

Study design and patients

A total of 223 unrelated active tuberculosis patients, who were treated with

standard anti-tuberculosis protocol between 2005 and 2010, were enrolled in this

study at the Tuberculosis Ward, Beijing Children’s Hospital, Capital Medical

University (Beijing, China). The standard anti-tuberculosis therapy protocol

consists of isoniazid(INH,H) 10–20 mg/kg/day (up to a maximum of 300 mg/

day), rifampicin(RFP,R) 10–20 mg/kg/day (up to a maximum of 450 mg/day),

pyrazinamide(PZA,Z)20–30 mg/kg/day(up to a maximum of 1500 mg/day),

ethambutol (EMB, E) 15–25 mg/kg/day, and streptomycin(SM,S) 20–30 mg/kg/

day (up to a maximum of 750 mg/day). For primary complex and infiltrative

pulmonary tuberculosis, INH and RFP is used for 6–9 months; for tuberculosis of

bronchial lymph nodes merge of bronchial tuberculosis, infiltrative pulmonary

tuberculosis with cavity and spread of bronchogenic, the treatment is started with

INH/RFP/PZA for 3 months and followed by INH/RFP for 3–6 months; For

miliary tuberculosis and caseous pulmonary tuberculosis, the treatment is started

with INH/RFP/PZA/SM for 2 months, followed by INH/RFP/PZA for 1 month

and INH/RFP for 6 months, and then, according to patient’s clinical condition to

decide if continues with INH for 3 months. For disseminated tuberculosis, the

treatment is started with INH/RFP/PZA for 3 months, (SM can be added in

serious case), followed by INH/RFP for 6–9 months. For tuberculous meningitis,

the treatment is started with INH/RFP/PZA for3 months(SM/EMB can be added),

and followed by INH/RFP for 9 months (or 6 months after cerebrospinal fluid cell

count and biochemical became normal).

This study was approved by the Ethical Committee of the Beijing Children’s

Hospital and written informed consents were obtained from all of the enrolled

children or their parents/guardians. Patients who meet the following inclusion

criteria were eligible for the study: (i) Chinese Han children aged between 0 and

16 years; (ii) diagnosis of active tuberculosis by clinical examination, radiological

and microbiological investigations; (iii) standard anti-tuberculosis treatment has

been started for at least two weeks; (iv) serum transaminases were normal before

treatment (alanine aminotransferase ALT,40 IU/L, aspartate aminotransferase

AST,40 IU/L). Patients with pre-existing liver disease, viral hepatitis, chronic

alcoholism, or history of intake of other hepatotoxic drugs were excluded from

the study.

In this case-control study, the case was selected from children with ATDH and

fulfilled the inclusion criteria mentioned above. The diagnostic criteria of ATDH

was based on the international consensus [18–20]: (i) serum ALT.26ULN

(upper limit of normal, 40 IU/L); or (ii) serum direct bilirubin (DBil).26ULN

(6.8 mmol/L); or (iii) increases of serum AST (40 IU/L), alkaline phosphatase
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(ALP,220 IU/L) and total bilirubin (TBil, 19.0 mmol/L), moreover, one of

them.26ULN; or (iv) any index mentioned above.16ULN and associated

with liver damage symptoms, such as skin or sclera yellow dye, severe anorexia,

nausea, vomiting, fever, rash, itching. Conform to anyone of above four is defined

as liver damage, and liver damage occurred after receiving anti-tuberculosis

therapy and was relieved when the dose of tuberculosis drugs was reduced or

treatment was stopped.

Controls were defined as patients who fulfilled the inclusion criteria but did not

have any symptoms and/or laboratorial evidence of liver dysfunction during the

anti-tuberculosis therapy. Controls were matched to cases on the basis of age, sex

and anti-tuberculosis therapy.

The flow chart of our study is presented in fig. 1. Overall, 223 tuberculosis

children were screened, 60 were excluded and 163 were included in the final

analysis (20 for case and 143 for control). For 20 cases, 1 patient was treated with

INH, 1 patient with INH/RFP, 15 patients with INH/RFP/PZA, and 3 patients

with INH/RFP/PZA/EMB.

According to the most recently published study in adults, the significant

impacts of GSTM1 and GSTT1 null mutations on the risk of ATHD have been

demonstrated in 17 ATHD patients with an odds ratio (OR) of 3.59 [21]. Using

this OR, 20 ATHD children, included in the present study, is sufficient to reach a

statistical significance (P,0.05) for a 1:7 mating case-control study with a risk

alpha of 0.1 and a power of 0.8, based on Chi-square with Yates continuity

correction method.

GSTM1 and GSTT1 genotyping

The isolation of genomic DNA was carried out from peripheral blood

mononuclear cells using a standard procedure. The GSTM1and GSTT1

polymorphisms were determined using a multiplex PCR protocol. The primers as

previously described [22] with minor modifications are shown in Table 1. PCR

was performed in a final volume of 25 ml. The reaction condition of ‘‘GSTM1

gene/GSTT1 gene’’ was: 3 min at 94 C̊ for degeneration, and then 30 cycles (30 s

at 94 C̊, flowed by 30 s at 65 C̊/57 C̊ and 1 min at 72 C̊, and finally 5 min at

72 C̊). The reaction condition of ‘‘GSTM1 deletion/GSTT1 deletion’’ was: 3 min

at 94 C̊ for degeneration, and then 40 cycles (10 s at 98 C̊, flowed by 5 s at 58 C̊/

68 C̊ and 10 min at 72 C̊, and finally 5 min at 72 C̊). GSTM1 and GSTT1

genotypes were detected by the absence or presence of a band of PCR product in a

1.5% agarose gel (containing 0.5 mg/ml ethidium bromide), which was visualized

by UV light and compared with the molecular weight marker.

Statistical analysis

Data are expressed as the mean ¡ standard deviation (for normal distribution) or

as the median with range (for non-normal distribution). Quantitative variables

were analysed using Mann-Whitney U-test. Genotypic frequencies of GSTM1 and
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GSTT1 were compared between cases and controls using a chi-squared (262

table) test with Yates’ correction. Analyses were performed using SPSS version

13.0(SPSS Inc., Chicago, IL). A value of P,0.05 was considered statistically

significant.

Fig. 1.The flow chart of case-control study. A total of 223 unrelated active tuberculosis patients treated with
standard anti-tuberculosis protocol between 2005 and 2010. According to inclusion criteria, we got 20for case
and 143 for control.

doi:10.1371/journal.pone.0115410.g001

Table 1. PCR primers for GSTM1 and GSTT1.

primer Forward primer Reverse primer

working
concentration
(mmol?L-1)

annealing
temperature
( C̊)

target
fragment
(bp)

GSTM1
gene

59-CAAATTCTGGATTGTAGCAGATCATGC-39 59-CACAGCTCCTGATTATGACAGAAGCC-39 0.2 65 625

GSTM1
deletion

59-AAGACAGAGGAAGGGTGCATTTGATA-39 59-ACAGACATTCATTCCCAAAGCGACCA-39 0.4 58 4748

GSTT1
gene

59-TCTTTTGCATAGAGACCATGACCAG-39 59-CTCCCTACTCCAGTAACTCCCGACT-39 0.2 57 969

GSTT1
deletion

59-GAAGCCCAAGAATGGGTGTGTGTG-39 59-TGTCCCCATGGCCTCCAACATT-39 0.2 68 3106

doi:10.1371/journal.pone.0115410.t001
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Results

In our study, there were no significant differences in age, sex and liver function at

baseline (before treatment) between the cases and controls. As expected, the

medians of ALT and AST during treatment were significantly higher in the cases

as compared to the controls. In the cases, ATDH occurred in the initial phase of

drug therapy (median of 16 days, range 7–26 days), and ALT level returned

rapidly to normal value after stopping the treatment (median of 18 days, range 7–

39 days) (Table 2).

For the GSTM1, 14 children (70.0%) in cases and 96 children (67.1%) in

controls had homozygous null mutations, while no patient in cases and 7 children

(4.9%) in controls had heterozygous null mutations. For the GSTT1, 13 children

(65.0%) in cases and 97 children (67.8%) in controls had homozygous null

mutations, 5 children (25.0%) in cases and 37 children (25.9%) in controls had

heterozygous null mutations. Neither the GSTM1, nor the GSTT1 polymorphism

was significantly correlated with the occurrence of ATHD (Table 3).

Discussion

Our study evaluated for the first time the association between the GSTM1/GSTT1

polymorphisms and risk of ATHD in children. The results did not support the

GSTM1 or GSTT1 polymorphisms as risk factors of the development of ADTH in

Chinese Han children receiving anti-tuberculosis drug therapy.

The efficacy and safety of anti-tuberculosis drug therapy exhibit large inter-

individual variability, even in patients treated with the same kind of drugs and

standard dosing regimen. Genetic factors undoubtedly contributed to this

diversity, in addition to demographic factors (i.e. age, sex, diet) and clinical

factors (i.e. liver and kidney function, diseases, co-medication) [9, 23, 24]. A few

studies have investigated the roles of GST polymorphisms on the occurrence of

ATDH (Table 4). All of the published studies were conducted in adults and

showed controversial results. In Taiwan [25] and Indian [26] studies, the GSTM1

homozygous null mutation, but not the GSTT1, was a risk factor of ATDH. In

Spain study [27], the GSTT1 homozygous null mutation, but not the GSTM1,was

significantly associated with ATDH. In Korean [28], Brazilian [29], and another

Indian studies [30], neither the GSTM1 nor the GSTT1 polymorphisms was

significantly associated with ATHD.

Several confounding factors may contribute to theses controversial results.

Firstly, the definitions of ATDH in these studies were different and some of them

may introduce a selection bias, e.g. limited scope of liver injury index, the bias in

the definition of clinical symptoms etc. Secondly, the inclusion and exclusion

criteria were different in these studies, and some of them did not exclude other

causes of liver injury, thereby, resulting in false positive patients in cases. Finally,

the anti-tuberculosis therapeutic regimens were different. It has been reported

that the risks of ATHD were not the same between different treatment

combinations [14]. These confounding factors have been fully considered when

GSTM1/GSTT1 Polymorphism and ATDH
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designing the present study. All these conditions allow eliminating the potential

impacts of these confounding factors on our results.

ATHD is an idiosyncratic drug reaction, for which reactive metabolite, rather

than the parent drug, is responsible [31, 32].Drug metabolizing enzymes have

critical effects by both synthesis and detoxification of reactive toxic metabolites. In

the liver, isoniazid is firstly metabolized into acetylisoniazid via N-acetyltrans-

ferase (NAT), followed by hydrolysis to acetylhydrazine. Acetylhydrazine is then

oxidised into hepatotoxic metabolites by CYP2E1. The hepatotoxic metabolites

formed through NAT or CYP2E1 are further detoxified by GST. Clinical

experience has revealed that children differ from adults in terms of the risk of

ATHD. Adverse drug reaction is linked to developmental changes of drug

metabolism, so it has age-dependent predisposition [33, 34], which might explain

the different impacts of the GST polymorphisms on the risk of ATHD between

children and adults. Indeed, The ontogeny of both NAT and CYP2E1 has been

reported in children [35–37], who had a lower metabolism capacity as compared

Table 2. Clinical characteristics of study subjects.

Presence (n520) Absence (n5143) P

Age (year) (mean ¡ standard deviation) 3.59¡4.24 6.12¡4.61 0.138

Sex (M/F) 12/8 85/58 1.000

Baseline [median (range)]

AST 32.5 (13–84) 26(9–72) 0.140

ALT 22(5–57) 15(5–42) 0.058

TBil 5.8(2.7–16.7) 7.9(1.2–25) 0.067

ALP 154 (70–263) 139(22–341) 0.356

During anti-tuberculosis treatment[median (range)]

Peak AST 163.5(46–438) 27(11–72) 0.000

Peak ALT 155.5(80–553) 16(5–42) 0.000

Peak TBil 7.25(2.7–44.3) 8(1.2–27) 0.667

Peak ALP 163(70–273) 140(53–378) 0.255

Temporal profile

Interval between institution of treatment and onset of symptoms in days range (median) 16 (7–26) -

Interval between cessation of treatment and normalization of ALT in days range (median) 18 (7–39) -

doi:10.1371/journal.pone.0115410.t002

Table 3. GSTT1 and GSTM1 genotypes in cases and controls.

Cases Controls P

GSTM1 *0/*0/poor metabolizers 14(70.0%) 96(67.1%) 0.599

*1/*0/intermediate metabolizers 0(0.0%) 7(4.9%)

*1/*1/extensive metabolizers 6(30.0%) 40(28.0%)

GSTT1 *0/*0/poor metabolizers 13(65.0%) 97(67.8%) 0.826

*1/*0/intermediate metabolizers 5(25.0%) 37(25.9%)

*1/*1/extensive metabolizers 2(10.0%) 9(6.3%)

doi:10.1371/journal.pone.0115410.t003
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to adults, thereby, reducing the formation of hepatotoxic metabolites produced by

NAT and CYP2E1. As a consequence, the detoxification burden is reduced and the

impacts of GST polymorphisms on ATHD might be less important in children as

compared to adults.

Our study had some limitations. Due to the small sample size, our study is

underpowered to detect a smaller difference than the one expected. In addition,

the pharmacokinetic data of parent drugs and metabolites are still missing in

Chinese children. Given the ethic difference, the ontogeny data in Caucasian

children should be extrapolated with caution to Chinese children. Further

research is required to confirm our hypothesis.

In conclusion, in the present case-control study, we evaluated for the first time

the impacts of GSTM1 and GSTT1 polymorphisms on the development of ATHD

in children. The GSTT1 and GSTM1 null mutations did not increase the risk of

ATDH in Han Chinese children. Our results do not support a routine genetic

testing of GSTM1 and GSTT1 for ATHD in children.
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