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Abstract—Brahma-related gene 1 (BRG1) has been implicated in the repair of DNA
double-strand breaks (DSBs). Downregulation of BRG1 impairs DSBs repair leading to
accumulation of double-stranded DNA (dsDNA). Currently, the role of BRG1 in dia-
betic cardiomyopathy (DCM) has not been clarified. In this study, we aimed to explore
the function and molecular by which BRG1 regulates DCM using mice and cell mod-
els. We found that BRG1 was downregulated in the cardiac tissues of DCM mice and
in cardiomyocytes cultured with high glucose and palmitic acid (HG/PA), which was
accompanied by accumulation of dsDNA and activation of the cyclic GMP-AMP synthase
(cGAS)—stimulator of interferon genes (STING) signaling pathway. shRNA-mediated Brgl
knockdown aggravated DCM mice cardiac functions, enhanced dsDNA accumulation,
cGAS-STING signaling activation, which induced inflammation and apoptosis. In addition,
the results were further verified in HG/PA-treated primary neonatal rat cardiomyocytes
(NRCMs). Overexpression of BRG1 in NRCMs yielded opposite results. Furthermore, a
selective cGAS inhibitor RU.521 or STING inhibitor C-176 partially reversed the BRG1
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knockdown-induced inflammation and apoptosis in vitro. In conclusion, our results dem-
onstrate that BRG1 is downregulated during DCM in vivo and in vitro, resulting in car-
diomyocyte inflammation and apoptosis due to dsSDNA accumulation and cGAS-STING
signaling activation. Therefore, targeting the BRG1-cGAS-STING pathway may represent
a novel therapeutic strategy for improving cardiac function of patients with DCM.

KEY WORDS: brahma-related gene 1; cardiomyocyte apoptosis; cGAS; diabetic cardiomyopathy; STING

INTRODUCTION

Diabetes, a non-communicable metabolic disease, is
increasingly becoming a major pandemic worldwide [1].
Although great progress has been made in the establish-
ment of diabetes treatment, the available treatments have
several chronic complications, especially cardiovascular
diseases [2]. DCM is the main cause of death in diabetic
patients, and is characterized by myocardial hypertrophy,
cardiac fibrosis, and heart failure [3]. The pathophysiol-
ogy of DCM is complex with multiple pathophysiological
mechanisms associated with its, including mitochondrial
dysfunction, myocardial inflammation, and apoptosis [4,
5]. Uncontrolled myocardial inflammation and apoptosis
are key processes that cause cardiac dysfunction in DCM
[6]. Therefore, expanding our understanding of the com-
plexity of DCM pathophysiology, particularly the identi-
fication of novel genes and regulatory pathways, will help
to identify treatments for DCM-induced cardiomyocyte
inflammation and apoptosis.

BRGI1, also known as SMARCA4, encodes a com-
ponent of the switch/sucrose nonfermentable (SWI/
SNF) complex, which regulates the ATPase and helicase
activities. Recent studies have demonstrated that BRG1
downregulation increased the transcription of proinflam-
matory genes and induced apoptosis [7, 8]. A previous
study demonstrated that BRG1 participates in cardiac
growth and differentiation processes [9]. In our earlier
study, we found that BRG1 was upregulated during acute
myocardial infarction, and BRG1 overexpression allevi-
ated cardiomyocyte oxidative damage and increased
cardiomyocyte viability [10]. In addition, BRG1 upregu-
lation was found to ameliorate diabetic cardiomyopathy-
induced diastolic dysfunction [11]. However, whether
BRG1 is involved in the development of DCM remains
to be determined.

Studies have implicated BRG1 in the repair of DNA
double-strand breaks (DSBs), loss of BRG1 impairs
DSBs repair resulting in the accumulation of cytoplas-
mic dsDNA [12, 13]. cGAS, a dsDNA sensor, uses cyto-
solic DNA to generate cyclic GMP-AMP, which binds

to its receptor STING. Subsequently, STING activates
the transcription factor nuclear factor-kappa B (NF-xB)
and interferon regulatory factor 3 (IRF3) via the TANK
binding kinase 1 (TBK1) [14, 15]. Recent studies have
confirmed that cGAS—STING also contributes to DCM
by sensing mitochondrial damage-released DNA [16, 17].
Therefore, studies are needed to explore the relationship
between BRG1 expression and the cGAS—STING during
the pathogenesis of DCM.

In this study, we utilize an HFD and streptozotocin
(STZ)-induced DCM mouse model and HG/PA-treated
cardiomyocytes injury model to investigate the relation-
ship between BRG1 expression and cGAS-STING acti-
vation in DCM. BRG1 was knocked down in DCM mice
and HG/PA-treated cardiomyocytes to deeply explore
the mechanism by which BRG1 regulates DCM. These
results show that BRG1 has promising therapeutic poten-
tial for application in DCM.

MATERIALS AND METHODS

Vector and Adeno-associated Virus; Lentivirus
Construction and Adenovirus

The adeno-associated virus (AAV) vector carrying
cardiac troponin T (CTNT) promoter, green fluorescent
protein (GFP) and Brgl shRNA were purchased from
Hanbio Biotechnology Co. Ltd (Shanghai, China). The
cardiomyocyte-specific CTNT promoter promotes the
expression of Brgl shRNA in cardiomyocytes. The len-
tiviral virus vector carrying GFP and Brgl shRNA was
constructed by Cyagen Biosciences (Guangzhou, China).
The Brgl shRNA sequence was 5'-GCTGCCAAATAC
AAACTCAATCTCGAGATTGAGTTTGTATTTGGC
AGC-3'. The adenovirus carrying GFP and Brg/-ade-
novirus were constructed by the WZ Biosciences Inc.
(Shandong, China). The titers of the AAV stock, lenti-
virus stock and adenovirus stock were 1.68 x 10'2 vg/ml,
3.98 x 10° TU/ml and 1 x 10'° pfu/ml, respectively.
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Animal Experiments

All animal procedures were approved by the Insti-
tutional Animal Care and Use Committee of Affiliated
Qingyuan Hospital, Guangzhou Medical University
(Guangdong, China). 3—4-weeks old male C57BL/6]
mice were purchased from Vital River Laboratory Ani-
mal Technology Co., Ltd (Guangdong) and housed under
specific pathogen-free condition with a 12 h light/dark
cycle, and 25+ 1 °C, 60 + 5% humidity. The mice were
randomly divided into six groups: control (CON), con-
trol with AAV 9-scramble (AAV-scramble), control with
myocardium-specific knockdown of Brgl shRNA (AAV-
Brgl shRNA), DCM, DCM with AAV-scramble, and
DCM with AAV-Brgl shRNA. They were then intrave-
nously injected with AAV-Brgl shRNA into the tail vein
to establish a model of myocardium-specific knockdown
of Brgl. The diabetic mice were subsequently intraperi-
toneally injected with streptozotocin (STZ; 85 mg/kg,
Sigma Aldrich, USA) twice and fed on HFD. Mice in the
control group were given a normal diet and injected with
the same volume of citrate sodium buffer. After injection,
a contour glucose meter (Johnson & Johnson, USA) was
used to measure blood glucose levels at 3, 5, and 7 days,
and postprandial blood glucose > 16.7 mmol/L indicated
diabetes. After 16 weeks of treatment, cardiac function
was evaluated using the Vevo2100 system.

Echocardiography

Mice electrocardiography was performed using a
transthoracic echocardiography (Vevo2100; Visual Son-
ics, Canada). Briefly, mice were anesthetized with 2% iso-
flurane, and cardiac function parameters were measured,
including the E/A ratio, left ventricular ejection fraction
(LVEF), left ventricular fractional shortening (LVFS),
and other left ventricular (LV) parameters.

Isolation of NRCMs and Treatment

The NRCMs were isolated from 1-2 days Sprague
Dawley rats as previously described [18]. Cultured car-
diomyocytes were transfected with Ad-Mock, Ad-Brgl
WT [the multiplicity of infection (MOI)=>5]; Lenti-
scramble, or Lenti-Brgl shRNA (the MOI = 25) for 48 h,
or pretreated with 10 pmol RU.521 (Cat. #HY-114180;
New Jersey city, USA) or C-176 (Cat. # HY-112906;

New Jersey city, USA) for 24 h and then incubated with
33 mM glucose and 300 pM palmitic acid for 48 h. The
NRCMs were subsequently harvested for analysis.

Histology and Immunofluorescent Staining

Fresh mice hearts were fixed in 10% formalin solu-
tion and embedded in paraffin. The heart was sectioned
into 4 pm thick sections and stained with Masson’s and
hematoxylin-eosin (HE) staining.

In vitro, cardiomyocytes were fixed in 4% paraform-
aldehyde. The membranes were permeabilized with 1%
triton and incubated with 100 nM glycine. Subsequently,
they were blocked with 10% goat serum for 1 h followed
by incubation with primary antibody overnight at 4 °C.
On the following day, cardiomyocytes or tissue sections
were incubated with dylight 561-coupled anti-mouse IgG
and dylight 488/647-coupled anti-rabbit IgG. Finally,
the nuclei were stained with DAPI at a concentration of
0.5 pg/ml. The sections were imaged using a confocal
microscope (LSM900). The antibody information is pre-
sented in Table S1.

Western Blotting (WB) Assessment

Cells or tissues were lysed to extract proteins, which
was then separated by 10-15% sodium dodecyl-sulfate
polyacrylamide gel electrophoresis gel (SDS-PAGE) and
transferred to polyvinylidene difluoride (PVDF) mem-
brane. The PVDF membranes were blocked with 5%
skimmed milk and incubated with primary antibodies
overnight at 4 °C. The membranes were then incubated
with a secondary antibody. Finally, the protein bands
were analyzed using the gel imaging system (Biorad
ChemiDoc). The details of antibodies used are presented
in Table S1.

Quantitative Real-time PCR (qRT-PCR)

The total RNA was extracted from treated cardio-
myocytes or cardiac tissues using TRIzol reagent (Invit-
rogen). The RNA was reverse transcribed into comple-
mentary DNA (cDNA) using the Takara PrimeScript™
RT Master Mix (Takara Bio Inc., Japan). The cDNA was
subjected to qPCR amplification on the CFX Connect™
Real-Time system (Biorad). The primers used in this
experiment were designed by the NCBI Primer-BLAST
and are listed in Table S2.
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TdT-mediated dUTP Nick End Labeling
(TUNEL) Staining

The apoptosis rate of cardiomyocytes was deter-
mined by TUNEL staining. Briefly, mice myocardial tis-
sues were excised, fixed, paraffinized and then sectioned.
In vitro, cardiomyocytes were fixed by 4% paraformalde-
hyde solution. The membranes were permeabilized with
1% triton and incubated with 100 nM glycine. The incu-
bation buffer was the prepared following instructions on
the TUNEL kit (Cat. 12156792910 Roche Diagnostics,
Germany), and was applied in a constant temperature
incubator at 37 °C in darkness. The nuclei were stained
with DAPI at a concentration of 0.5 pg/ml. Confocal
microscope (LSM900) was employed to examine and
capture images of the slices for analysis.

Statistical Analysis

Statistical analysis was performed by GraphPad
Prism 8.0 (San Diego, CA, USA), and the data were
expressed as the mean =+ standard error. Groups were
compared with paired t-tests or one-way ANOVAs with
post-hoc Tukey tests. P <0.05 was considered statistically
significant.

RESULTS

BRG1 is Downregulated in the Heart of DCM
Mice

In this study, we established a DCM mouse model
by feeding a HFD and administering STZ. We initially
assessed the BRG1 protein levels in the cardiac tissues
of DCM mice. Western blot analysis revealed that BRG1
protein level was decreased in the cardiac tissues of DCM
mice compared to normal mice (Fig. 1a). Immunofluo-
rescence staining further confirmed the localization and
decreased expression of BRGI in the hearts of DCM
mice (Fig. 1b). Considering that BRG1 participates in the
repair of DSBs, we detected the accumulation of H2AX
phosphorylation (y-H2AX, a surrogate marker for DSBs)
and dsDNA in the mice cardiac tissues. It was observed
that the y-H2AX protein level was higher in cardiac tis-
sues from the DCM mice compared with the normal mice
(Fig. 1a). In addition, the cytoplasmic dsDNA content
was increased in the heart tissues (Fig. 1¢). Consistent
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with these results, the protein levels of cGAS, STING,
p-TBK, and p-NF-xB were significantly upregulated
in cardiac tissues from the DCM mice (Fig. 1d). Fur-
thermore, analysis of the expression level of inflamma-
tion and apoptosis markers in the pathogenesis of DCM
revealed that the concentration of IL-1p and cleaved cas-
pase-3 were upregulated in the cardiac tissues from DCM
mice (Fig. 1e and f). These results suggested that BRG1
was downregulated in the heart tissues of DCM model,
which may result in cGAS-STING signaling activation,
inflammation and apoptosis.

BRG1 Expression is Downregulated in HG/
PA-treated Cardiomyocytes

Primary cardiomyocytes were incubated with HG/
PA to mimic the hyperglycemia and hyperlipemia in
vitro. Subsequently, the expression levels of BRG1 and
v-H2AX in the HG/PA-treated cardiomyocytes were
measured. Compared with the control group, BRG1
expression was gradually decreased in a time-depend-
ent manner following HG/PA stimulation, whereas the
expression of y-H2AX was gradually increased (Fig. 2a).
The immunofluorescence results confirmed the localiza-
tion and downregulation of BRGI1 expression in HG/
PA-cultured cardiomyocytes (Fig. 2b). Furthermore,
we evaluated the cytoplasmic dsDNA content and the
activity of the cGAS-STING in the HG/PA-treated
cardiomyocytes. Data shown in Fig. 2c suggested that
the cytoplasmic dsDNA content was increased follow-
ing HG/PA treatment. In addition, the protein levels of
cGAS, STING, p-TBK, and p-NF-«B were significantly
upregulated in HG/PA-treated cardiomyocytes (Fig. 2d).
Consistent with this, the expression levels of IL-1f and
cleaved caspase-3 were upregulated in HG/PA-treated
cardiomyocytes in a time-dependent manner (Fig. 2e and
f). Altogether, these results indicated that BRG1, dsDNA,
and the cGAS-STING co-regulate inflammation and
apoptosis in HG/PA-treated cardiomyocytes.

BRGI1 Deficiency Aggravated Cardiac
Dysfunction Irn Vivo

To explore the function of BRG1 in DCM patho-
genesis, we constructed a DCM mouse model with
myocardium-specific knockdown of BRG1 via injec-
tion of AAV-Brgl shRNA. The experimental design of
this process is shown in Fig. 3a. The GFP-tagged virus
was used as a scrambled control. The in vivo imaging
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Fig.1 BRG] is downregulated in the heart of DCM mice. a Protein levels of BRG1 and y-H2AX were assayed using Western blot in mice cardiac
tissues. b Representative immunofluorescence images of BRG1 in cardiac tissues. ¢ The accumulation of dsDNA was evaluated using immunofluo-
rescent staining in mice cardiac tissues. d Protein levels of cGAS-STING signaling-related genes were assayed using Western blot in mice cardiac
tissues. e Level of IL-1p protein was assayed using Western blot in mice cardiac tissues. f Level of cleaved caspase-3 was assayed using Western blot

in mice cardiac tissues. * indicates P <0.05 vs. the CON group.

and GFP immunofluorescence results indicated that
AVYV targeted and was enriched in myocardial tissue
(Supplementary Fig. 1A and B). In addition, the WB
results confirmed that the protein level of BRG1 in heart
tissue was effectively knocked down following AAV-
Brgl shRNA injection (Fig. 3b). The heart weight/
tibial length (HW/TL) ratio (Fig. 3¢) and the sectional
area of myocardial cross (Fig. 3d) were increased after
AAV-Brgl shRNA injection. Analysis of the echo-
cardiography results revealed significant reduction in
the E/A ratio in the model group. Mice injected with

AAV-Brgl shRNA exhibited significantly decreased in
the E/A ratio compared to the control group (Fig. 3g).
Compared to the DCM group, mice injected with AAV-
Brgl shRNA exhibited significantly decreased echo-
cardiographic parameters of LVEF, LVFS, E/A ratio,
and LVPW in end-systole, while LVID in end-systole
was significantly increased (Fig. 3e-i). In addition, the
heart rates were comparable among the study groups
(Fig. 3j). These results indicated that BRG1 contributed
to the pathological process of DCM in vivo.
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BRG1 Deficiency Increased Cytoplasmic dsDNA
Accumulation and Activated cGAS-STING
Signaling

To explore the role of BRGI in the pathological
mechanism of DCM, we assessed y-H2AX expression,

a
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cytoplasmic dsDNA content, and activation of the
cGAS-STING in DCM mice following cardiomyocyte-
specific BRG1 knockdown. Our results revealed a sig-
nificant increase in the protein level of y-H2AX follow-
ing AAV-Brgl shRNA injection (Fig. 4a). Consistent
with this finding, the cytoplasmic dsDNA content was
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also increased after AAV-Brgl shRNA transfection
(Fig. 4b). Furthermore, AAV-Brgl shRNA signifi-
cantly upregulated the protein levels of cGAS, STING,
p-TBK, and p-NF-xB in both control and DCM mouse
cardiac tissues (Fig. 4c). Collectively, these results sug-
gested that BRG1 knockdown increased the cytoplasmic
dsDNA content and activated the cGAS-STING.

BRG1 Deficiency Induced Inflammation
and Apoptosis in Mouse Cardiac Tissues

Since dsDNA and cGAS-STING have close rela-
tionship with inflammation and apoptosis, we detected
the concentration of markers in the cardiac tissues of
AAV-Brgl shRNA transfected mice. The WB results
indicated that the IL-1p protein level was significantly
upregulated in the AAV-Brgl shRNA transfected group
(Fig. 5a). Levels of tnf-a and il-6 mRNA also exhib-
ited similar trends (Fig. 5b). TUNEL straining results
confirmed that knockdown of BRG1 increased the
percentage of apoptotic cardiomyocytes (Fig. 5c). In
addition, cleaved caspase-3 was upregulated in cardiac
tissues of AAV-Brgl shRNA transfected mice (Fig. 5d).
These findings demonstrated that knockdown of BRG1
induced inflammation and apoptosis in mice cardiac
tissues.

BRG1 Overexpression Inhibited HG/
PA-induced Cytoplasmic dsDNA Accumulation
and cGAS-STING Signaling Activation In Viftro

Further, we employed NRCMs to verify the in vivo
results. The WB results indicated that HG/PA treatment
downregulated the protein level of BRG1 and upregulated
the protein level of y-H2AX in cardiomyocytes, which
was consistent with the in vivo results (Fig. 6a and b).
Moreover, HG/PA treatment increased the cytoplasmic
dsDNA content in cardiomyocytes (Fig. 6¢ and d). We
also observed that the HG/PA treatment significantly
upregulated the protein levels of cGAS, STING, p-TBK
and p-NF-kB in cardiomyocytes (Fig. 6e and f).

To assess the impact of BRG1 on cytoplasmic
dsDNA content and activation of the cGAS-STING, we
manipulated BRG1 expression in cardiomyocytes through
adenovirus or lentivirus transfection for upregulation
or downregulation, respectively. Knockdown of BRG1

further increased the HG/PA-induced upregulation of
y-H2AX, while BRG1 overexpression had the opposite
effect (Fig. 6a and b). In addition, BRG1 knockdown
enhanced HG/PA-induced cytoplasmic dsDNA accu-
mulation, while BRG1 overexpression showed an oppo-
site effect (Fig. 6¢c and d). Consistent with this, BRG1
knockdown increased the protein levels of cGAS, STING,
p-TBK and p-NF-kB, whereas BRG1 overexpression
had an opposite effect (Fig. 6e and f). These findings
strongly suggest that BRG1 deficiency results in cyto-
plasmic dsDNA accumulation and cGAS-STING signal-
ing activation.

BRG1 Overexpression Reduction
of Inflammation and Apoptosis In Vitro

Next, we evaluated the function of BRG1 in HG/
PA-induced cardiomyocyte inflammation and apoptosis.
The WB results indicated that BRG1 knockdown fur-
ther enhanced the IL-1p protein expression in HG/PA-
managed cardiomyocyte, whereas BRG1 overexpressing
had an opposite effect (Fig. 7a and c). The levels of tnf-
a and il-6 mRNA also exhibited similar trends (Fig. 7b
and d). In addition, the TUNEL staining results showed
that BRG1 deficiency further enhanced the apoptosis of
cardiomyocytes, while BRG1 overexpression showed the
opposite effect (Fig. 7e). Similarly, BRG] knockdown
upregulated the expression of cleaved caspase-3 protein,
while BRG1 overexpression triggered opposite effect
(Fig. 7f). These results indicated that BRG1 overexpres-
sion inhibited HG/PA-induced cardiomyocyte inflamma-
tion and apoptosis.

Blockade of cGAS-STING Attenuated BRG1
Downregulation-induced Cardiomyocyte
Inflammation and Apoptosis

To further elucidate the role of cGAS-STING in
BRG1 downregulation-induced cardiomyocyte injury in
vitro, the activity of cGAS-STING was inhibited using
selective inhibitors in BRG1 knockdown and HG/PA-
treated cardiomyocytes. WB analysis showed that RU.521
or C-176, a selective inhibitor for cGAS or STING, suc-
cessfully inhibited cGAS or STING expression (Supple-
mentary Fig. 2A and B).

Data presented in Fig. 8a indicates that both
RU.521 and C-176 blocked BRG1 knockdown-induced
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upregulation of IL-1f and cleaved caspase-3, while shRNA-infected NRCMs (Fig. 8b). These results sug-
RU.521 or C-176 had no effect on the expression of gested that BRG1 knockdown enhanced the HG/PA-
BRG] and y-H2AX (Fig. 8a). Moreover, RU.521 and induced cardiomyocyte inflammation and apoptosis via
C-176 inhibition alleviated apoptosis in Lenti-Brgl the cGAS-STING pathway.
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Based on these results, we speculate that a hyper-
glycemic and hyperlipemic internal environment down-
regulates BRG1. This BRG1 deficiency activates the
cGAS-STING by inducing dsDNA accumulation, thereby
leading to cardiomyocyte inflammation and apoptosis
(Fig. 8c).

DISCUSSION

DCM is characterized by increased cardiomyocyte
apoptosis and hypertrophy, as accompanied by impaired
cardiac function, which elevates the risk of HF and sud-
den death in DCM patients [19]. In some preliminary
studies, treatments such as sodium-glucose cotransporter
2 inhibitors and dipeptidyl peptidase-4 inhibitors were
found to have the potential to treat DCM [20-22]. How-
ever, their clinical efficacy is limited. Therefore, there
is an urgent need to explore the mechanisms of DCM
and develop effective interventions to improve the DCM
symptoms. In this study, we found that BRG1 deficiency
led to dsDNA accumulation, and activation of the cGAS-
STING signaling in cardiomyocytes from DCM mouse
model and HG/PA-cultured NRCMs. BRG1 downregula-
tion aggravated cardiomyocyte dysfunction, resulting in
cardiomyocyte inflammation and apoptosis by enhancing
dsDNA accumulation and activating cGAS-STING sign-
aling (see Fig. 8c).

BRG1 has been implicated in the pathogenesis of
cardiovascular disease [23]. A previous study found that
BRG] attenuated exercise-induced physiological myocar-
dial hypertrophy by inhibiting pressure overload-induced
histone deacetylase 2 activation and serine/threonine
kinase/glycogen synthase kinase 3 phosphorylation [24].
A study by Funamoto et al. reported that the p300/BRG1
complex promotes occurrence of heart failure by enhanc-
ing the histone globular domain H3K122 acetylation [25].
In cultured endothelial cells and arteries, proinflamma-
tory stimuli augmented the expression of BRG1. Previous
investigations have demonstrated that BRG1 contribute to
inflammation and endothelial NO synthase phosphoryla-
tion thereby contributing to the development of athero-
sclerosis [26, 27]. Moreover, BRG1 suppressed neutrophil
infiltration and modulated NO bioavailability in endothe-
lial cells to inhibit cardiac ischemia-reperfusion injury in
mice [28, 29]. In our previous study, we found that BRG1
protected the heart against acute myocardial infarction
and reduced oxidative damage by activating the NRF2/
HOL1 signaling pathway [10]. In addition, upregulation
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of BRG1 expression ameliorated hyperglycemia-induced
oxidative stress and cardiac hypertrophy [11, 30]. In this
study, we found that BRG1 deficiency promoted the pro-
gression of DCM and aggravated cardiac dysfunction in
vivo, demonstrating that BRG1 is a potential therapeutic
target of DCM.

The pathogenesis of DCM is multifaceted, with
inflammation and apoptosis emerging as significant fac-
tors. Given the limited capacity for cardiomyocyte pro-
liferation in the adult human heart, apoptosis of cardiac
muscle cells stands out as a primary contributor to cardiac
remodeling and dysfunction [31, 32]. BRG1, a protein
involved in various biological processes including apop-
tosis and inflammation, is also implicated in DCM. A
recent study indicated that BRG1 overexpression attenu-
ates apoptosis induced by high glucose exposure in retinal
ganglion cells through Notch activation [33]. In addition,
increased BRG1 levels have been associated with reduced
inflammatory responses and decreased oxidative dam-
age in cerebral ischemia—reperfusion injury, and BRGI
deficiency has been linked to inflammation-driven colo-
rectal cancer [8, 34]. As a core subunit of the SWI/SNF
complex, BRG1 promotes the DSBs repair by stimulating
the y-H2AX at the DSB-surrounding chromatin. Loss of
BRG1 promotes DSBs repair and upregulates y-H2AX
[12, 35]. Moreover, we found that BRG1 deficiency
resulted in upregulation of y-H2AX expression in vivo
and in vitro.

cGAS-STING is an evolutionarily conserved
defense mechanism hat senses pathogenic DNA, and
triggers the innate immune reaction by stimulating type I
interferon secretion [36]. In addition, the cGAS-STING
was reported to be involved in dsDNA-induced inflam-
mation and apoptosis [37, 38]. In a previous study, doxo-
rubicin increased the DNA damage in cardiac endothe-
lial cells causing accumulation of dsDNA fragments
and activation of cGAS-STING pathway [39]. Another
recent study found that y-H2AX upregulation may indi-
rectly increase dsDNA accumulation in the cytoplasm
[13]. In our study, we confirmed that BRG1 downregu-
lation increased y-H2AX expression, accompanied by
the dsDNA accumulation and activation of the cGAS-
STING to induce cardiomyocyte inflammation and apop-
tosis. A previous study indicated that failure to repair and
eliminate DSBs promptly leads to the accumulation of
dsDNA and subsequent apoptosis. Inhibition of cGAS
has been shown to reduce cardiomyocyte apoptosis [40].
Additionally, another study demonstrated that myocardial
infarction results in the release of cardiac dsDNA, and
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inhibiting the STING can alleviate cardiomyocyte apop-
tosis [41]. Our results further showed that both cGAS
and STING inhibition alleviated the BRG1 knockdown-
induced upregulation of IL-1f and cleaved caspase-3 in
NRCMs, thereby preventing cardiomyocyte apoptosis.
Together, these data demonstrate that BRG1 deficiency
modulates cardiomyocyte inflammation and apoptosis by
activating the cGAS-STING pathway.

Collectively, our results demonstrated that BRG1
is downregulated in hyperglycemic and hyperlipemic
cardiomyocytes both in vivo and in vitro. We found that
BRG1 deficiency resulted in the accumulation of dsSDNA
and triggered cGAS-STING activation, exacerbating
cardiomyocyte inflammation and apoptosis induced by
hyperglycemia and hyperlipemia. These findings suggest
a potential novel therapeutic approach for managing car-
diomyocyte injury in DCM.
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