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ABSTRACT

Motivation: Cryo-electron tomography allows the imaging of macro-

molecular complexes in near living conditions. To enhance the nominal

resolution of a structure it is necessary to align and average individual

subtomograms each containing identical complexes. However, if the

sample of complexes is heterogeneous, it is necessary to first classify

subtomograms into groups of identical complexes. This task becomes

challenging when tomograms contain mixtures of unknown com-

plexes extracted from a crowded environment. Two main challenges

must be overcomed: First, classification of subtomograms must be

performed without knowledge of template structures. However,

most alignment methods are too slow to perform reference-free clas-

sification of a large number of (e.g. tens of thousands) of subtomo-

grams. Second, subtomograms extracted from crowded cellular

environments, contain often fragments of other structures besides

the target complex. However, alignment methods generally assume

that each subtomogram only contains one complex. Automatic meth-

ods are needed to identify the target complexes in a subtomogram

even when its shape is unknown.

Results: In this article, we propose an automatic and systematic

method for the isolation and masking of target complexes in subto-

mograms extracted from crowded environments. Moreover, we also

propose a fast alignment method using fast rotational matching in real

space. Our experiments show that, compared with our previously

proposed fast alignment method in reciprocal space, our new

method significantly improves the alignment accuracy for highly dis-

torted and especially crowded subtomograms. Such improvements

are important for achieving successful and unbiased high-throughput

reference-free structural classification of complexes inside whole-cell

tomograms.

Contact: alber@usc.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Cryo-electron tomography enables the 3D imaging of macromol-

ecular complexes at nanometer-scale resolution in near native

conditions (Best et al., 2007; Lucic et al., 2005; Medalia et al.,

2002). Tomograms of individual cells are essentially 3D represen-

tations of the entire proteome providing a snapshot of the dis-

tributions of protein complexes (Beck et al., 2011). However,

comprehensive detection of individual complexes in cell tomo-

grams is challenging because of the inherent low signal-to-noise

ratio (SNR), missing data, nonisotropic resolution and the fact

that individual macromolecules are difficult to recognize in a

highly crowded environment (Beck et al., 2009; Best et al., 2007;

Böhm et al., 2000; Frangakis et al., 2002; Medalia et al., 2002;

Nickell et al., 2006).
Most methods for detecting complexes in cell tomograms rely

on a template structure, which serves as a reference in searching

for a similar pattern in the tomogram (e.g. Beck et al., 2009).

However, for an unbiased detection and classification of all the

different complexes in a cellular tomogram, template-free meth-
ods are needed (Xu et al., 2011). Such an analysis is challenging

and relies on three main steps: First, the locations of potential

complexes are detected by using particle-picking methods and a

subregion surrounding the potential complex is extracted (i.e. the

subtomogram). Second, the subtomogram regions corresponding

only to the target complex must be detected, which allows mask-

ing out all background regions, which in turn contain noise and

in case of crowded subtomograms also fragments of surrounding

structures. Third, reference-free structural classification of the

masked subtomograms is performed, which is typically based

on an iterative process of subtomogram alignments, classifica-

tions and averaging (e.g. Amat et al., 2010; Bartesaghi et al.,
2008; Chen et al., 2013; Förster et al., 2008; Volkmann, 2010;

Xu et al., 2012). Finally, the averaging of aligned subtomograms

of the same complexes will enhance the nominal resolution of the

resulting density maps.

In this article, we address two main challenges in reference-free
subtomogram classifications. First, we propose an automatic

method for adaptive masking of target regions in crowded sub-

tomograms without the knowledge of the shape of the complex.

Such a method is particularly important for subtomograms ex-

tracted from crowded environments, such as the cell cytoplasm.

In such a case, subtomograms will also contain fragmental re-

gions of other complexes owing to the high particle density in the

tomogram. Masking out these regions is of great importance in

the subsequent classification process. Unlike automatic masking

methods based on voxel weighting (Xu et al., 2012) or dimension

reduction methods such as Principle Component Analysis
(Heumann et al., 2011), our method is highly scalable because

it is independent of the classification process and does not in-

volve iterative processing of a large number of subtomograms.

Second, we propose a new method for fast rotational matching

of subtomograms in real space. The 3D subtomogram alignment

is computationally the most intensive step in the classification

process. Currently, most alignment methods are based on max-

imizing the overlap similarity of two subtomograms through

exhaustive search over all rigid transforms (rotation and*To whom correspondence should be addressed.
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translation) of one subtomogram with respect to the other (e.g.
Amat et al., 2010; Förster et al., 2008). Such methods scan ex-
haustively through each rotational angle, and find the best cor-

responding translation using Fast Fourier Transform (FFT) (e.g.
Amat et al., 2010; Förster et al., 2008). These methods are com-
putationally intensive, which limits their applicability in refer-

ence-free classifications. To increase alignment accuracy, local
search methods have been developed to refine initial alignments
(e.g. Bartesaghi et al., 2008; Hrabe et al., 2012; Xu and Alber,

2012). To increase computational efficiencies, two approximate
alignment methods have been developed, which separate the
translational from the rotational subtomogram alignments

(Bartesaghi et al., 2008; Xu et al., 2012). These methods are
based on similarity scores defined in the reciprocal space (i.e.
Fourier space). To separate translational and rotational search,

these methods use an approximate score that introduces transla-
tional invariance by eliminating the phase information of the
complex coefficients in the reciprocal space and use only the
magnitude of the Fourier coefficients (Bartesaghi et al., 2008;

Xu et al., 2012). By expressing the structural information in
Spherical Harmonics (SH) Expansion, it is possible to formulate
the rotational alignment as a fast rotational matching, which

simultaneously calculates alignment scores of all rotations
using FFT. This procedure significantly increases the alignment
speed. For example, our previously published method (Xu et al.,

2012) achieved between hundreds to thousands fold speedup (de-
pending on subtomograms size and rotational angle interval)
compared with the standard scanning-based alignment method

(Förster et al., 2008) by using a translational invariance approxi-
mation of a similarity score equivalent to a popular score pro-
posed by (Förster et al., 2008).

However, formulating the fast rotational matching in recipro-
cal space has some limitations. In reciprocal space, the majority of
informative signals of a complex is usually contained in a rela-

tively small amount of high magnitude Fourier coefficients (Amat
et al., 2010). These coefficients are often occupying relatively few
voxels in the reciprocal space located within a small region cen-

tered at the origin. Therefore, the SH expansion in the fast rota-
tional matching may be hampered by interpolation errors, which
reduces the accuracy in the alignment process. In contrast, in real

space, the signal covers a wider area within a subtomogram, and
the SH expansion is expected to be more accurate. It is therefore
beneficial to formulate fast rotational matching in real space.

In addition, real space fast rotational matching uses the full
constrained alignment score instead of a translation invariant
approximation when the method is expressed in reciprocal space

(Bartesaghi et al., 2008; Xu et al., 2012).
Here, we devise an improved alignment method, which formu-

lates the fast rotational matching of subtomograms in real space.

To achieve this goal, we first identify a keypoint in the target
complex whose relative location is invariant to rigid transform-
ations and serves as the center of rotation in the fast rotational

matching of the two subtomograms. A natural choice is the
center of mass of a complex. However, detection of the center
of mass is not trivial and cannot be approximated by the geo-

metrical or mass density center of the subtomogram. The reason
for this complication is that tomograms are images of the
crowded cellular environment (Beck et al., 2009), and a subto-

mogram contains not necessarily mass density of only one single

complex. When a potential complex is detected and its subtomo-
gram extracted as a rectangular cube then this subtomogram
typically contains also fragments of other surrounding structures

that occupy parts of the subtomogram. Then, the center of mass
estimation and subtomogram alignment are affected by the ex-
istence of the additional mass density in the subtomogram. It is

necessary to focus only on the regions that contain the actual
target complex. Even when a subtomogram does not contain any

surrounding structures, its mean intensity is often close to back-
ground intensity owing to the suppression of low frequency
signal owing to the Contrast Transfer Function (CTF) effect,

which also makes the estimation of the center of mass of the
complex inaccurate.
Applying our automatic target complex segmentation method,

it is possible to estimate a center of mass based only on the target
complex regions in the subtomogram (i.e. the constrained center

of mass). Once the constrained center of mass is detected, we
design a fast subtomogram alignment method that uses real
space signals and takes into account missing wedge corrections

using reciprocal space signals. Moreover, the alignment focuses
exclusively on the target complex regions in each subtomogram,
which significantly decreases the influence of background noise

and surrounding structures to the alignment process.
Our experiments show that our new approach significantly

increases the alignment accuracy compared with our previous
proposed fast alignment method (Xu et al., 2012) for highly dis-
torted subtomograms. Most importantly, the new method is

highly robust to the influence of surrounding structures inside
crowded subtomograms.

2 METHODS

This section begins by describing the automatic segmentation of the target

complex and then focuses on the fast rotational alignment in real space.

2.1 Automatic segmentation of the target complex in a

subtomogram

The automatic target complex segmentation method consists of several

steps (Figs 1, 2 and 7): (i) automatic scale selection is performed to max-

imally enhance the detection of structural boundaries in a subtomogram;

Fig. 1. Flow chart for segmentation of target complex regions and the

real space alignment of subtomogram using only target complex regions
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(ii) segments are defined that describe the boundaries between structural

elements; and (iii) a classification of the detected structural segments into

candidate regions is performed by using a statistical model based

clustering.

2.1.1 Automatic scale selection for optimal smoothing and bound-
ary enhancement In this article, we assume that in a subtomogram

high image intensity corresponds to high electron density. When a sub-

tomogram is renormalized so that its mean intensity is zero, the boundary

of a complex tends to have a negative intensity surface (Fig. 3, yellow

arrow). This property is due to the CTF effects in the electron tomog-

raphy imaging process, which suppresses low frequency signals. We use

this negative intensity surface as a main characteristic when identifying

the segments at the boundary of structural elements, such as the target

complex and those structures captured at the outer regions of the sub-

tomogram. To reduce the influence of noise, smoothing of the subtmo-

grams is needed. However, too much smoothing will weaken the negative

intensity boundary. To find the optimal degree of smoothing, we use the

scale-space representation method and propose an automatic scale selec-

tion method to find the optimal degree of smoothing that maximally

enhances the boundary surface while minimizing the noise. Scale-space

(Witkin, 1983) is a framework for multi-scale signal representation. An

image is represented as a one-parameter family of smoothed images, the

scale-space representation, parameterized by the size of the Gaussian

smoothing kernel (Lindeberg, 1994):

g�ðxÞ :¼
1

ð2��2Þ
3
2

e
�x>x

2�2

Given a subtomogram, f, a Gaussian smoothing can be expressed as the

convolution between f and g� :

~f� :¼ f � g�

In the smoothed subtomogram ~f� , all features with a size smaller than �

are filtered out, whereas others are preserved. Our objective is to deter-

mine the optimal scale � to enhance the formation of a negative intensity

surface while minimizing the influence of noise. To do so, we scan a range

of feasible � values. For a given smoothed subtomogram with scale �, we

find all local minima with negative intensities in ~f� and denote this set as

Smin. We then define a local surface score for each minima in Smin, to

identify those minima that are likely part of a negative intensity surface.

The surface score is calculated as follows: we calculate the Hessian matrix

HðxÞ, whose elements are second-order derivatives of ~f� evaluated at

x 2 R
3,

HijðxkÞ ¼
@2 ~f� ðxÞ
@xi@xj

���
x¼xk

, 8k 2 Smin, i, j ¼ 1, 2, 3

where xk is the corresponding location of a voxel k.

For any k 2 Smin, let �1, �2, �3 be the ordered eigenvalues of HðxkÞ

such that j�1j � j�2j � j�3j. Then, we can construct a local surface

score s ~f�
ðxkÞ similar to (Martinez-Sanchez et al., 2011) as follows:

s ~f�
ðxkÞ ¼

j�1j �
ffiffiffiffiffiffiffiffiffiffiffiffi
j�2�3j
p

if �140,
0 if �150:

�

We find the � value that maximally enhances the surface scores of all the

minima so that the most negative minima tends to have a strong surface

score. To do so, we calculate an accumulative surface score from all the

minima. First, the minima are ordered in ascending order in ~f� such that

~f�ðxk1 Þ �
~f�ðxk2 Þ � . . . � ~f�ðxkjSmin j

Þ50

where k1, . . . , kjSminj 2 Smin. Then the accumulative surface score saccui is

defined as

saccui ¼
Xi
j¼1

s ~f�
ðxkj Þ

Because f ~f�ðxki Þg is in ascending order with respect to i, this score saccui

forms a monotonically increasing function of ~f�ðxki Þ. We can measure the

Area Under Curve, AUC� , using fs
accu
i g and f

~f�ðxki Þg. AUC� tends to be

large when the most negative minima have large surface scores. To meas-

ure how much the AUC reflects true surface signals rather than random

noise, we also randomly permutate all voxels in f and repeat the afore-

mentioned procedure to calculate a permutated AUC, AUCperm
� .

To determine the optimal Gaussian filtering value �, we scan through a

range of different �s to find the �� value that maximizes

AUC�

AUC
perm
�

For simplicity, in the following sections, we denote ~f :¼ ~f�� (Figs 2C

and 7B) and also denote ~fi :¼ ~fðxiÞ for any voxel i.

2.1.2 Detecting structural, boundary and background segments
in the subtomogram After identifying the optimal scale ��, we now

determine those local minima that have strong surface scores and are

likely to separate different structural elements (i.e. the target complex

and surrounding structures). We define them as those local minima

with both high surface scores and low intensity values. To do so, first

we select the minima whose intensity is significantly smaller than the

average intensity, i.e.

Smin intensity ¼ fk 2 Smin :

~fk5mediani2Smin
ð ~fiÞ

� cmin intensity factor madi2Smin
ð ~fiÞg

A B C D E F G

Fig. 2. Four typical examples for target complex segmentation based on

simulated data. Each row is an example, whereas each subfigure is a slice

through the x-z plane in the 3D image. (A) Ground truth. (B) Simulated

subtomograms at SNR 0.005 and tilt angle range �50
�

(Section 3.1). (C)

After Gaussian smoothing with automatic scale selection. (D) After

Watershed segmentation. (E) After boundary segment detection. (F)

Selected segment cluster from model based clustering. (G) Detected

target complex regions

Fig. 3. A subtomogram’s image features. The boundary feature is a sur-

face that has strong negative intensity (yellow arrow). A local maxima in

Smax structural boundary is highlighted by a red cross, which is inside the

macromolecular complex. Its corresponding structural boundary segment

is highlighted by a red circle. A local maxima in Smax background boundary is

highlighted by a green cross, which is inside a background region. Its

corresponding background boundary segment is highlighted by green

circle. See Section 2.1.2 for the details of these two types of local maxima

i276

M.Xu and F.Alber



where cmin intensity factor is a constant parameter to control the significance

level, and mad is the Median Absolute Deviation, which is a robust

measure of variability.

In addition, we also collect those minima whose surface score is

significantly larger than the average scores of all minima, i.e.

Smin surface ¼fk 2 Smin :

s ~f ðxkÞ4mediani2Smin
ðs ~f ðxiÞÞ

þ cmin surface factor madi2Smin
ðs ~f ðxiÞÞg

where cmin surface factor is a constant parameter.

All minima with strong surface scores are defined as the intersection of

both groups.

Smin boundary :¼ Smin intensity \ Smin surface

We denote these minima as the boundary surface minima.

We then determine all local intensity maxima Smax in ~f, which are likely

to be inside structural elements. We first perform Watershed segmenta-

tion (Beucher and Lantuéjoul, 1979; Volkmann, 2002) using Smax as seeds

(Figs 2D and 7C). Each segment corresponds to one local maximum, and

therefore the terms local maximum and segment are used interchange-

ably. We then select all the segments that border with local minima

defined in Smin boundary and denote the corresponding set of maxima as

Smax boundary. The actual separations between structural elements and

background regions are always at the boundary between segments in

Smax boundary. The segments in Smax boundary can be divided into two

types: a structural boundary segment is located in the target complex or

the surrounding structures (Fig. 3, inside red circle), and it contains a

maximum with high intensity value (Fig. 3, highlighted by red cross); a

background boundary segment is located in the regions that do not contain

structural elements (Fig. 3, inside green circle), and which contain a max-

imum with low intensity value (Fig. 3, highlighted by green cross).

To separate these two types of boundary segments, we perform

k-means clustering on Smax boundary (with cluster number ¼ 2), resulting

in the two groups Smax structural boundary and Smax background boundary.

Smax structural boundary are segments containing local maxima with higher

intensity values and are defined as structural boundary segments (Figs 2E

and 7D), whereas Smax background boundary are defined as background

boundary segments.

After focusing on boundary segments (i.e. those that border with sur-

face minima), we now characterize the remaining segments as either part

of structural elements or background regions. To do this, we first deter-

mine a cutoff intensity value cmaxima cutoff as the largest intensity value in

all the background boundary segments Smax background boundary. All remain-

ing segments that contain a local maxima with an intensity value smaller

that cmaxima cutoff are assigned as background regions.

Finally, the remaining segments whose maxima have intensity values

larger than cmaxima cutoff are defined as structural segments and are there-

fore assumed to be either part of the target complex or other structural

elements, i.e. Smax structural :¼ fk 2 Smax : ~fi4cmaxima cutoffg.

2.1.3 Combining structural segments into complexes using model
based clustering We now cluster structural segments in Smax structural

according to the intensity values and location of their local maxima so

that each cluster of segments will approximately correspond to one con-

secutive structural region. We choose a model-based clustering approach

because it allows an automatic determination of the optimal set of clus-

ters. To perform the clustering, we assume that the location and intensity

of local maxima from clusters follows a probabilistic mixture model,

where each component probability distribution corresponds to a cluster

(Fraley and Raftery, 2002). We model the probability of independently

observing both location and intensity of a local maxima i 2 Smax structural

from a cluster k as:

pik ¼ p ~fi
�ðxi;�k,�kÞ ð1Þ

where p ~fi
is a probability proportional to the intensity ~fi, and � is a

probability density function in the form of a multivariate normal distri-

bution with mean �k and covariance �k. For simplification, we assume

that the clusters are spherical with different sizes, i.e. �k ¼ �kI. The main

difference between our model and the standard model-based clustering

(Fraley and Raftery, 2002) is the inclusion of the image intensity related

term p ~fi
in Equation (1). Our simulation experiments show that the

inclusion of image intensity improves the clustering performance

(Supplementary Document).

The likelihood for the mixture model with K clusters is:

Lð�1, . . . , �K;�1, . . . ,�K; �1, . . . , �KjxÞ

¼
Y

i2Smax structural

XK
k¼1

�kpik

where x represents the collection of observed local maxima, and �k is the

probability of cluster k (i.e. cluster mixing probability). A model-based

clustering determines the parameters f�kg, f�kg, f�kg that maximizes L.

We use a scale-space representation to estimate cluster centers f�kg.

Given a scale � � 2��, we obtain the set S�, max of local maxima with

positive intensities in ~f� . The local maxima j1, . . . , jjS�,maxj are ordered with

decreasing intensity values, i.e. ~f�ðx�, j1 Þ � . . . � ~f� x�, jjS�, max j

� �
40, where

x�, jk is the corresponding location of local maxima jk on ~f� . We choose

cluster centers as the first K local maxima, i.e �k ¼ x�, jk , 8k ¼ 1, . . . ,K

Similar to the standard model based clustering (Celeux and Govaert,

1995; Fraley and Raftery, 2002), an Expectation Maximization algorithm

is used to estimate f�kg and f�kg. The expectation maximization is defined

by two iterative steps:

E-step: update an estimated posterior probability ẑik that the local

maximum i belongs to cluster k:

ẑik  
�kpikPK

j¼1

�jpij

M-step: update the cluster mixing probability �k, and variances �k, given

the new parameters in the previous step:

�k  
nkPK

j¼1

nj

where

nk :¼
X

i2Smax structural

ẑik

and

�k  
trðWkÞ

3nk

where

Wk ¼
X

i2Smax structural

ẑikðxi � �kÞðxi � �kÞ
>

The Expectation Maximization algorithm iterates until there is no signifi-

cant change in the likelihood L. The clustering of local maxima leads to

clusters of the corresponding segments (Figs 2F and 7E). Using statistical

modeling for clustering enables the determination of an optimal set of

clusters through model selection. By varying the scale � and cluster

number K, we obtain the optimal values for scale and cluster set using

the Bayesian Information Criterion (Fraley and Raftery, 2002):

BIC ¼ 2 logL� K log jSmax structuralj

The final target complex is then represented by combining multiple seg-

ments that fulfill the following criteria: (i) they belong to same cluster

in the model based clustering; (ii) they are in consecutive contact to each

other; and (iii) the maximum intensity values _fij of the voxels between
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two consecutive segments i and j is larger than a threshold. The thresh-

old is computed as cboundary cutoff factorstdi, j2Smax structural
ð _fijÞ, where

cboundary cutoff factor is a constant parameter.

The target complex region is then selected as the combined segments

that contain at least one structural boundary segment (defined by

Smax structural boundary) and are located closest to the center of the subto-

mogram. To prevent that small features of the target complex are

excluded, a dilation operation is performed to define the target complex

region A (Figs 2G and 7F).

2.2 Real space fast subtomogram alignment using the

target complex region and its center of mass

Fast rotational matching in real space relies on an initial alignment of the

center of masses of the two subtomograms. Therefore, we describe first

how the center of mass of each target complex is calculated before we

describe the fast rotational matching approach.

2.2.1 Calculation of center of mass for target complex region The

determination of the center of mass in subtomograms is not trivial, pri-

marily owing to high noise levels, the suppression of low frequency signals

in the reciprocal space and the existence of surrounding structures inside a

subtomogram.

Here, the center of mass is calculated only based on the regions in the

target complex A. We set a thresholded region Athresholded on the filtered

subtomogram ~f, i.e. Athresholded ¼ fx 2 A : ~fðxÞ4meanð ~fÞ þ 0:5stdð ~fÞg.

Then, we use Athresholded to calculate the center of mass. We define another

intensity function

~fcmðxÞ ¼
~fðxÞ �miny2Athresholed

~fðyÞ if x 2 Athresholed,
0 if x=2Athresholed:

�

We then calculate the constrained center of mass cccm of ~fcm.

2.2.2 Fast rotation alignment We represent two subtomograms f

and g as two integrable functions f, g : R
3 ! R. They have been trans-

formed such that (i) their mean intensities are adjusted to zero, (ii) the

voxel intensities outside the target complex region A is set to zero, and

(iii) they are translated according to cccm so that their constrained centers

of mass are aligned. The constrained center of mass is used as rotational

centers in our fast rotational alignment. To correct for the missing wedge

distortions, we only keep the Fourier coefficients within the overlap of

nonmissing wedge regions of both subtomograms. Following Bartesaghi

et al. (2008), Förster et al. (2008) and Xu et al. (2012), we use a binary

missing wedge mask function as M : R
3
! f0, 1g, which defines valid

and missing Fourier coefficients in reciprocal space. For example, with

a tilt angle range ��, the missing wedge mask function can be defined as

Mð	Þ :¼ Iðj	3 j�j	1 j tanð�ÞÞð	Þ, where I is the indicator function. GivenM, the

real space subtomogram that excludes any coefficients inside of any of the

two missing wedge regions is defined as,

f ¼ <½F�1ðMfF fÞ�

g ¼ <½F�1ðMgFgÞ�

where < denotes the real part of a complex function; F is the Fourier

transform operator; andMf andMg are missing wedge masks for f and

g, respectively.

Given a 3D rotation R, we can calculate a correlation


Rðf, gÞ ¼

R
f �RgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

jF fj2 �RM
2
g

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
M

2
f �RjFgj

2
q ð2Þ

where �R is the rotation operator such that ð�ReÞðxÞ :¼ e½R�1ðxÞ� for

any function e : R
3
! C, and R 2 R

3	3 is the rotation matrix corres-

ponding to 3D rotation R. As in Xu et al. (2012), the correlation measure


R in Equation (2) is equivalent (up to a constant factor.) to a popular

constrained correlation score with missing wedge correction (Förster

et al., 2008).

The fast rotational alignment is based on sampling of 
R simultan-

eously over all rotations R. To do so, we apply a fast 3D volumetric

rotational matching (Kovacs and Wriggers, 2002; Xu et al., 2012). It

can be seen that Equation (2) can be formulated as being composed of

three rotational correlation functions of the form �R :¼
R
p �Rq, where

p and q are component functions; �e denotes the complex conjugate (when

e is a real valued function, the complex conjugate �e ¼ e.) of a function e.

Specifically, we can represent 
R as


R ¼
�ð0ÞRffiffiffiffiffiffiffi
�ð1ÞR

q ffiffiffiffiffiffiffi
�ð2ÞR

q
¼

R
p0 �Rq0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

p1 �Rq1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
p2 �Rq2

q
ð3Þ

where p0 :¼ f, q0 :¼ g, p1 :¼ jF fj2, q1 :¼M2
g, p2 :¼M2

f , and

q2 :¼ jFgj2.

When represented in spherical coordinates, the p and q components of

these three functions �R can be approximated by an SH expansion.

Following Garzón et al. (2007), Kovacs and Wriggers (2002) and Xu

et al., (2012), the p and q components in Equation (3) can be expressed as:

pðr,�, �Þ 

XB�1
l¼0

Xl
m¼�l

C
p
lmðrÞYlmð�, �Þ

qðr,�, �Þ 

XB�1
l¼0

Xl
m¼�l

Cq
lmðrÞYlmð�, �Þ

where B is the bandwidth, and ClmðrÞ are the coefficients associated with

the complex-valued spherical harmonic function Ylmð�, �Þ with degree l

and order m, where r, � and � are the radial distance, co-latitude and

longitude, respectively, which define the position in spherical coordinate.

When a suitable parameterization of the 3D rotational group is

achieved, the rotational correlation function �R :¼
R
p �Rq of all

sampled rotations R can be represented as an inverse FFT of a 3D

array of the sum of integrals as follows (Garzón et al., 2007; Kovacs

and Wriggers, 2002; Xu et al., 2012):

�R ¼ F
�1
m, n,m0

X
l

dlmnd
l
nm0

Z
C

p
lmðrÞC

q
lm0 ðrÞr

2dr

" #

where dlmh are real coefficients defining the elements of the Wigner small

d-matrix evaluated at 90
�

.

As a consequence of the aforementioned formulation, the cross-correl-

ation functions can be efficiently sampled by using FFT simultaneously

over all sampled rotations (Kovacs and Wriggers, 2002; Xu et al., 2012).

The sampling is given as twice the bandwidth B used in the SH trans-

formations. Therefore, 
R can be efficiently computed over all sampled

rotations R. Similar to Bartesaghi et al. (2008) and Xu et al. (2012),

the set of candidate rotations are then obtained by identifying the

local maxima of 
 with respect to the rotational degrees of freedom R.

To obtain the optimal translation, a fast translational search is per-

formed for each candidate rotation over the full correlation function


R by using FFT. Finally, the best combination of rotation and transla-

tion is chosen.

3 RESULTS

We assess the performance of our method by using simulated
subtomograms of a phantom model. In addition, we test our

method by experimentally determined structures of five com-
plexes as well as experimental ribosome subtomograms extracted

from a whole-cell tomogram.
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3.1 Generation of simulated tomograms from phantom

and experimental structures

We follow a previously applied methodology for generating sub-

tomograms from initial structures by simulating the tomographic

imaging process as realistically as possible, allowing for the in-

clusion of noise, tomographic distortions due to missing wedge

and electron optical factors such as CTF and Modulation

Transfer Function (MTF) (Beck et al., 2009; Förster et al.,

2008; Nickell et al., 2005; Xu and Alber, 2012; Xu et al., 2011,

2012).
A density map of the complexes (Fig. 4) are generated by

applying a low pass filter at 4 nm resolution to the atomic struc-

tures using the PDB2VOL program of the Situs 2.0 package

(Wriggers et al., 1999) with voxel length of 1nm. In addition, a

density map of a phantom model is generated (Fig. 4A). These

density maps are used as base maps, both of size 643 voxels, and

they are randomly rotated and translated to generate density

map instances in uncrowded conditions. To generate a crowded

environment, two additional structures (randomly chosen from

the phantom model or the ribosome complex) are randomly ori-

ented and placed into the density map �32 voxels away from the

center of the map.
The density maps of the target complex and neighboring struc-

tures are used as input for simulating electron micrograph images

at different tilt angles. Our simulated subtomograms therefore

contain a wedge-shaped region in reciprocal space for which no

structure factors have been measured (i.e. the missing wedge

effect), resulting in distortions in the density map as observed

in the experimental measurements. To generate realistic micro-

graphs, noise is added to the images according to a given SNR

level (ranging between 0.05 and 0.001), defined as the ratio be-

tween the variances of the signal and noise (Förster et al., 2008)

(Fig. 4A).
The resulting image is convoluted with a CTF, which describes

the imaging in the transmission electron microscope in a linear

approximation (Frank, 2006; Nickell et al., 2005). We also con-

volute the density map with the corresponding MTF of a typical

detector used in tomography. Typical experimental acquisition

parameters (Beck et al., 2009) were used: voxel grid length ¼ 1

nm, the spherical aberration ¼ 2	 10�3m, the defocus value

¼ �4	 10�6m, the MTF corresponded to a realistic electron

detector (McMullan et al., 2009), defined as sincð�!=2Þ where
! is the fraction of the Nyquist frequency. Finally, we use a

backprojection algorithm (Nickell et al., 2005) to generate a

tomogram from the individual 2D micrographs generated at

the various tilt angles (Beck et al., 2009; Xu et al., 2011, 2012;

Xu and Alber, 2012).

3.2 Segmentation of the target complex in simulated

subtomograms

To determine the optimal scale for surface enhancement, we vary

� from 1.0nm to 3.0nm. At high noise levels (e.g. SNR � 0:01),
the optimal �� is usually obtained at �2.0nm.

For the detection of boundary segments, we set the signifi-

cance levels cmin intensity factor ¼ cmin surface factor ¼ 1. For deter-

mining the target complex, we choose cboundary cutoff factor ¼ 0,

ignoring all boundary segment maxima with negative intensities

in f _fijg. For combining segments, we scan � from 2�� to 10 nm

and scan the cluster number K from 1 to 5.
To assess the target complex segmentation, we calculate the

overlap between the determined target complex A and the

ground truth Atrue complex. We also calculate the overlap between

A and regions occupied by the surrounding structures in the

crowded ground truth density map Asurrounding structure. Then, we

calculate the median of the following three overlap scores across

100 simulated subtomograms at each distortion level and for

each of the benchmark structures:

otrue positive rate ¼
jA \ Atrue complexj

jAtrue complexj

ofalse positive rate ¼
jA \ Ac

true complexj

jAc
true complexj

osurrounding structure ¼
jA \ Asurrounding structurej

jAsurrounding structurej

where Ac denotes the complementary set of A. Our results show

that for all distortion levels, the median of otrue positive rate is at

least 0.9, and ofalse positive rate is at most 0.004, demonstrating a

good performance in segmenting the areas of the corresponding

target structures. In contrast, the median of osurrounding structure is

close to zero for most of the distortion levels, indicating that our

target complex segmentation method can successfully exclude

surrounding structures in the subtomograms. Only at high dis-

tortion levels, the median of osurrounding structure starts to deviate

from zero (Supplementary Tables S7–S12).

A

B

Fig. 4. Structures used for simulating the tomographic image process.

(A) Top: a phantom model that consists of four elliptical Gaussian func-

tions as branches and one spherical Gaussian function to connect the

elliptical functions. Bottom: Ribosome complex (PDB ID: 2AW7,

2AWB). Left: isosurface of the two structures. Right: Slices of the cor-

responding x-z plane in the simulated tomograms with different degree of

distortions, i.e. different SNRs and tilt angle ranges. (B) The isosurfaces

of four additional benchmark complexes (Xu et al., 2012)
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3.3 Assessment of constrained center of mass detection

The constrained center of mass is expected to be invariant to

rigid transforms of the corresponding structures. The assessment

of the rotational invariance of our constrained center of mass is

performed as follows. We randomly select 100 pairs of subtomo-

grams for each of the benchmark structures. For each pair of

subtomograms i and j, we calculate

dccm inverse, ij :¼ jjcccm inverse, i � cccm inverse, jjj2

as a measure of the degree of invariance, where cccm inverse, i and

cccm inverse, j are the corresponding locations of the constrained

center of masses in the original complex that is used to generate

the instances by random rigid transforms. The smaller

dccm inverse, ij, the higher is the degree of invariance, indicating a

good performance.
The performance is expressed as the median of fdccm inverse, ijg,

which is listed in Figure 5 and Supplementary Tables S1, S4, S13

and S16. We can see that the estimation error is generally smaller

than 3, indicating high accuracy even at high distortion levels. As

can be seen in the following section, the degree of invariance is

sufficiently small to allow successful pairwise fast rotational

alignments in real space.

3.4 Fast rotational alignment of subtomograms

Our fast alignment method relies on fast rotational matching. In

the following two subsections, we calculate the rotational align-

ment errors for the pairs of complexes, both for the crowded as

well as uncrowded cases. The rotational alignment error is cal-

culated as follows: Suppose R� is the rotation matrix calculated

for an alignment, and Rtrue is the true rotation matrix. The ro-

tation alignment error can then be measured as

drot err ¼ jjR
� � RtruejjF,

where jj � jjF is Frobenius norm.

3.4.1 Uncrowded subtomograms First, we test our alignment
method with uncrowded subtomograms, which contain one com-

plex without surrounding structures. We compare the alignment

errors between our new alignment method presented here and

our previous method that relied on fast rotational matching in

reciprocal space (Xu et al., 2012) (left column of Fig. 6 and

Supplementary Tables S2 and S5). It is evident that our new

method improves the alignment accuracy on highly distorted

subtomograms.

3.4.2 Crowded subtomograms Next, we compare the two align-

ment methods (Xu et al., 2012) with crowded subtomograms,

which also contain fragments of additional complexes (right

column of Fig. 6 and Supplementary Tables S14 and S17). It

can be clearly seen that when considering crowded subtomograms

without excluding surrounding structures, our previous method

(Xu et al., 2012) generally fails in finding the correct alignment. By

contrast, our new alignment method aided by target complex seg-

mentation is only marginally affected by crowding and the exist-

ence of the surrounding structures. Our new method clearly

outperforms our previous method when dealing with subtomo-

grams from crowded cellular environments. Similar improvement

in performance is also observed by testing the crowded subtomo-

grams of four additional benchmark complexes (Supplementary

Tables S19–S22) (Fig. 4B) used in (Xu et al., 2012).
We have also measured the correlation between dccm inverse, ij

and drot err (Supplementary Tables S3, S6, S15 and S18) and

Fig. 6. Rotational alignment error for the phantom model and the ribo-

some complex inside uncrowded and crowded subtomograms simulated

at different distortion levels. The error is measured in terms of the median

drot err across 100 pairwise alignments. The nodes on the solid black grid

correspond to the alignment performance of our new method. The nodes

in the red dashed grid correspond to the alignment performance of our

previous method (Xu et al., 2012). The green regions correspond to the

distortion levels at which both methods can successfully perform align-

ments. The yellow regions correspond to the distortion levels at which our

new method outperforms our previous method and correctly aligns the

subtomograms, whereas our previous method (Xu et al., 2012) fails. The

gray region corresponds to the distortion levels at which both methods

fail. For both alignment methods, we choose a rotation angle interval 5
�

,

i.e. the bandwidth B¼ 36

Fig. 5. The performance of the center of mass invariance, expressed as

the median of fdccm inverse, ijg across 100 pairwise comparisons of subto-

mograms simulated at different distortion levels. The surface region color

is rescaled hue saturation value (HSV) color and proportional to the

surface height
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tested the performance with respect to the levels of crowdedness
(Supplementary Figs S1–S3). At low to median distortion levels,
we observe moderate correlation between the aforementioned

two quantities. At high distortion levels, the correlations are
small, showing that the alignment is more affected by high

levels of distortions.

3.5 Segmenting target complexes in subtomograms

extracted from experimental whole-cell tomogram

of the human pathogen Leptospira interrogans

We tested our method also on experimental subtomograms
extracted from a whole-cell tomogram of Leptospira interrogans

in undisturbed conditions (Beck et al., 2009). Segmenting of
complexes in such subtomograms is significantly more challen-
ging because the macromolecular crowding is high and because

the SNR levels and resolution of these subtomograms is typically
low. Beck et al. (2009) have identified several complexes in the

tomogram using template matching (Best et al., 2007). The tem-
plates were generated by using density maps of structures in the

Protein Databank and convoluted with CTF andMTF. As a test
case, we use two subtomograms with high template matching
scores to the ribosome template. For each of these matches, we

extracted a subtomogram of size 493 voxels that was large
enough to contain an instance of the complex and certain

amount of surrounding structure fragments.
The results shown in Figure 7 demonstrate that our method

can successfully segment the target ribosome complex while sur-

rounding structures are clearly excluded. The ribosome positions
agree with those detected in the template matching. We further

extended the study to the subtomograms corresponding to the
top 20 template matching scores. Overall, 18 of them showed
successful segmentation (Supplementary Fig. S4). We also ana-

lyzed the target complex segmentation performance with respect
to the level of crowdedness. The crowdedness of the Leptospira

interrogans subtomograms ranges from 0 to 60%. The true-posi-
tive and false-positive rates plotted in Supplementary Figure S4

shows that, in most situations, our method can correctly identify

the target complex region. Only at high crowdedness level, (i.e.
450%), our method fails to correctly identify the target complex

regions.

3.6 Analysis of computational costs

We implemented the methods in MATLAB and carried out our
tests on a computer cluster consisting of 2.3–2.7GHz computer

nodes. On average, the target complex detection step takes 14.8 s.

In this step, the major proportion of computation time was used
for the scale selection (8.6 s on average). In practice, we can de-

termine a fixed scale parameter � from a set of training subto-

mograms and directly apply it to all subtomograms. Then, on
average, only 6.2 s would be used for detecting the target com-

plex. The computer memory consumption is small. Because a

subtomogram is typically small (a subtomogram of size 643 cor-
responds to at most 2M memory), our detection step uses no

more memory than 20 times the size of a single subtomogram.
The most computational intensive step in the classification

process is the alignment. The computational cost of our new

method is essentially the same as our previous method (Xu
et al., 2012) and therefore allows high-throughput subtomogram

classifications.

4 CONCLUSION

Cryo-electron tomograms provide useful information for simul-

taneously detecting the native structures and their spatial cellular
locations of a large number of macromolecular complexes.

However, the high level of macromolecular crowding and distor-

tions in the extracted subtomograms makes such analysis
challenging. In addition, the availability of a large number of

subtomograms containing potential complexes requires high-

throughput analysis techniques. In this article, we propose an
automatic segmentation technique that isolates the target com-

plex inside a crowded subtomogram. We further detect the rigid

transform invariant center of mass of the target complex and
propose an improved fast alignment method using fast rotational

matching in real space. The new method shows good perform-

ance in segmenting target complexes in crowded subtomograms
and performing fast rotational alignments using both simulated

and experimental subtomograms. This performance is a neces-
sary condition for high-throughput structural classifications of

complexes in whole-cell tomograms. This work represents a step

toward high-throughput and reference-free Visual Proteomics
analysis of highly crowded whole-cell cryo-electron tomograms.
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Fig. 7. Segmentation of target complex regions in Leptospira interrogans

subtomograms. Each row shows the segmentation process for a ribosome

instance. Each subfigure in a row consists of the consecutive slices

through the y-axis of the 3D image. (A) Original extracted subtomo-

grams. (B) Images after Gaussian smoothing with automatic scale selec-

tion. (C): Images after Watershed segmentation. (D) Images after

structural boundary segment detection. (E) Images of the selected seg-

ment clusters resulting from the model-based clustering. (F) Images of the

final segmented target complexes. Because the contrast is low, for the

detection of significant boundary segments, we relaxed significance level

parameters by setting cmin intensity factor ¼ cmin surface factor ¼ 0:5. When

determining the target complex region, we set cboundary cutoff factor ¼ 2
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Böhm,J. et al. (2000) Toward detecting and identifying macromolecules in a cellular

context: template matching applied to electron tomograms. Proc. Natl Acad.

Sci. USA, 97, 14245–14250.

Celeux,G. and Govaert,G. (1995) Gaussian parsimonious clustering models. Pattern

Recognit., 28, 781–793.

Chen,Y. et al. (2013) Fast and accurate reference-free alignment of subtomograms.

J. Struct. Biol., [Epub ahead of print, doi: 10.1016/j.jsb.2013.03.002, March 22,

2013].

Förster,F. et al. (2008) Classification of cryo-electron sub-tomograms using

constrained correlation. J. Struct. Biol., 161, 276–286.

Fraley,C. and Raftery,A. (2002) Model-based clustering, discriminant analysis, and

density estimation. J. Am. Stat. Assoc., 97, 611–631.

Frangakis,A. et al. (2002) Identification of macromolecular complexes in cryo-

electron tomograms of phantom cells. Proc. Natl Acad. Sci. USA, 99,

14153–14158.

Frank,J. (2006) Three-dimensional electron microscopy of macromolecular assemblies.

Oxford University Press, New York.

Garzón,J. et al. (2007) Adp_em: fast exhaustive multi-resolution docking for high-

throughput coverage. Bioinformatics, 23, 427–433.

Heumann,J. et al. (2011) Clustering and variance maps for cryo-electron tomog-

raphy using wedge-masked differences. J. Struct. Biol., 175, 288–299.

Hrabe,T. et al. (2012) Pytom: a python-based toolbox for localization of macro-

molecules in cryo-electron tomograms and subtomogram analysis. J. Struct.

Biol., 178, 177–188.

Kovacs,J. and Wriggers,W. (2002) Fast rotational matching. Acta. Crystallogr.

D. Biol. Crystallogr., 58, 1282–1286.

Lindeberg,T. (1994) Scale-Space Theory in Computer Vision. The Kluwer

International Series in Engineering and Computer Science. Kluwer Academic

Publishers, Dordrecht, The Netherlands.

Lucic,V. et al. (2005) Structural studies by electron tomography: from cells to mol-

ecules. Annu. Rev. Biochem., 74, 833–865.

Martinez-Sanchez,A. et al. (2011) A differential structure approach to membrane

segmentation in electron tomography. J. Struct. Biol., 175, 372–383.

McMullan,G. et al. (2009) Detective quantum efficiency of electron area detectors in

electron microscopy. Ultramicroscopy, 109, 1126–1143.

Medalia,O. et al. (2002) Macromolecular architecture in eukaryotic cells visualized

by cryoelectron tomography. Science, 298, 1209–1213.

Nickell,S. et al. (2005) TOM software toolbox: acquisition and analysis for electron

tomography. J. Struct. Biol., 149, 227–234.

Nickell,S. et al. (2006) A visual approach to proteomics. Nat. Rev. Mol. Cell. Bio., 7,

225–230.

Volkmann,N. (2002) A novel three-dimensional variant of the watershed transform

for segmentation of electron density maps. J. Struct. Biol., 138, 123–129.

Volkmann,N. (2010) Methods for segmentation and interpretation of electron

tomographic reconstructions. Methods Enzymol., 483, 31–46.

Witkin,A.P. (1983) Scale-space filtering. In: International Joint Conference on

Artificial Intelligence, Karlsruhe, Germany. pp. 1019–1022.

Wriggers,W. et al. (1999) Situs: a package for docking crystal structures into

low-resolution maps from electron microscopy. J. Struct. Biol., 125, 185–195.

Xu,M. and Alber,F. (2012) High precision alignment of cryo-electron subtomo-

grams through gradient-based parallel optimization. BMC. Syst. Biol., 6

(Suppl. 1), S18.

Xu,M. et al. (2011) Template-free detection of macromolecular complexes in

cryo electron tomograms. Bioinformatics, 27, i69–i76.

Xu,M. et al. (2012) High-throughput subtomogram alignment and classification

by Fourier space constrained fast volumetric matching. J. Struct. Biol., 178,

152–164.

i282

M.Xu and F.Alber


