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Predictive olfactory learning
in Drosophila
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Olfactory learning and conditioning in the fruit fly is typically modelled by correlation-based
associative synaptic plasticity. It was shown that the conditioning of an odor-evoked response by

a shock depends on the connections from Kenyon cells (KC) to mushroom body output neurons
(MBONs). Although on the behavioral level conditioning is recognized to be predictive, it remains
unclear how MBONSs form predictions of aversive or appetitive values (valences) of odors on the circuit
level. We present behavioral experiments that are not well explained by associative plasticity between
conditioned and unconditioned stimuli, and we suggest two alternative models for how predictions
can be formed. In error-driven predictive plasticity, dopaminergic neurons (DANs) represent the error
between the predictive odor value and the shock strength. In target-driven predictive plasticity, the
DANSs represent the target for the predictive MBON activity. Predictive plasticity in KC-to-MBON
synapses can also explain trace-conditioning, the valence-dependent sign switch in plasticity, and the
observed novelty-familiarity representation. The model offers a framework to dissect MBON circuits
and interpret DAN activity during olfactory learning.

Predicting the future from sensory input is fundamental for survival. Co-appearing stimuli can be used for
improving a prediction, or for predicting important events themselves, as observed in classical conditioning. In
fruit fly odor conditioning, an odor that will become the conditioned stimulus (CS), is paired with the uncon-
ditioned stimulus (US), here an electroshock, that triggers an avoidance behavior and in internal representation
of a negative value (valence). After conditioning, and the negative value representation—although not the full
unconditioned response—previously elicited by the electroshock will be reproduced by the odor itself. Classi-
cal conditioning theories posit that throughout learning the odor becomes predictive for the electroshock! .
During learning, the prediction error decreases, and learning stops when the predictive odor value matches the
strength of the electroshock.

Predicitve olfactory learning in fruit flies is a widely recognised concept in the experimental literature**,
and dopaminergic neurons (DANSs) in the mushroom body (MB) have been suggested to predict punishment
or reward®. Yet, despite the acknowledgment of its predictive nature, computational models on fruit fly condi-
tioning are mostly guided by the formation of associations, a notion that relates more to memories rather than
predictions (for a recent outline of this controversy see’). Similarly, the concept of predictive learning is well rec-
ognized for olfactory conditioning in insects in general, but to our knowledge, synaptic plasticity models are not
formulated in terms of explicit predictions, but rather in terms associations and correlations, with plasticity being
driven by two or three factors, each representing a temporal nonlinear function of the pre- or postsynaptic activi-
ties or of a modulatory signal, sometimes combined with homeostatic plasticity. This type of associative models
are exist for fruit flies'®!!, locusts'>" or honey bees'*!. They differ from target learning, where the unconditioned
stimulus sets a target that is learned to be reproduced by the conditioned stimulus. Target learning becomes
predictive learning when including a temporal component. It involves a difference operation, and learning stops
when the target is reached. The stop-learning feature is difficult to be reproduced by purely correlation-based
associative learning, while a purely predictive model intrinsically captures also associative properties.

Associative learning was suggested to be implemented through spike- or stimulus-timing dependent plasticity
(STDP) that would underlay conditioning. STDP strengthens or weakens a synapse based on the temporal corre-
lation between the US (electroshock) and the CS (odor), both on the neuronal time scale of 10’s of milliseconds'?
and on the behavioral time scale of 10’s of seconds”'®!”. Whether an association is strengthened by just repeating
the pairing until the behavioral saturation is reached'®, or the association saturates due to a faithful prediction,
however, has not been investigated in the fruit fly so far (Fig. 1). Here we show that olfactory conditioning in
Drosophila is better captured as predictive plasticity that stops when a US-imposed target is reached, rather than
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Figure 1. Associative versus error- or target-driven predictive plasticity. (A) Pairing of an odor (CS) with a
shock (US) is typically thought to induce correlation-based synaptic strengthening of the synapses mediating
the conditioned response, here from the Kenyon cells (KCs) to the mushroom body output neurons (MBON:S).
Repeated pairing always leads to a stronger association strength. (B) In predictive coding, plasticity stops
when the strength of the US is correctly predicted by the CS. (B1) Plasticity of the KC-to-MBON synapses

can be driven by the prediction error ‘US-CS; formed by the dopaminergic neurons (DANG) that calculate the
difference between the internal shock representation and the odor-evoked prediction by the MBONS. (B2)
Synaptic plasticity can also be driven by a target for the MBON activity, set to the desired aversive value of the
odor (i.e. the shock strength) and represented by the DAN activity. To extend the memory life time of the odor
value, the DANs may themselves be driven by the recurrent MBON activity, and the MBON-to-DAN synapses
may also be learned via target-driven plasticity to predict the shock strength. Our experiments and models
exclude A and suggest further experiments to distinguish (B1) and (B2).

by correlation-based plasticity, such as STDP, that does not operate with an explicit error or a target. According
to our scheme, it is only the aversive/appetitive value of the US that is predicted by the CS after faithful learning,
not the US itself. Based on the common value representation in the mushroom body output neurons (MBONSs,
Fig. 1), the corresponding avoidance/approach reaction as one aspect of the unconditioned response is elicited
by the CS alone.

The Drosophila olfactory system represents a unique case for studying associative /predictive learning, and
the MB is known to be essential in olfactory learning'®-?'. The Kenyon cells (KCs) receive olfactory input from
olfactory projection neurons and form a sparse representation of an odor'**>?. The parallel axons of the Kenyon
cells (KCs) project to the MB lobes*?, along which the compartmentalized dendritic arbors of the MB output
neurons (MBONS) collect the input from a large number of KCs. Reward or punishment activates specific clus-
ters of DANs PAM and PPL1, respectively which project to corresponding compartments of the MB lobes*%/,
modulating the activity of the MBONs and the behavioral response!®?*-3°. Recently, a detailed mapping of the
MB connectome has been accomplished for larvae and of the vertical lobe for the adult Drosophila®"*?. Several
studies show that not only the feedforward modulation from DANs to MBONS, but also the feedback from
MBONSs to DANS play an important role in olfactory learning®*-4.

Previous studies have given insights into the possible cellular and subcellular mechanisms of olfactory con-
ditioning. Yet, the suggested learning rules'®'*!73 remain correlation-based and miss the explicit predictive
element postulated by the classical conditioning theories?. Here, we present distinctive conditioning experiments
showing that olfactory learning is best explained by predictive plasticity (Fig. 1). These experiments, in con-
trast, could not be reproduced by various types of correlation-based associative learning rules. A mathematical
model captures the new and previous data on olfactory conditioning, including trace conditioning. The model
encompasses the odor/shock encoding and the learning of the aversive odor value with the stochastic response.
We further suggest how the predictive plasticity could be implemented in the MB circuit, with MBONs encod-
ing the value (‘valence’) of the odor stimulus, and DANSs calculating either the error or the target that drives the
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KC-to-MBON plasticity. The predictive plasticity rule for the KC-to-MBON synapses is shown to be consistent
with the experimental results showing the involvement of these synapses in the novelty-familiarity representation.

Results

Model of the shock representation and the unconditioned response. Aversive odor condition-
ing is about learning to evoke the avoidance behavior by the conditioned odor alone, as it is evoked by the
electroshock. Before describing the acquisition of the conditioned behavior we characterize the unconditioned
behavior of the fruit flies.

Experiment. In the minimal shock detection experiments, fruit flies in a testing chamber had the choice
between moving to either of two arms, with one arm being electrified (with voltage strength S) and the other
not. After 30s we counted the number of flies in the electrified and non-electrified control arm, Nejectr and Nyonel»
respectively (the few remaining in the testing chamber not being counted). The empirical performance index

(PI) for the pure shock application without conditioning is defined as the relative difference, PI = M
nonel +Nelectr

This empirical PI can be approximated by a theoretical PI that is a function of the stimulus strength S. When
the stimulus strength is equal to the minimal strength S, that just elicits a behavioral response, the PI vanishes,
PI(S,) = 0, and for increasing stimulus strength the PI asymptotically tends towards 1. We parametrize

o
- (3)
PI(S) = —— 25
()
with sensitivity parameter « telling how steeply PI(S) grows from 0 at S = S, towards 1 for large S. We experi-
mentally estimated the size of the minimal shock intensity to be S, ~ 7 V (“Methods”).

$>S,, (1)

Shock representation.  To explain the behavior as emerging from a neuronal representation we map the shock
stimulus to hypothetical neuronal activities. Plasticity will then also be described in terms of these internal
activities.

We assume an internal representation, s, of the electroshock following Weber-Fechner’s law?®,

S()
So

s(t) = alog , S =S, (2)
where S, and « are as introduced in Eq. (1). For S < S, we set s = 0. Equation (2) yields a re-interpretation of the
behavioral parameters S, and « that characterize the PI in terms of sensory ‘perception’: S, is the just detectable
stimulus strength and o becomes the linear scaling of the sensory activity.

Unconditioned response.  To describe the unconditioned response out of the internal representation, we con-
sider the probability pys(s) of escaping from the shock stimulus (the US) given s. We first note that the PI can be
expressed in the form PI = 2p,s — 1, with pus = Nnonel/ (Nnonel + Nelectr) being the empirical frequency for an
individual fruit fly to move to the non-electrified versus the electrified arm. With the avoidance probability of
the form pys(s) = ﬁ, the PI becomes a function of the internal shock representation s, PI(s) = 2pys(s) — 1.
This is consistent with the definition of PI(S) from Eq. (1) as can be checked by substituting the expression for s
given in Eq. (2) (the performance index as a function of sis PI = (1 — e™*) /(1 + e~¥)).

As an aside, one may also consider other mappings of the shock strength S to the internal representation s as
this is not constrained enough by the data. For instance, one may argue that fruit flies perceive electric shocks
following Steven’s power law, as it was originally measured in humans®. Steven’s law postulates that the internal
representation would have the form s = (S/S,)® instead of the logarithmic Weber-Fechner law. From this rep-
resentation the original behavioral response pys(s) is obtained when the readout from the state is of the form
Pus(s) = 1/(1 + s 1). The PT is then calculated according to PI(S) = PI(s) = 2pys(s) — 1 = (1 —s~1)/(1 +s71).

Odor conditioning depends on the temporal shock distribution. We next turn to the odor condi-
tioning. It was previously investigated how the associative strength of the conditioned odor increases with the
strength of the paired electroshock and the number of pairings, while saturating at some level, with respect to
both the shock strength and the paring repetition's. We asked whether these saturation effects originate from
behavioral limitations, or whether they originate from a quick and faithful learning of the intrinsic value of the
electroshock strengths.

To address this question, we differently packaged the total of 100V into 1*100V, 2*50V, 4*25V and 8*12.5V
electroshocks and asked whether the repeated smaller shock strengths (8%¥12.5V) would lead to premature satura-
tion that would then not be caused by behavioural limitations but rather by some dedicated learning behavior.
We distributed these shock packages across the 60s odor presentation time (Fig. 2A, “Methods”), and let the
fruit flies choose during 120s between a conditioned and neutral odor. The learning index (LI) that character-
izes the conditioned response is defined analogously to the PI by the relative number of fruit flies that choose
the unconditioned control odor (Ncs., more precisely, the odor that was conditioned with zero shock strength)
versus the conditioned odor (N¢sy), i.e.
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Figure 2. Temporal sequence conditioning is not fit by Hebbian plasticity. (A) Experimental protocol as
explained in the main text, with total shock strength of 100V distributed in time across the 60s exposure to

the conditioning odor (alignment towards the end, A1, and towards the beginning, A2). The duration of

an individual voltage shock (a magenta vertical bar) is 1.5s. (B) Experimental results showing the LI for the
corresponding shock distributions in A1 and A2, respectively. For shocks at the end, the LI decreases with
decreasing individual shock strength. Error bars represent the standard error of the mean (SEM). (C) Fit by

the Hebbian plasticity, Eq. (6). For shocks at the end, a roughly constant LI is produced. For the optimized
parameters we extracted S, = 7V from the minimal shock detection experiment (Fig. 2-1), 7, = 15s from trace
conditioning experiments®, and optimized the product an = 0.0723.

_ Ncs- — Ncss+

L=—.
Ncs- + Ncs+

3)
The LIs gradually decreased with decreasing electroshock strength if the shocks were applied towards the end of
the odor presentation time, and the additional repetitions of the weaker electroshocks could not revert this trend
(Fig. 2B1). Yet, when the same shocks were distributed towards the beginning of the odor presentation time, the
LIs remained small, with a tendency to increase with decreasing electroshock strength (Fig. 2B2).

The avoidance behavior depends in a complicated way on the shock strengths and the shock timings. To
explain these behaviors we next formalize the value representation, the decision making, and two different types
of plasticity models.

From internal value representation to stochastic responses.  The basic observation of conditioning
is that, after long enough conditioning time, the conditioned behavior eventually mimics the unconditioned
behavior. In our model this implies that the learning index LI converges to the performance index PI (Eq. 1).
We assume that at any moment in time, a presented odor elicits some activity o in the KCs that reflects the odor
intensity. In the experiments, an odor was either present or absent, and hence o(t) = 1 or 0. The considered
MBON activities are assumed to represent the aversive value (v) of the odor. As MBONS are driven by KC, we

postulate that the MBON activity takes the form
v=wo,

(4)
where w is the synaptic strength (weight) from the KCs to the MBONS.
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Model of stochastic action selection. 'The conditioned response upon odor stimulus appears to be stochastic
for an individual fruit fly. It is therefore modeled in terms of the avoidance probability that itself depends on
the MBON activity. For simplicity we postulate that this avoidance probability in response to the conditioned
stimulus (CS, the odor), has the same form as the one to the unconditioned stimulus introduced above, pys(s),
but with s replaced by v,

Pcs(V) = (5)

1+e7 "’
As it is for the PI, the LI can be expressed in terms of this avoidance probability, LI(v) = 2p.s(v) — 1. Remember
that fruit flies may remain in the test tube (estimated to be less than 5%) and that the LI is calculated based on
the fruit flies that effectively moved to one of the two chambers (Eq. 3). Hence, the interpretation of p.s(v) on
the level of the individual fly is, strictly speaking, the conditional probability that, given the fly ‘decides’ to move,
it actually moves away from the conditioned odor.

The model postulates that the decision for each individual fruit fly is a stochastic (Bernoulli) process that
only depends on the current MBON activity v=wo, and in particular does not depend on previous decisions.
In fact, when re-testing the population of fruit flies that escaped from the odor in a first test trial (a fraction pcs
of the overall test population), the same fraction p, of this sub-population escaped again in a second test trial,
despite the putative extinction of memory caused by the first test (see the Test-Retest experiment in*®). Intrigu-
ingly, when waiting 24h so that the first conditioning was forgotten, conditioning the successfully escaped and
the unsuccessfully non-escaped flies from the first conditioning experiment separately again, the same LI was
achieved by both groups. This shows that not only a single response is stochastic, but also the learning (see
again®®, cross-checked by us for a8 x 12.5V stimulation, results not shown). A statistical evaluation of the model
with the same number of flies (Ngy) and trials (Nyiq1) as in the experiment gives equal or smaller variance in
the LI of the model fruit flies as compared to the experiment (Fig. 3A1). This implicitly quantifies additional
sources of stochasticity in the experimental setup or in the individual fruit fly that have already been described
in honeybees®**’ and that go beyond our 1-state stochastic Markov model.

The model of stochastic action selection expressed by Eq. 5 assumes that there is only one stimulus type
present, either the odor (CS) or the shock (US), and the odor triggers the avoidance reaction with probability
Pes (), and the shock with probability pys(s). The experiment may also be setup such that in one arm of the test
chamber the CS and in the other the US is present, and the fruit fly can decide whether to move at all or not, for
instance, as studied in*'. In this case the probability of moving in neither of the two arms depends on the dif-

ference between the CS- and US-induced value, pegus(v,s) = ﬁ, and this probability may be represented

downstream of the MB, as also suggested in*!. Alternatively, the DAN may represent the US and the MBON may
depend on both the CS and US, along the lines of the wiring scheme for the target-driven predictive plasticity
outlined below (Discussion with Figs. 1B, 6B).

Associative learning models do not fit the conditioning data. Learning is suggested to arise from
appropriately modifying the strength w of the KC-to-MBON synapses. The synaptic modification affects the
aversive value of the odor following the linear relation v = wo (Eq. 4), and this determines the conditioned
response given by the escape probability ps(v), see Eq. (5).

The common conception of conditioning is that the associative strength, w, is changed proportionally to some
nonlinear functions of the pre- and postsynaptic activities, possibly modulated by a third factor. To exemplify the
essence of associative learning, although this may not do justice to the more complex cited models, we consider
a simplified version where the synaptic weight change is proportional to both the strengths of the unconditioned
and the conditioned response,

dw -

ar =180 (6)
with proportionality factor 1 defining the learning rate (cf. Fig. 1A). Here, 0 is the low-pass filtered odor o that
follows the dynamics 7, % = —0 + o, with a time constant 7, being on the order of ten seconds. It can be inter-
preted as a presynaptic eligibility trace that keeps the memory of the presynaptic activity, here the odor o, to be
associated with the postsynaptic quantity, here the shock representation s.

This simple Hebbian rule (Eq. 6) is not able to fit the sequential conditioning data. In fact, for the shocks at the
end, the Hebbian model roughly shows the same LI for the weak and strong stimuli, as it were the total stimulus
strength that would count (Fig. 2C1). The concavity of the logarithmic shock representation by itself would rather
favor an increasing LI for the repeated weaker stimuli 8*12.5V as compared to the 1¥100V.

We considered a perhaps oversimplified Hebbian learning rule, #  s0, as one example of associative plas-
ticity. To consider more sophisticated associative learning rules, we define synaptic weight changes that are
functions of the correlation between odor- and shock-induced activity. We also tested these more general forms
of associative learning that are based on linear and nonlinear functions of CS-US correlations, such as stimulus-
timing dependent synaptic plasticity (STDP) of the form w = 1150 — 1,05, with 5 being the low-pass filtered s
and »; arbitrary scaling factors. STDP, even after introducing nonlinearities, and also the covariance rule of the
formw = n(s — 5)(o — 0), did all give roughly a 10 times worse fit (in terms of the MSE, “Methods” and Fig. 3-1)
than predictive plasticity explained next.

Model of predictive plasticity. The failure of associative learning rules in reproducing our conditioning
experiments can be corrected by adding an anti-Hebbian term of the form —vo0 to the rule w o s0, leading to
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Figure 3. Predictive plasticity captures the sequence conditioning experiments. (A) In contrast to the purely
associative learning (Eq. 6), the predictive plasticity (Eq. 7) fits well the shock-at-end data (A1) and the
shock-at-beginning data (A2, see Fig. 2). Error-bars represent SEM for both data and model. In the model,
stochasticity enters through the Bernoulli process according to which each of the model flies chooses to avoid
(with probability pes(v), Eq. (5)) or approach (with probability 1 — pcs(v)) the odor. The same number of flies,
Npy, and the same number of trials, Nii,1, was used in the model as in the experiment. (B) Traces for odor (o),
shock (s), and synaptic strength (w) for the odor-to-shock prediction during conditioning, for the shock-at-end
(B1) and shock-at-beginning (B2) protocols. Note that between the shocks, w decays towards 0 as the target for
v = wois s = 0 according to the predictive learning rule. The weight does not change if the prediction matches
the shock representation, w o = s, e.g. when both are 0. The optimized parameters are: S, = 6.90V, « = 0.79,
7, = 14.25s, An = 0.057, 7, = 133.48s, with mean square error MSE = 6.393 x 10~* across all experiments
(including the ones below).

dw - - - .

E:nso—nvo:n(s—v)o, with v=w o. (7)
We interpret this combined Hebbian/anti-Hebbian plasticity rule as error correcting, with the difference between
the shock and odor representation, s — v, as internal error.

This error-correction learning rule has a long history in the theory of neural networks where it first appeared
as Widrow-Hoff rule*? that was extended to a temporal difference rule®, and recently reinterpreted in terms of
dendritic prediction of somatic firing***. It also relates to the predictive rule of Rescorla-Wagner' previously
applied to explain various fruit fly conditioning experiments*, although without considering a time-continuous
learning scenario and the related temporal aspects. According to this rule, learning stops when the aversive value
of the odor, v, predicts the internal representation of the shock stimulus, v = s. During predictive learning, when
the synaptic eligibility trace is active, 0(¢) > 0, the synaptic strength w is adapted such that the odor value con-
verges to the internal shock representation, v(t) = wo(t) — s(t), with s(t) > 0 when the electroshock-voltage is
turned on and s(¢) =0 else. Correspondingly, the conditioned response converges to the unconditioned response,
Pes(V) —> pus(s). Crucially, during the time when the US is absent, s=0 (while 0 > 0), a neutral response is
learned. On a behavioral level this appears as forgetting the shock prediction, and it also relates to the phenom-
enon of extinction in classical conditioning'.

To fit the conditioning experiments with ongoing electroshock-voltage we need to consider a learning rate
that adapts in time. Learning speeds up when the strength of the voltage increases. A stronger voltage triggers
initially a higher learning rate that, with ongoing voltage stimulation, decays with a time constant 7, on the order
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Figure 4. Repetitive and ongoing conditioning is captured by the predictive plasticity. (A) The repeated training
consisted of 1, 2, 4 repetitions of a standard training block (dark red bar, as in Fig. 3A, A1) composed of 4*25V
shocks, followed by a break and a control period. Half of a training block was considered with 2*25V shocks
towards the end of the 60s odor presentation (yellow bar). (B) The LI saturates after a full block (1 Repetition,
gray), as also reproduced by the predictive plasticity model (green). (C) The same protocol with the same
number of shocks as in (B), but with 50V instead of 25V shocks. A second training repetition did only slightly
increase the LI and for further repetitions it again remains constant. This is reproduced by the predictive
plasticity, but not by the various associative plasticity models (see Supplementary Materials). (D) Protocol of
ongoing odor-shock pairing, with voltages turned on during the full odor presentation time of 10s, 15s, 30s, 45s,
90s and 120s, both for 25V and 50V. (E) The LI for the time-continuous pairing saturates with a time constant of
roughly 20s for the 50V and 30s for the 25V odor-voltage pairings. Predictive plasticity captures this saturation,
with LI(v) converging towards LI(s) (dashed lines, Eq. (8)), for both the 25V and the 50V pairings.

of 2min. A stepwise increase of s by As (as it appears at the onset of an electric shock) leads to a stepwise increase
of the initial learning rate n by An As for an optimized parameter An (“Methods”).

In contrast to the pure associative rule, the predictive rule (Eq. 7) qualitatively and quantitatively reproduces
the conditioning experiments (Fig. 3). With the predictive learning rule, the 1¥100V pairing at the end of the
odor presentation elicits the strongest conditioned response, while the response is much weaker after the dis-
tributed 8%12.5V pairing, as also observed in the experiment. The reason is that the synaptic weight w decreases
between the shocks while the odor is still present (green traces in Fig. 3). As in the extinction experiments, the
presence of the CS alone leads to the prediction that no US is present, and hence to an unlearning of the previ-
ously acquired US prediction.

Repetitive and ongoing conditioning reveals its predictive nature. To bolster our hypothesis that
olfactory conditioning in the fruit fly is predictive rather than associative, we further tested the model to repeti-
tive and continuously ongoing odor-shock pairings. If the hypothesis is correct, during repeated or extended
pairing, learning should in both cases stop when shock strength is correctly predicted by the odor. In particular,
the learning performance is expected to saturate at a level below the maximally achievable performance. This is
in fact what we observed.

When repeating the previously described block of 4*25V conditioning shocks with 15s inter-shock-intervals,
the LI showed a saturation after a single block (Fig. 4A,B). When conditioning with half of that block, i.e. with
only 2*25V conditioning shocks in 15s, roughly 70% of the saturation level is reached. The same repetition
experiment was performed with 4*50V pulses, confirming that also for a stronger US the LI quickly saturated
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Figure 5. Trace conditioning is faithfully reproduced. (A) Experimental protocol of trace conditioning, with
variable Inter-Stimulus Intervals (ISIs) from the onset of the odor (green) to the onset of the electroshock train
(4 % 90V, 0.2Hz, each 1.25s, red bars). (B) The LI tested immediately after the conditioning with the different
ISIs (reproduced from?®). The model roughly captures this data (green line) without additional fitting of the
parameters.

(Fig. 4C). Again, neither the pure associative rule, nor the covariance rule or the more sophisticated STDP rules,
could reproduce this data (Fig. 3-1).

An even more challenging test for the predictive learning rule is an odor-shock pairing where the electric
voltage (either 25V or 50V) is turned on throughout the odor presentation time, from 10s up to 120s. After
roughly Imin of ongoing pairing the LI saturated, both in the data and the model (Fig. 4D). In the model, learning
saturates when the value v of the odor correctly predicts the shock, v = s, as expressed by a successful predictive
learning (i.e. when learning ceases, w = 0, see Eq. (7)). During learning, when the value of the odor converges
to the shock representation, v — s, the LI converges to the PI (as defined in Eqs 3 and 1),

o
()
LI(v) = 2ps(v)—1 —> PIS) = —F%
1+ (%
(%)
The equation is obtained from substituting v by s in the expression for p¢s(v), Eq. (5), and making use of Weber-
Fechner’s law translating the shock strength S into the internal representation s (Eq. 2). For our simple predictive

plasticity model the exposure time to acquire the final performance can be explicitly calculated, and it is shorter
for stronger ongoing voltage stimuli (Fig. 4-1).

v—s(S). (8)

Trace conditioning is also predictive. Odor conditioning has also been studied in the form of trace
conditioning (e.g. 2%). A further test of our model is to apply it to these experiments, with the same param-
eters found to fit our data from Figs. 3 and 4. In trace conditioning, the electroshock is applied with a variable
inter-stimulus-interval (ISI) after the onset of the odor presentation, and this ISI can even extend beyond the
presentation time of the odor (Fig. 5A). We considered the experimental protocol with 10s odor presentation
and an ISI varying from 5 to 30s, after which 4 conditioning electroshocks of 90V were applied with 0.2Hz?.
The LI gradually decreased with the length of the ISI, with a decay time of roughly 15s. The model captures this
phenomenon because the odor trace, entering as synaptic eligibility trace (0) in the predictive plasticity rule, is
still active for a while after the odor has been cleared up (Fig. 5B). The identical set of 5 parameters has been used
that were extracted from the previous experiments (S, @, To, A7, Ty, see caption of Fig. 3).

MB circuits for error- or target-driven predictive plasticity. Based on anatomical connectivity pat-
terns and previous plasticity studies we suggest two forms of how the predictive learning may be implemented
in the recurrent MB circuit, via error- and target-driven predictive plasticity (Fig. 1B). In both versions, learning
is mainly a consequence of modifying the KC-to-MBON synaptic boutons*****44 but the role of the DANS is
different. While the KC-to-MBON connections drive the MBONs based on the odor representation in the KCs,
the shock information is provided by the DANs and gates the KC-to-MBON plasticity (see also*”?#*>?7). The
DANSs themselves may either represent the error or the target for KC-to-MBON plasticity.

In the first implementation (error-driven predictive plasticity), the DANs themselves represent the predic-
tion error e = s — v. They may extract this error from the excitatory shock input, s, and the inhibitory MBONs
feedback providing the aversive value v of the odor (**, see Fig. 6A1). The modeling captured the effect of learning
on the behavioral time scale. To predict specific activity traces in the MB on a fine-grained temporal resolution
we introduce the dynamics of the MB neurons. In the case of the DANs as error representation, the firing rates
of the MBONSs (v) and DANS (e) is given by

Scientific Reports |

(2021) 11:6795 | https://doi.org/10.1038/s41598-021-85841-y nature portfolio



www.nature.com/scientificreports/

A1

B1

Error-driven predictive plasticity A2
Shock
Convergence i |
Pairing During Test
onset
— DAN (e)
4 —
N
| T TR
KC (0)
A A
— 50ms
Central 1
complex Pes = 1 e
Avoidance
Target-driven predictive plasticity B2
Shock
2N N Pairing During Test
\ onset

Awp x (s —wpv)v

Vamts DAN (d)

— MBON (v)
......... -=- Shock (s)

KC (o)

— 50ms

Avoidance

Figure 6. Suggested implementation of error- and target-driven predictive plasticity. (A1) Mushroom body
circuits for olfactory error-driven predictive plasticity. Kenyon cells (KCs) carrying the odor information project
to mushroom body output neurons (MBONSs) through synapses encoding the aversive value (v) of the odor.

The input triggered by the electroshock, s, drives the dopaminergic neurons (DANS) that are also inhibited by
the MBONS . The DANS represent the prediction error, e = s — v, and modulate the KC-to-MBON synapses
according to w o e 0, with 0 representing the odor eligibility trace. The conditioned response probability (pcs,
avoidance reaction) is a function of v. (A2) Neuronal activity traces of a DAN (e, magenta), a KC (o, light green)
and a MBON (v, dark green), shown at the onset of an odor-shock pairing (‘Pairing onset; full triangle), 20s
later (During), and later at the test when only the odor is presented (‘Test, open triangle, cf. Eq. 9). The aversive
value v steadily increases (dark green), while the prediction error, e, decreases throughout learning and becomes
negative when the odor is presented alone (purple). (B1) Mushroom body circuit for target-driven predictive
plasticity. Beside the shock stimulus, the DANSs can also indirectly be excited by the MBONS (or directly by the
KC, not shown) to form a shock prediction also in the DANs and prevent fast extinction. The shock stimulus (s)
sets the target for the MBON-to-DAN plasticity, and the DANSs (d) set the target for the KC-to-MBON plasticity
(cf. Eq. 11). (B2) As in A2, but since the DANs now form a prediction of the shock itself based on v, their
activity increases throughout learning, and they are also activated during the Test, when the conditioned odor is
presented alone (Eq. 10). Sketch adapted from?® and® that favor excitatory feedback to the DANG as in version B.
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TV=—v+wo, Té=—e+s—v, 9)

with a neuronal integration time constant 7 in the order of 10ms (Fig. 6B1). The plasticity of the synapses from the
KCs to the MBON is then driven by the DAN-represented prediction error e at any moment in time, w = n e o,
consistent with the predictive plasticity rule (Eq. 7). Note that in the steady state, the DAN activity exactly rep-
resents the difference between the shock strength and its odor-induced prediction, e = s — v. After successful
learning, the MBON s accurately match the shock representation and the DAN activity vanishes,v = sande = 0.

In the alternative implementation (target-driven predictive plasticity), the DANs provide the learning target
to the KC-to-MBON synapses while themselves being driven by the MBONSs (Fig. 6A2). These MBON-to-DAN
synapses are also plastic and learn to predict the shock stimulus, just as the KC-to-MBON synapses do. A ben-
efit of this recurrent prediction scheme is that the memory life time of the odor-shock prediction is extended.
If after successful learning the odor is presented alone, the target for the KC-to-MBON plasticity is still kept at
the original level via MBON-to-DAN feedback, and extinction of the shock memory slows down. The recur-
rent circuitry between MBONSs (v) and DANs (with activity d instead of e to indicate that the DANs no longer
represent the error but the target for the MBON learning) now becomes

tv=—v+(1—Dwmko+id, td=—d+ 11— Dwpmv -+ s. (10)

Here, wmk and wpw are the synaptic weights of KC-to-MBON and MBON-to-DAN synapses, respectively, and
4 = 0.1is the nudging strength of the postsynaptic teaching signal**). Both KC-to-MBON and MBON-to-DAN
synapses follow the same form of error-correcting plasticity as in Eq. (7),

WMk = 1 (d — wMK0) 0, Wpk = n (s — wpkV) v, (11)

where the DAN activity d now serves as the target for KC-to-MBON synapses, while the shock stimulus s is the
target for MBON-to-DAN synapses.

After successful learning, the activity of MBONs and DANSs both predict the shock stimulus, v = d = s (as
derived from the steady states of Eq. 11, see also Fig. 6B2). If the shock stimulus is absent (s=0) during the
presentation of the conditioned odor o, and the odor was previously conditioned to a shock strength s, while the
DAN activity was fully learned (implying wp = 1), the MBON activity, supported by the recurrent DAN activity,
becomesv = =g se © 0.99s, (as derived from the steady states of Eq. 10 with 4 = 0.1, see Fig. 6B2, column
‘Test’). Hence, the value of the odor faithfully predicts the conditioned shock strength also in this target-driven
learning circuitry. Note that in the target-driven plasticity the KC-to-MBON plasticity was does not directly relay
on the MBON activity since the activity target is imposed by the DAN’s, not by the MBON’s (Eq. 11).

Outlook: valence learning and novelty-familiarity representation. The concept of predictive learning can be
extended to valence learning where each MBON represents a positive or negative valence, v*, coding for an
appetitive and aversive value of a stimulus, respectively*#3**0>!, For each valence, a specific cluster of DANs is
involved in the sensory representation, PAM for positive and PPL1 for negative valences***. In the full MB cir-
cuit the DANs further receive excitatory drive from the KCs (*2, dashed connection in Fig. 6, here abbreviated
by wpk), and the feedback circuit modulates the plasticity of the KC-to-MBON synapses*. The activities of the
two valence classes of DANs can be modeled as in Eq. 10, but with multimodal input from the unconditioned
appetitive or aversive stimuli (s*) and the odor representation in the KCs (wpxo). Together with the feedback
from the corresponding MBONSs via weights wpw, and introducing a saturating nonlinear transfer function ¢,
the DAN activities for the two valence clusters become

a* = q)((l — ;L)WDMVi + ﬂu(si + WDKO)> . (12)

Plasticity in MBONS is known to be sign flipped when changing the valence of the stimulus”***2, This can be
captured in the predictive plasticity model by imposing 0 as target when the stimulus and MBON valence do not
match. For positive valence MBONS, the target can be set to d = d* (1 — d™), assuming that the DAN activi-
ties are restricted to the range between 0 and 1; for negative valence MBONS the target isd~ (1 — d™). When a
previously appetitively conditioned odor is now presented (wmgko > 0 for a positive valence MBON), together
with a shock (d = 0), the postsynaptic error term in the learning rule now becomes negative, (d — wyko) < 0,
and the synapses get depressed rather than potentiated as in the first conditioning (Eq. 11).

The sign of the KC-to-MBON plasticity can also be changed in other ways. It has been shown that the famil-
iarization to odors can depress MBON responses (in the '3 compartment), while the response to previously
familiarized stimuli is recovered®. To explain this phenomenon we extend the predictive plasticity to involve
a partial redistribution of the total synaptic strength across the KC-to-MBON synapses, formally expressed by

WMK,i =1 (d - WMK0> (51' - 5) , (13)

where we introduced a down-shift in the presynaptic term by the mean odor that exceeds the spontaneous activity
level, 0 = % j”il 0j — 0. Here, the average is across all nx Kenyon cell synapses, and we assume a spontaneous
but sparse KC activity o, such that in average the activity of KC i satisfies 0; > 0,>. The spontaneous KC maps
to the eligibility trace that is strictly positive, 0; > 0, and some spontaneous DAN activity d, inherited from
the KCs, such thatd > d,. Because (PPL1—a’3) DAN activity is necessary to observe repetition suppression®,

we postulate that the learning rate is modulated by the DAN activity, n = dn., for some base learning rate 7,.
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Model M Predictive plasticity | Nonlinear STDP | Linear STDP | Covariance | Hebbian
Number of parameters | 5 10 8 6 5

MSE(M) 6.40 x 107 1.46 x 1073 1.45x 1073 |1.00 x 1072 |1.24 x 1072
-AIC(M) 114.45 81.36 85.55 35.48 31.46
Relative likelihood p 1 6.49 x 1078 530 x 1077 |7.15x 10718 | 9.48 x 1071°

Table 1. Akaike information criterion supports predictive plasticity.

The various plasticity features of the KC-to-MBON synapses investigated in* are consistent with the extended
learning rule in Eq. 13. Repeated odor-evoked KC activation causes synaptic depression, assuming that odors
are dominantly activating KCs and MBONS, but less so DANSs, d < wyko (here enters the saturation of the non-
linearity ¢ in Eq. 12), leading to the observed repetition suppression (Wnmk,; < 0) and explaining the behavioral
familiarization of the flies to odors. The repetition suppression may depress the KC-to-MBON synapses such
that in response to spontaneous KC activity (0,) the MBON activity is now smaller than the spontaneous DAN
activity, wmk 0o < do. In the absence of an odor, the depressed KC-to-MBON synapses will therefore recover
due to the spontaneous KC activity (Eq. 13), such that eventually the equilibrium is reached again when the
spontaneously induces MBON activity matches the spontaneous DAN activity, wyk 0o = do. This explains the
‘passive’ recovery of the MBON responses after odor familiarization®.

Further experimental investigations of the KC-to-MBON plasticity shows that optogenetically activating
DANS alone potentiates the synapses. In our model this DAN-induced potentiation arises since for the isolated
optogenetic DAN activation we have to assume that d > wmko, and the presynaptic term in the plasticity rule
(Eq. 13) is positive in average due to the spontaneous KC activity, (0; — 0) = 0, > 0. Next, if we assume that the
optogenetic co-activation of MBONs (v > 0) and DANSs (d > 0) applied in* is such that d < v = wyko (but
with an increased learning rate n = d1,), then the KC-to-MBON synapses get depressed, as reported from the
experiment.

Finally, due to the partial weight redistribution, the repetition suppression during the familiarisation to a
new odor implies the potentiation of the other synapses that are not activated, among them most of the previ-
ously suppressed synapses that were involved in the representation of a preceding odor. The reason for this
heterosynaptic potentiation in our model is that repetition suppression is caused by a negative postsynaptic
factor (d — wmko) < 01in Eq. 13 as explained above, implying the depression of an active synapses i for which
(0; — 0) > 0, but also implying the potentiation of not activated synapses, since for those (0; — 0) < 0and hence
Wwmk,i > 0. This odor-induced potentiation in other synapses explains the ‘active’ recovery from the repetition
suppression as seen in the experiment®. Technically, (6; — 6) < 0 holds for not activated synapses only if we
assume that the odor-evoked average activity in the KCs is well above the spontaneous activity level such that
0 > 0.

Discussion

Predictive, but not correlation-based plasticity, reproduces experimental data.  We reconsid-
ered classical odor conditioning in the fruit fly and presented experimental and modeling evidence showing
that olfactory learning, also on the synaptic level, is better described as predictive rather than associative. The
key observation is that repetitive and time-continuous odor-shock pairing stops strengthening the conditioned
response after roughly 1 minute of pairing, even if the shock intensity is below the behavioral saturation level.
During conditioning, the odor is learned to predict the co-applied shock stimulus. As a consequence, the odor-
evoked avoidance reaction stops strengthening at a level that depends on the shock strength, irrespective of the
pairing time beyond 1min. We found that associative synaptic plasticity, defined by a possibly nonlinear func-
tion of the CS-US correlation strength, as suggested by STDP models, fails to reproduce the early saturation of
learning.

We suggest a simple phenomenological model for predictive plasticity according to which synapses change
their strength proportionally to the prediction error. This error is expressed as a difference between the internal
shock representation and the value representation of the odor. The model encompasses a description of the shock
and value representation, the stochastic response behavior of individual flies, and the synaptic dynamics (using a
total of 5 parameters). It faithfully reproduces our conditioning experiments (with a total of 28 data points from
3 different types of experiments) as well as previously studied trace conditioning experiments (without need for
further fitting). As compared to the associative rules (Hebbian, linear and nonlinear STDP, covariance rule), the
predictive plasticity rule obtained the best fits with the least number of parameters. We further compared the
model by the Akaike information criterion that considers the number of parameters beside the fitting quality. This
criterion yields a likelihood for the predictive plasticity rule to be the best one that is at least 7 orders of magni-
tude larger as compared to the other four associative rules we considered (see Table 1, “Methods”, and Fig. 3-2).

Error- versus target-driven predictive plasticity. The same phenomenological model of predictive
learning may be implemented in two versions by the recurrent MB circuitry. In both versions the MBONs code
for the odor value (‘valence’) that drives the conditioned response. For the error-driven predictive plasticity, the
DANS directly represent the shock-prediction error by comparing the shock strength with its MBON estimate,
and this prediction error modulates the KC-to-MBON plasticity (Figs. 1B1 and 6A). For the target-driven pre-
dictive plasticity, the DANSs represent the shock stimulus itself that is then provided as a target for the KC-to-
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MBON plasticity. In this target-driven predictive learning, the DANs may also learn to predict the shock stimu-
lus based on the MBON feedback, preventing a fast extinction of the KC-to-MBON memory (Figs. 1B2 and 6B).

Predictive plasticity for both types of implementation has its experimental support. In general, MBON activity
is well recognized to encode the aversive or appetitive value of odors and to evoke the corresponding avoidance
or approach behavior*?*3%*33, while KC-to-MBON synapses were mostly shown to undergo long-term depres-
sion, but also potentiation (see e.g.*). DAN responses are shown to be involved in both the representation of
punishment and reward®”?%% that drive the aversive or appetitive olfactory conditioning’. This conditioning
further involves the recurrent feedback from MBONSs to DANs that may be negative or positive’*, see® for a
recent review. Moreover, the connectome from the larvae and adult fruit fly MBON circuit reveals feedback
projections from DANSs to the presynaptic side on the KC and the postsynaptic side on the MBONSs at the KC-
to-MBON synaptic connection®"*?, giving different handles to modulate synaptic plasticity.

With regard to the specific implementations, the error-driven predictive plasticity is consistent with the
observation that DAN activity decreases during the conditioning*>*!. The two models have opposite predic-
tions for learning while blocking MBON activity. The error-driven predictive plasticity would yield a higher
LI, similarly as observed in**, while the target-driven predictive plasticity would yield a lower LI, similarly to*.
It was also shown that some DANS increased their activity with learning while other DANS, in the same PPL1
cluster that is supposed to represent aversive valences, decreased their activity®'. In fact, error- and target driven
predictive plasticity may both act in concert to enrich and stabilize the representations. As shown in Fig. 6, DAN
activity would decrease in those DANSs involved in error-driven and increase in those involved in target-driven
predictive plasticity.

While error-driven predictive plasticity offers access to an explicit error representation in DANS, target-driven
predictive plasticity has its own merits. If DANs and MBONSs code for similar information, they can support a
positive feedback-loop to represent a short-term memory beyond the presence of an odor or a shock, as it was
observed for aversive valences in PPL1 DANs® and for appetitive PAM DANs*. A positive feedback-loop between
MBONSs and DANS is further supported by the persistent firing between these cells after a rejected courtship that
may consolidate memory of the rejection, linked to as specific pheromone®*’.

Distributed learning, memory life-time and novelty-familiarity coding.  Target-driven plasticity
has further functional advantages in terms of memory retention time. Any odor-related input to the DANS, aris-
ing either through a forward hierarchy from KC*® or a recurrence via MBONSs to the DANs®*, will extend the
memory life-time in a 2-stage prediction process: the unconditioned stimulus (s) that drives the DAN activity
(d) to serve as a target for the value learning in the MBONS via KC-to-MBON synapses (v = wymko), will itself be
predicted in the DANs (see Eq. 11). Extending the memory life-time through circuit plasticity might be attrac-
tive under the light of energy efficiency, showing that long-term memory in a synapse involving de novo protein
synthesis can be costly®*, while cheaper forms of individual synaptic memories likely have limited retention
times. Moreover, distributed memory that includes the learning of an external target representation offers more
flexibility, including the regulation of the speed of forgetting®.

Target-driven predictive plasticity may also explain the novelty-familiarity representation observed in the
recurrent triple of KCs, DANs and MBONs*. The distributed representation of valences allows for expressing
temporal components of the memories. Spontaneous activity in the KCs and their downstream cells®® injures
a minimal strength of the KC-to-MBON synapses through predictive plasticity. A novel odor that drives KCs
will then also drive MBONS and, to a smaller extent (as we assume), also DAN. If the DANSs that represent the
target for the KC-to-MBON plasticity are onlyweakly activated by the odor, the KC-to-MBON synapses learn
to predict this weaker activity and depress. The depression results in a repetition suppression of MBONSs and the
corresponding familiarization of the fly to the ongoing odor. However, when the odor is cleared away, the MBON
activity induced by spontaneously active KCs via depressed synapses now becomes lower than the spontane-
ous DAN activity, and predictive plasticity recovers the original synaptic strength. Eventually the spontaneous
MBON and DAN activites match again (Eq. 13) and the response to the originally novel odor is also recovered,
as seen in the experiment®.

Olfactory learning is likely distributed across several classes of synapses in the MB. The acquisition of olfac-
tory memories was shown to be independent of transmitter release in KC-to-MBON synapses, although the
behavioral recall of these memories required the intact transmission®. In fact, learning may also be supported by
plasticity upstream of the MBONS such that the effect of blocking KC-to-MBON transmission during learning
is behaviorally compensated. Predictive plasticity at the KC-to-MBON synapses requires the summed synaptic
transmissions across all synapses in the form of the value v = wo to be compared with the target d, also during
the memory acquisition. This type of plasticity would therefore be impaired by blocking the release.

Distributed learning and absence of blocking.  Distributed learning also offers flexibility in acquiring
predictions from new cues. While the original Rescorla-Wagner rule would predict blocking', this has not been
observed in the fruit fly*’. Blocking refers to the phenomenon that, if the first odor of a compound-CS is pre-
conditioned, the second odor of the compound will not learned to become predictive for the shock. Because our
predictive plasticity rules are expressed at the neuronal but not at the phenomenological level, predictions about
blocking will depend on the neuronal odor representation. If the two odors activate the same MBONS, blocking
would be observed since the MBONS are already driven to the correct value representation by the first odor. If
they activate different MBONS, however, blocking would not be observed since the MBONSs of the second odor
did not yet have the chance to learn the correct value during the first conditioning. Hence, since blocking has
not been observed in the fruit fly, we postulate that the odors of the compound-CS in these experiments were
represented by different groups of MBONS.
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Concentration-specificity and relieve learning. How does our model relate to the concentration-
specificity and the timing-specifity of odor conditioning? First, olfactory learning was found to be specific to the
odor concentration, with different concentrations changing the subjective odor identity®. The response behavior
was described to be non-monotonic in the odor intensity, with the strongest response for the specific concentra-
tion the flies were conditioned with. It was suggested that this may arise from a non-monotonic odor representa-
tion in the KC population as a function of odor intensity*>*!. Given such a presynaptic encoding of odor concen-
trations, the predictive olfactory learning in the KC-to-MBON connectivity would also inherit the concentration
specificity from the odor representation in the KCs. Our predictive plasticity, and also the Rescorla-Wagner
model, further predicts that learning with a higher odor concentration (but the same electroshock strength) only
speeds up learning, but would not change the asymptotic performance.

Second, olfactory conditioning was also shown to depend on the timing of the shock application before or
after the conditioning odor. While a shock application 30s after an odor assigns this odor an aversive valence, an
appetitive valence is assigned if the shock application arises 30s before the odor presentation'®!”6>% Modeling
the approaching behavior in the context of predictive plasticity would require duplicating our model to also
represent appetitive valences, and the action selection would depend on the difference between aversive and
appetitive valences. Inverting the timing of CS and US may explain ‘relief learning’ if a stopping electroshock
would cause a decrease of the target for aversive MBONs (d ) and an increase of the target for appetitive MBONSs
(d*, see Eq. 12). An odor presented after the shock would then predict the increased appetitive target and explain
the relieve from pain behavior, similarly to the model of relief learning in humans®.

Overall, our behavioral experiments and the plasticity model for the KC-to-MBON synapses support the
notion of predictive learning in olfactory conditioning, with the DANS representing either the CS-US prediction
error or the prediction itself. While predictive coding is recognized as a hierarchical organization principle in the
mammalian cortex®>~% that explains animal® and human behavior® it may also offer a framework to investigate
the logic of the MB and the multi-layer MBON readout network as studied by various experimental work?**2.

Materials and methods

Flies. We used Drosophila melanogaster of the Canton-S wild-type strain. Flies were reared on standard corn-
meal food at 25°C and exposed to a 12:12 hour light-dark cycle. For the experiments groups of 60-100 flies (1-4
days old) were used.

Behavioral experiments. The apparatus that was used to conduct the behavior experiment is based on'®
and was modified to allow performing four experiments in parallel. Experiments were performed in a climate
chamber at 23 — 25°C and 70-75% relative humidity. Training procedures were done in dim red light and tests
were accomplished in darkness. Two artificial odors, benzaldehyde (Fluka, CAS No. 100-52-7) and limonene
(Sigma-Aldrich, CAS No. 5989-27-5), were used for the experiments. 60! of benzaldehyde was filled in plastic
containers of 5mm and 85/ of limonene was filled in plastic containers of 7mm. Odor containers were attached
to the end of the tubes. A vacuum pump was used for odor delivery at a flow rate of 7 [/min. Tubes lined with an
electrifiable copper grid were used to apply electric shock. Shock pulses were 1.5s long.

Sequence shock experiments.  Groups of flies were loaded in tubes lined with an electrifiable grid. After
an initial phase of 90s, one of the odors was presented for 60s. At the same time electric shock pulses were deliv-
ered. After 30s of non-odorised airflow, the second odor was presented for 60s, without electric shock. Different
electric shock treatments were used (see Fig. 2). In half of the cases benzaldehyde was paired with electric shock,
while in the other half limonene was the paired odor. Whatever the idendity of the odor is, after pairing with
the shock it is called the conditioned stimulus (CS+) while the odor paired with 0 shock strength is called the
unconditioned stimulus (CS-). After the training flies were loaded into a sliding compartment and moved to a
choice point in the middle of two tubes. Benzaldehyde was attached to one tube and limonene to the other. Flies
could choose between the two odors for 120s. Then, the number of flies in each odor tube was counted.

Repeated training experiment. One training block consists of 60s odor, 30s non-odorised air and 60s of
the second odor. Four electric shock pulses were delivered after 15, 30, 45 and 60s of the first odor presentation.
Flies were exposed to this training block one, two or four times. The time between the training blocks was 90s.
For ‘0.5 repetitions’ (as reported in Fig. 4) only two pulses were delivered 45 and 60s after onset of the odor and
this block was not repeated. Experiments were performed with electric shock pulses of 25 and 50V. After the
training, learning performance was tested as in the sequence shock experiment.

Continuous shock experiments. Continuous electric shock was used to train the animals instead of
pulses. Electric shock was applied during the entire presentation of the first odor (odor X). odor X and shock
duration were 10, 15, 30, 45, 90 or 120s. The second odor (odor Y) was presented for the same duration as odor
X and the electric shock. odor Y was always applied 30s after the end of odor X presentation. Experiments were
performed with 25 and 50V. The learning test after the training was identical to the sequence shock experiment.

Minimal shock detection. For the electric shock avoidance tests, flies were loaded into a sliding test cham-
ber (compartment). The chamber with the flies was pushed to a choice point between two arms (tubes) with an
electrifiable grid at the floor. The grid in one tube was connected to a voltage source (of strength S), whereas the
other was not. Electric shock was delivered continuously for 30s and then the number of flies in each tube was
counted. For a shock of strength S = 5,9and 12.5V we measure a performance index PI(S=5V) = 0.006 £ 0.014
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(mean =* standard error of the mean, SEM), PI(S=9V) = 0.030 &= 0.014 and PI(S=12.5V) = 0.068 = 0.019,
respectively. For S=7V we estimated the mean PI to be roughly 0.01, with a SEM to be roughly twice as large,
0.02, see Fig. 2-1.

Parameter optimization. The parameters are optimized to minimize the least square error between the
experimental data and the model simulation. The optimization is done in Matlab (R2014a), using Interior point
method with maximum 3000 iterations, 1.0e-06 tolerance. Initial conditions of the parameters are uniformly
sampled from a wide interval, and all optimized parameters with similar overall performances were clustered
around the ones reported in the caption of Fig. 3. The same set of parameters for the predictive plasticity (Eq. 7)
is used throughout. The mean square error (MSE) between data mean and model mean is calculated by sum-
ming the squared error of the means (with the same Ny, and Nyy1) for all 28 data points across all experiments,
divided by 28. The parameters for the predictive learning model are reported in the caption of Fig. 3, the ones
for the other models below.

Adaptable learning rate. The learning rate is assumed to increase with increasing stimulus strength
(5 > 0) and otherwise passively decays. Its dynamics has the form

d
j? — _;ln + An max{s,0}, (14)

with optimized parameters 7, and An. We were choosing 7, = 133.48s and An = 0.057 in all the experiments
using predictive learning rule except for the simulation of the target-driven learning model in Fig. 6B where
we set 7, = 26.7s and An = 0.74. For the discrete time simulations, a step-increase As in the shock stimulus
triggers a step increase in 7 by An As.

Linear STDP, nonlinear STDP, and covariance rule.  Given the analogy of the olfactory conditioning
to spike-timing (or stimulus-timing) dependent plasticity (STDP)”!*!¢17_ we considered two different forms of
STDP rules. The linear STDP learning rule is

dw . . (15)
— =nN1s0—1250,
dt m n
where 5§ is the low-pass filtered s with filtering time constant 7, = 17.87s, 0 is the low-pass filtered o with
time constant 1, = 7.47s, n; = —0.47, n; = —0.47, « = 0.23, and S, = 9.31V. For the linear STDP we get
MSE = 5.489 x 1073 for the indicated optimized parameters.
The nonlinear STDP rule is of the form

dw

Z=m tanh(a; 0s) — 12 tanh(az 05). (16)

The learning rates 71/, were allowed to be both positive and negative. The optimal parameters are ; = 0.01,

m = 0.19,7, = 51.20s, 7, = 124.125,00 = 9.93, 1 = 9.93, 0 = 0.44, S, = 11.91V, witha MSE = 6.550 x 1073,
The covariance rule has the form

dw

g =16 =90@—0), (17)
and the optimal parameters are n =0.12, 7, = 300.00s, 7, = 19.18s, o = 0.53, S, =9.13V, with a
MSE = 8.236 x 107>,

All these 3 rules (Eqs. 15-17) failed mainly in reproducing the repetitive conditioning experiments (Fig. 4B),
see Supplementary Material. Overall, the MSE for all these associative rules is roughly 10 times bigger than the
MSE for the predictive rule (MSE = 6.393 x 107%).

Associative learning rules with adaptive learning rate. We also tested the associative learning
rules with the adaptive learning rate from Eq. (14). Although the MSEs get smaller for both linear and non-
linear STDP rules, they remain twice as large as for the predictive learning rule (see Fig. 3-2). The covariance
rule (with optimised parameters o = 0.12, S, = 3.68, 7, = 37.70s, 7, = 1498.38s, 1, = 60.54s, An = 1.00,
with a MSE = 1.00 x 1072) did not profit from the adaptable learning rate. For the linear STDP learning rule
(Eq. 15) the optimal parameters with adaptable learning rate are « = 0.31, S, = 3.20, 7, = 8.29s, T, = 171.05s,
T, = 16.01s, 7y, = 5.78s, Any = 0.39, Anp = 5.71, with a MSE = 1.45 x 1073,

For the nonlinear STDP learning rule (Eq. 16), the optimal parameters are« = 0.13,S, = 3.21V, 1, = 8.30s,
T, = 171.10s,7,, = 16.025,7,, = 5.82,An; = 8.96,An; = 5.14,a1 = 0.24,a3 = 6.05, withaMSE = 1.46 x 1073,
For the Hebbian additive rule in Eq. (6) with adaptable learning rate, the optimal parameters are @ = 0.05,
So = 5.08, 7, = 1.50s, 7, = 49.81s, An = 5.46, with a MSE = 1.24 x 1072,

Model comparison based on the Akaike information criterion. We compared the various models
on the basis of the Akaike information criterion (AIC) that puts the model accuracy on the data set into rela-
tion to the number of parameters used to achieve this accuracy’®”!. Assuming that the estimation errors of all n
experimental conditions are normally distributed with zero mean, the AIC for a given model M is calculated as
a log-likelihood,
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AIC(M) = 2k + n log MSE(M) + 2C, (18)

where k is the number of parameters in the model, n = 28 the number of experimental conditions, and
C = 2 (In(27) 4+ 1) + 1 = 40.73. The relative likelihood p for model M to be true as compared to the predictive

2
plasticity model My is p(M) = exp w (Table 1).

Data availability
The mathematical model (Matlab) including the experimental data will be available on https://github.com/
unibe-cns.
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