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Abstract

Background

Human papillomavirus (HPV) infection is one of the most common sexually transmitted

infections. However, only a small percentage of high-risk (HR) HPV infections progress to

cervical precancer and cancer. In this study, we investigated the role of the cervicovaginal

microbiome (CVM) in the natural history of HR-HPV.

Methods

This study was nested within the placebo arm of the Costa Rica HPV Vaccine Trial that

included women aged 18–25 years of age. Cervical samples from two visits of women with

an incident HR-HPV infection (n = 273 women) were used to evaluate the prospective role

of the CVM on the natural history of HR-HPV. We focus specifically on infection clearance,

persistence, and progression to cervical intraepithelial neoplasia grade 2 and 3 (CIN2+).

The CVM was characterized by amplification and sequencing the bacterial 16S V4 rRNA

gene region and the fungal ITS1 region using an Illumina MiSeq platform. OTU clustering

was performed using QIIME2. Functional groups were imputed using PICRUSt and statisti-

cal analyses were performed using R.

Results

At Visit 1 (V1) abundance of Lactobacillus iners was associated with clearance of incident

HR-HPV infections (Linear Discriminant Analysis (LDA)>4.0), whereas V1 Gardnerella was
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the dominant biomarker for HR-HPV progression (LDA>4.0). At visit 2 (V2), increased

microbial Shannon diversity was significantly associated with progression to CIN2+ (p =

0.027). Multivariate mediation analysis revealed that the positive association of V1 Gardner-

ella with CIN2+ progression was due to the increased cervicovaginal diversity at V2 (p =

0.040). A full multivariate model of key components of the CVM showed significant protec-

tive effects via V1 genus Lactobacillus, OR = 0.41 (0.22–0.79), V1 fungal diversity, OR =

0.90 (0.82–1.00) and V1 functional Cell Motility pathway, OR = 0.75 (0.62–0.92), whereas

V2 bacterial diversity, OR = 1.19 (1.03–1.38) was shown to be predictive of progression to

CIN2+.

Conclusion

This study demonstrates that features of the cervicovaginal microbiome are associated with

HR-HPV progression in a prospective longitudinal cohort. The analyses indicated that the

association of Gardnerella and progression to CIN2+ may actually be mediated by subse-

quent elevation of microbial diversity. Identified features of the microbiome associated with

HR-HPV progression may be targets for therapeutic manipulation to prevent CIN2+.

Trial registration

ClinicalTrials.gov NCT00128661.

Author summary

Despite being the most common sexually transmitted infection and the causal agent of

cervical cancer, it is still not clear why only a small proportion of high-risk HPV (HR-

HPV) infections progress to cervical cancer. Our study utilizes longitudinal cervicovaginal

samples from a prospective cohort, along with advanced epidemiological modeling and

mediation analysis, to investigate the association between the cervicovaginal microbiome

(CVM) and progression of an incident HR-HPV infection to cervical precancer. The

results of our study suggest a novel association between the effect of Gardnerella and dis-

ruption of CVM homeostasis that can influence the pathway of HR-HPV infection pro-

gression to cervical precancer. We further show the interplay between several key

components of the cervicovaginal microbiome and demonstrate that within the context of

HR-HPV natural history the effect of Gardnerella is mediated by increased cervicovaginal

bacterial diversity directly preceding the progression of a persistent infection to

precancer.

Introduction

Persistent cervical infections by high-risk (HR) human papillomavirus (HPV) cause virtually

all cervical cancers and their immediate precursor lesions [1]. Most sexually active women

have been infected with HPV at some point in their lives and in the vast majority the infection

is cleared within a few months [2]. However, a subset of women develop a persistent HPV

infection that places them at high risk for cervical precancer and cancer [2–5]. Fig 1 illustrates

this paradigm canonically referred to as HPV natural history.
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Non-viral factors (HPV co-factors) associated with the outcomes of HR-HPV infections

have not been fully elucidated. While smoking [6–9], hormonal contraceptive use [10, 11], and

parity [12] are associated with developing precancer and cancer; systemic and local immune

responses are thought to be important for clearance and control of infection (persistence vs.

clearance) [13, 14]. In addition, specific host immune regulatory alleles (e.g., human leukocyte

antigen) are associated with risk of cervical cancer [15, 16].

The local, cervical microenvironment, including the microbiome, may also influence the

natural history of HPV infection [17]. Other studies have recently implicated the microbiome’s

role in the natural history of other viral infections [18] and a variety of cancers [19–21]. The

cervicovaginal microbiome (CVM) is of particular interested because it has been well charac-

terized and specific features have been associated with gynecologic disease and reproductive

health [22–24]. The CVM has been categorized into community state types (CSTs) generally

defined by a dominance of a specific Lactobacillus species (Lactobacillus crispatus, Lactobacil-
lus iners, Lactobacillus gasseri or Lactobacillus jensenii), or a state of polymicrobialism [25, 26].

Transitions from Lactobacillus dominated CSTs have been linked to detrimental health out-

comes including elevated risks for sexually transmitted infections [27], as well as higher inci-

dences of preterm births [28].

An association between increased CVM diversity and prevalence of HR-HPV infection

and/or cervical abnormalities (vs. HPV negative) has been reported in several studies [29–33].

Higher abundance of L. crispatus has been shown to be associated with lower HPV prevalence

[34] and increased detection of normal cytology [35]. Long-term use of vaginal probiotics with

Lactobacillus spp. has been associated with increase clearance of HPV compared to short-term

use [36]. However, evidence is conflicting on the association of CVM diversity and the severity

Fig 1. HPV natural history. The natural history of HR-HPV is depicted. Briefly, an incident HR-HPV infection can occur by entering the basal layer through an

epithelial abrasion. Most incidence infections are cleared, however some remain persistent for years and decades. Persistence of a HR-HPV infection combined with

known risk factors (e.g., smoking) may allow the persistent HR-HPV infection to progress to precancer (cervical intraepithelial neoplasia, CIN). If the lesion does not

regress and the HR-HPV is able to successfully integrate into the host-cell genome, clonal expansion may occur and result in an invasive cancer.

https://doi.org/10.1371/journal.ppat.1008376.g001
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of cervical neoplasia [37–39]. Additionally, most studies looking at the natural history of HPV

and the microbiome are cross-sectional and therefore lack the ability to draw potential causal

links.

For the current study, we leveraged longitudinal data and specimens from the placebo arm

of a large randomized HPV vaccine trial [40] to examine the impact of the CVM on the natural

history of incident HR-HPV infections to study: 1) progression to cervical precancer, 2) viral

persistence, and 3) viral clearance.

Results

Subject characteristics and cervicovaginal microbiome features

A total of 273 women with an incident HR-HPV infection were included in the analyses, of

whom 266 had a second sample with an average sampling interval of 1.5±0.9 years. Table 1

presents the sample demographic information and summarizes the bacterial and fungal

sequencing results after taxonomic assignment for each infection outcome at baseline. There

were no significant differences between groups in age (p = 0.13), 16S rRNA gene OTU clus-

tered read counts (p = 0.33), or ITS1 OTU clustered read counts (p = 0.53).

Fig 2 summarizes the bacterial Shannon diversity measures of the three ordered categorical

HR-HPV outcomes (see Fig 1) within the CVT cohort at V1 and V2. Alpha diversity analysis

did not reveal any significant differences at V1 in terms of bacterial Shannon alpha diversity

(trend p = 0.52). At V2 there was a significant trend of rising diversity based on the Shannon

diversity index (trend p = 0.024).

To evaluate the overall structure of the cervicovaginal microbiome, we performed hierar-

chical clustering on all available samples (n = 539) (Fig 3A). This analysis revealed four distinct

bacterial community state types (CSTs). Two CSTs were dominated by species of the genus

Lactobacillus (Lactobacillus iners, 143/539, 26.5% and Lactobacillus crispatus, 83/539, 15.4%),

one CST by Gardnerella vaginalis (94/539, 17.4%), and the other CST did not contain a major

group but had a highly diverse microbiome (219/539, 40.6%).

Table 1. CVT cohort characteristics.

Variable Clearance Persistence Progression p-val

Baseline Sample Count 70 170 33
Age (years) 23.4 ± 2.8 22.6 ± 2.3 22.70 ± 2.9 0.13

Current/former Smoker 15.7% (11/70) 27.1% (46/170) 26.7% (8/30) 0.16

Total number of sexual partners as of visit 3 ± 3 3 ± 2 3 ± 2 0.63

Contraceptive use� 97.1% (68/70) 97.6% (166/170) 96.7% (29/30) 0.86

Condom use prior to visit 44.1% (15/34) 39.3% (33/84) 58.3% (7/12) 0.46

Contraceptive pill prior to visit 68.8% (33/48) 68.5% (76/111) 52.6% (10/19) 0.40

Injectable contraceptive prior to visit 14.8% (8/54) 21.7% (26/120) 23.8% (5/21) 0.53

Other contraceptive prior to visit�� 4.6% (3/65) 0% (0/150) 0% (0/26) 0.029

Chlamydia/Gonorrhea Positive 46.2% (6/13) 30.4% (14/46) 0% (0/3) 0.32

HPV16 Positive 37.1% (26/70) 34.7% (59/170) 45.5% (15/33) 0.49

16SV4 Reads 10,642 ± 4,910 11,482 ± 4,985 11,041 ± 4,809 0.33

ITS1 Reads 1,942 ± 3,433 3,299 ± 7,055 4,660 ± 11,500 0.53

Continuous data is presented using median ± standard deviation, significance assessed using the Kruskal-Wallis test.

Count data is presented using percent with proportions shown in parenthesis, significance is assessed using Fisher’s exact test.

Proportion of count data is based on only the samples which had data for a given count variable.

�Counts use of any of the following prior to the visit: condom, birth control pills, diaphragm, injectable, iud, spermicide, sponge and or other�� types of contraceptives.

https://doi.org/10.1371/journal.ppat.1008376.t001
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Fig 3B shows results of hierarchical clustering based on the detected fungal species. Can-
dida albicans was the dominant fungal taxa. In terms of fungal clusters, there appears to be a

single clade dominated by C. albicans (43/208, 20.7%), one dominated by an unidentified fun-

gal species (12/208, 5.8%) and one that is composed of a diverse fungal community (153/208,

73.6%).

Fig 2. Bacterial Shannon diversity by visit. HR-HPV category specific microbial Shannon diversity is shown for V1 and V2. Horizontal strip labels at the

top of the figure indicate visit number. V1 has an elevated diversity in the progression group, but the overall trend did not achieve statistical significance

(p = 0.52). At V2 the observed trend of a rising Shannon alpha diversity from clearance to persistence to progression was statistically significant, p = 0.024.

https://doi.org/10.1371/journal.ppat.1008376.g002
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Analysis of bacterial taxonomic categories of the microbiome associated with persistence/

progression vs. clearance revealed a total of 24 taxa that were significant (LDA>2.0) at V1. G.

Fig 3. Bacterial and fungal communities within the study cohort. A. The abundance plot represents the bacterial community structure of the study subjects. The

operational taxonomic units (OTUs) were collapsed at the species level and the top 10 species are presented. Figure boxes labeled: L. iners, L. crispatus, Gardnerella and

Diversity represent the vaginal community state types (CSTs) identified using hierarchical clustering. B. Heatmap showing the top 20 fungal species identified within the

study subjects. C. albicans has the highest mean abundance. There were three vaginal fungal community states identified using hierarchical clustering as indicated by the

separate boxes.

https://doi.org/10.1371/journal.ppat.1008376.g003
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vaginalis was the bacterial species with the highest positive correlation to progression (Fig 4A),

while L. iners was the most positively associated taxon with clearance based on relative abun-

dance. Amongst V2 samples there were a total of 13 significant taxa identified (three taxa asso-

ciated with clearance and 10 with progression) (Fig 4B). At V2, bacteria that are commonly

associated with bacterial vaginosis, such as Prevotella amnii and Anaerococcus prevotii, were

significantly correlated with progression. We used a generalized linear model (GLM) to vali-

date LEfSe biomarkers with adjustments for key covariates (age, smoking status, HPV16 and

visit CST) (S1 Table).

Fungal biomarker discovery revealed five fungal taxa associated with HPV progression

(S1A Fig). The average of the five combined fungal taxa were detected at rates of 0.59%, 3.55%

and 3.76% for the clearance, persistence and progression outcomes, respectively (p = 0.0080,

S1B Fig). However in the adjusted GLM analysis, none of the fungal biomarkers were deter-

mined to be significant at either visit (S2 Table).

To evaluate whether some common function of bacteria might be associated with HR-HPV

outcomes, we used a functional analysis of gene groups imputed from the microbiome data as

described in the methods. This analysis revealed 8 functional pathways at KEGG Level 2 signif-

icantly associated with progression to CIN2+ (S3 Table). Of the 8 identified pathways, only 2

had a mean read coverage of>1% and were considered for further analysis. The two identified

pathways were “Xenobiotics Biodegradation and Metabolism” pathway, which was positively

associated with progression (p = 0.0020) and the Cell Motility pathway, which was negatively

associated with progression (p = 0.019). These two pathways were significantly correlated

(Pearson correlation = -0.80, S2 Fig), and we chose to use Cell Motility in multivariate model-

ing since it produced a more stable GLM estimate (S3 Table).

Microbiome and HR-HPV natural history: GLM modeling

To investigate the contribution of components of the microbiome over time, we used a GLM

in order to adjust for known covariates of CIN2+ progression that may influence the relation-

ship of the CVM and progression to CIN2+ (e.g. age, smoking, HPV16 and CST). We utilized

a GLM with a binary outcome (clearance/progression) and the significant microbial features

identified in preceding sections as predictors. Specifically, we used the abundance of Gardner-
ella at V1, the abundance of Lactobacillus at V1, the Observed fungal species diversity at V1,

the imputed Cell Motility pathway at V1 and the microbial diversity at V2. The model was

adjusted for age, CST, smoking and HPV16 infection status. Fig 5 shows the model estimates

of the resulting GLM analysis. The multivariate analysis revealed a significant protective effect

of V1 Lactobacillus (genus) abundance, OR = 0.41 (0.22–0.79), V1 fungal species diversity,

OR = 0.90 (0.82–1.00) and imputed V1 Cell Motility pathway OR = 0.75 (0.62–0.92). In addi-

tion, the model showed that the V2 microbial diversity was a significant risk factor for CIN2

+ progression, OR = 1.17 (1.02–1.29).

Following the multivariate analysis, we wanted to explore the reason for V1 Gardnerella
being insignificant despite being the top microbial risk factor in differential abundance in all

previous analyses (Fig 4, S3 Fig and S1 Table). Thus, we performed a mediation analysis to

determine if V1 Gardnerella was acting by inducing the elevated diversity at V2 (Fig 6A and

6B). This analysis showed that after adjustment for V1 Gardnerella there was a significant asso-

ciation of V2 Shannon diversity with progression to CIN2+, p = 0.04. The Average Direct

Effect (ADE) showed that V1 Gardnerella wasn’t significant after adjustment for the V2 Shan-

non diversity, p = 0.23 supporting our mediation hypothesis (Fig 6A).

Power for detection of the effects of each microbiome component was performed using the

lmSupport package. Specifically each of the microbiome components (i.e., V1 Gardnerella, V1
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Fig 4. Bacteria associated with progression to CIN2+ identified using LEfSe. HR-HPV bacterial biomarkers for visit 1 (panel A) and visit 2 (panel B), comparing

clearance vs. progression, were identified using the LEfSe tool. Only the significant bacterial taxa (LDA>2.0) are shown for both visits.

https://doi.org/10.1371/journal.ppat.1008376.g004
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Lactobacillus, V1 Fungal Observed OTUs, V1 Cell Motility, and V2 Shannon diversity) was

tested separately to assess power with adjustment for age, CST, HPV16 status and smoking. S4

Table shows the results of the power calculation. Given large effect sizes for V1 Lactobacillus,
V1 Fungal Observed OTUs, V1 Cell Motility, and V2 Shannon diversity we calculated that

these could be detected with a power>98%, while the V1 Gardnerella had a power of 82% at

the 0.05 alpha level.

Discussion

Previous cross-sectional studies analyzing the association between the cervicovaginal micro-

biome and HPV infection outcomes have consistently identified Gardnerella as a key bio-

marker associated with CIN2+. This has been reported in studies that utilized both next-

generation sequencing [39, 41] and other methods of microbiome analyses [52, 43]. We pres-

ent data that Gardnerella is in fact associated with CIN2+ lesions, but rather than directly caus-

ing the CIN2+ lesion, appears to induce a higher diversity CVM over time as measured at V2,

Fig 5. Generalized Linear Model (GLM) results showing the odds ratios of key microbial components in association with

progression to CIN2+. The forest plot shows the results of variables evaluated in the univariate analysis that were then entered

into a GLM. The model shows ORs (small circle) and 95% confidence interval (line extending on either side of the circle) of the

microbial features associated with clearance/progression at either Visit 1 (V1) and/or Visit 2 (V2). The main variables included V1

Gardnerella, V1 Lactobacillus, V1 Fungal Observed OTUs and V1 Cell Motility and V2 Shannon diversity. The model was

adjusted for age, bacterial CSTs, smoking and HPV16 infection status. 95% CIs that did not cross the Odds Ratio of 1.0 (dotted

vertical line) are considered statistically significant.

https://doi.org/10.1371/journal.ppat.1008376.g005
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which in turn mediates the observed effect of Gardnerella in HR-HPV disease progression.

Although it is not clear how a state of polymicrobialism in the presence of a persistent

HR-HPV infection leads to the development of epithelial dysplasia, recent studies on the

microbiome’s role in other cancers suggests that the answer lies in the establishment of a

microbial microenvironment, perhaps a biofilm. For instance, it has been shown that certain

cancers (e.g., colorectal cancer and prostate cancer) have distinct microbial communities at

the tumor site that are associated with tumor development [44, 45]. In fact, other data from

our lab using cervical biopsy tissue samples indicates that there are distinct microbial differ-

ences as cervical cancer progresses to advanced FIGO stages (manuscript in preparation). This

idea is further supported by data indicating that cervical precancerous lesions that regress,

compared to those that progress to cancer, harbor a different immune microenvironment

[46]. The local interplay between the microbiome and the local host immune system may be

important to understanding the progression of HR-HPV infection to cervical cancer.

The protective microbial biomarkers identified at V1 also suggest an association of the

microbiome and host innate and acquired immunity in progression to CIN2+. Specifically, the

Fig 6. Diversity model for HPV progression with mediation analysis. Panel A shows the results of the mediation

analysis that focus on V1 Gardnerella and V2 Shannon diversity. Top row shows Average Causal Mediation Effect

(ACME) which is the full mediation effect of V2 Shannon diversity after adjusting for the direct effect of V1

Gardnerella on case status. The second row shows Average Direct Effect (ADE) which is the direct effect of Gardnerella
on the clearance/progression outcome after accounting for the mediation effect of V2 Shannon diversity. The third

row shows the Total Effect which is the direct, unadjusted effect, of Gardnerella on case outcome. The last row shows

the Proportion (Prop.) Mediated, which is the proportion of the model that is mediated by V2 Shannon diversity.

Based on GLM modeling, we propose the above model (Panel B) in which V1 Gardnerella causes an expansion of

bacterial diversity at V2, which acts as a risk factor for the progression of a HR_HPV infection into a CIN2+ lesion.

https://doi.org/10.1371/journal.ppat.1008376.g006
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protective effect of bacterial Cell Motility may be due to the known phenomena of bacterial fla-

gella activating host immunity [47–49]. This local activation may facilitate the innate immune

system’s ability to clear an active HPV infection. Such stimulation may be critical in HPV con-

trol since cervical lesions have been shown to be associated with local immunosuppression

through the reduction of factors such as IL-17 [50]. Despite the presence of studies to support

this conjecture it should be noted that this type of immune activation needs to be confirmed

with rigorous experimental precision.

Gardnerella, as discussed above, continuously emerges as a risk factor for CIN2+ develop-

ment and progression. Based on our findings and published data, the association may be tied

to the ability of Gardnerella to be immunosuppressive in the cervicovaginal region [51].

Whereas, it seems that the presence of commensal bacteria (e.g. Lactobacillus) with the ability

to stimulate a local immune response may be contributing factors to the clearance of incident

HR-HPV infections. Moreover, the presence of bacteria with immunosuppressive attributes,

such as Gardnerella, may promote viral persistence and progression.

Alternatively, there may be other explanations for the observed associations between the

cervicovaginal microbiome and HPV’s natural history. One possible explanation is a host

developed or inherited immune deficiency that is a common cofactor for both cervical cancer

progression and microbial diversity. For example, elevation of a particular inflammatory cyto-

kine may be both necessary for successful tumor growth and be a causal factor in increasing

vaginal microbial diversity. Such a factor may also explain the consistent identification of

Gardnerella, which is commonly identified as a biomarker for increased diversity in the CVM

[52] and a risk factor for CIN2+.

We have identified distinct microbial biomarkers that either protect, or promote the progres-

sion of a HR-HPV infection to CIN2+ lesions. In the context of what is known about the cervi-

covaginal microbiome, it may be that these factors act to suppress (in the case of progression) or

activate (in the case of clearance) a localized immune response, which in turn influences the nat-

ural history of a HR-HPV infection. However, additional prospective studies are needed to

establish a causal link between the cervicovaginal microbiome, the immune system and the nat-

ural history of HPV. Nevertheless, our results suggest a marker for identifying women with per-

sistent HR-HPV infection at risk for progression by monitoring the presence of Gardnerella
and subsequent elevation in microbial diversity. If future studies support a causal role of the cer-

vicovaginal microbiome and disease progression, then it might be possible to manipulate the

CVM in a manner to activate a local immune response. It is possible that HPV vaccination

might influence the CVM and future research will be needed to evaluate such potential changes.

The strength of this study includes the prospective design and availability of a longitudinal

cohort. In addition we used advanced epidemiological methods in a novel way to investigate

potential causative factors in cervical intraepithelial neoplasia. Potential weaknesses in this

study include the relatively small sample size, homogeneity of the population and the use of

only two time points.

In summary, through the use of longitudinal samples from the CVT cohort we investigated

and identified key features of the cervicovaginal microbiome potentially associated with progres-

sion of HR-HPV infection [28, 53–56] (e.g., Gardnerella and subsequent increase vaginal micro-

bial diversity). Additional studies are required to validate the model proposed in this report.

Materials and methods

Clinical trial information

The study of cervicovaginal microbiome and HR-HPV natural history was a nested analysis

within the previously reported CVT [57] (clinical trials registration NCT00128661). Written
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informed consent was obtained from all participants in CVT. The trial protocol can be

obtained from the original trial publication [57].

Ethics statement

All CVT participants were adult women between the ages of 18–25 years. All participants were

shown a video describing the study design and were then required to provide written consent

to continue participating in the trial. Institutional review board approval was obtained for the

informed consent forms at both the NCI and in Costa Rica. Registered with Clinicaltrials.gov

NCT00128661

Study population and case definitions

Subjects for this nested study were selected from the placebo arm of a community-based clini-

cal trial of the HPV 16/18 vaccine in Costa Rica that had enrolled women 18 to 25 years of age

in 2004–2005 [57]. Women with an incident HR-HPV infection (HPV16, 18, 31, 33, 35, 39, 45,

51, 52, 56, 58, or 59) were selected for analysis. Incident infections were classified based on out-

comes from the well-established model of HR-HPV natural history including outcomes of

clearance, persistence and progression [58]. Specifically, outcomes related to the incident

HR-HPV infection included women who developed a CIN2 or CIN3 (CIN2+) lesion (progres-

sion), women with an infection for 2 or more years with the same type in the absence of a

CIN2+ diagnosis (persistent), or women who cleared their incident HR-HPV infections within

1 year (clearance). This analysis included 273 women of whom all had available samples at V1

(first visit positive for the studied HPV type) and 266 who had a second sample at V2 (for per-

sistent, visit that was positive for the same type and at least 305 days after V1; progression, clos-

est visit before diagnosis of CIN2+; clearance, following visit that was negative for that type);

all had clinical follow-up data. Seven women, one with clearance, and six with persistence

either did not have an available V2 sample or the sample failed in lab testing.

Cervical microbiome characterization

DNA samples [59] were shipped to the Burk Lab on dry ice where the microbiome analysis

was performed. DNA had been extracted from cervical brush samples by DDL Diagnostic Lab-

oratory (Voorberg, The Netherlands) where they had been tested for HPV as previously

described [60]. Laboratory procedures for the microbiome analyses were performed within a

hood (AirClean Systems, Creedmoor, NC) in an isolated room to minimize environmental

contamination and water-blank negative controls were used throughout the testing.

Bacterial DNA was amplified using barcoded-primers 16SV4_515F (GTGYCAGCMGC

CGCGGTA) and 16SV4_806R (GGACTACHVGGGTWTCTAAT) that amplify the V4 vari-

able region of the 16S rRNA gene [61]. This region has been demonstrated to accurately

amplify and resolve vaginal bacteria [62]. PCR reactions were performed with 17.75 μl of

nuclease-free PCR-grade water (Lonza, Rockland, ME), 2.5 μl of 10X Buffer w/ MgCl2 (Affy-

metrix, Santa Clara, CA), 1 μl of MgCl2 (25 mM, Affymetrix, Santa Clara, California, USA),

0.5 μl of dNTPs (10 mM, Roche, Basel, Switzerland), 0.25 μl of AmpliTaq Gold DNA Polymer-

ase (5 U/μl, Applied Biosystems, Foster City, California), 0.5 μl of HotStart-IT FideliTaq (2.5

U/μl, Affymetrix, Santa Clara, CA), 1 μl of each primer (5 μM), and 0.5 μl of sample DNA.

Thermal cycling conditions consisted of initial denaturation at 95˚C for 5 min, followed by 15

cycles at 95˚C for 1 min, 55˚C for 1 min, and 68˚C for 1 min, followed by 15 cycles at 95˚C for

1 min, 60˚C for 1 min, and 68˚C for 1 min, and a final extension for 10 min at 68˚C on a Gen-

eAmp PCR System 9700 (Applied Biosystems, Foster City, CA).
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The fungal DNA ITS1 region was amplified using barcoded-primers ITS1_48F (ACACAC

CGCCCGTCGCTACT) and ITS1_217R (TTTCGCTGCGTTCTTCATCG) as previously

described [63]. PCR reactions were performed with 8.25 μl of nuclease-free PCR-grade water

(Lonza), 2.5 μl of 10X Buffer w/ MgCl2 (Affymetrix), 1 μl of MgCl2 (25 mM, Affymetrix), 0.5 μl

of dNTPs (10 mM, Roche), 0.25 μl of AmpliTaq Gold DNA Polymerase (5 U/μl, Applied Bio-

systems), 0.5 μl of HotStart-IT FideliTaq (2.5 U/μl, Affymetrix), 1μl of each primer (5 μM),

and 10 μl of sample DNA. Thermal cycling conditions consisted of initial denaturation of

95˚C for 3 min, followed by 35 cycles at 95˚C for 30 sec, 55˚C for 30 sec, and 68˚C for 2 min,

followed by a final extension for 10 min at 68˚C on a GeneAmp PCR System 9700 (Applied

Biosystems).

For both amplicon experiments, 20 negative controls were randomly mixed amongst sam-

ples. Negative controls were created using nuclease-free PCR-grade water (Lonza) as described

above instead of extracted DNA.

Barcoded-PCR products were combined for each amplicon type and the DNA fragments

(~356 bp for 16S V4 and 400–600 for ITS1) were isolated by gel purification using a QIAquick

Gel Extraction Kit (Qiagen, Hilden, Germany). Purified PCR products were quantified using a

Qubit 2.0 Fluorometic High Sensitivity dsDNA Assay (Life Technologies, Carlsbad, CA) prior

to library construction using a KAPA LTP Library Preparation Kit (Kapa Biosystems, Wil-

mington, MA). Size integrity of the amplicons was validated with a 2100 Bioanalyzer (Agilent

Technologies, Santa Clara, CA). High-throughput amplicon sequencing of 2x300 paired-end

reads was conducted on an Illumina MiSeq (Illumina, San Diego, CA).

Bioinformatics

Illumina reads were trimmed to remove bases that had a PHRED score of<25 using prinseq-

lite V0.0.4 [64]. Quality trimmed reads were then demultiplexed using Novobarcode [65].

Paired-end reads were joined using PANDAseq with default settings [66]. The merged reads

were processed through the VSEARCH quality-filtering pipeline [67] to dereplicate the

sequences, reduce noise and remove chimeric reads.

For bacterial 16S V4 rRNA gene reads, closed-reference OTU picking was performed using

VSEARCH [67] with a custom database that contained sequences from the GreenGenes data-

base [68] the Human Oral Microbiome Database (HOMD) [69] and cervicovaginal micro-

biome 16S reference sequences retrieved from NCBI [70]. Representative sequences were

aligned using PyNAST [71] and taxonomy was assigned using VSEARCH [67].

PICRUSt was used to impute microbial functional gene content and to collapse identified

genes into functional pathways [72]. Pathways that were associated with HR-HPV clearance

were identified through the use of a generalized linear model (GLM) based on statistical signif-

icance (p<0.05) and relative abundance (1% or higher across all reads).

For fungal ITS1 reads, open-reference OTU picking was performed using VSEARCH [67]

and the UNITE database [73]. Taxonomy of representative fungal sequences was assigned

using BLAST [74].

Phyloseq [75] was used to import BIOM data for 16S and ITS assays into R separately, fol-

lowed by the determination of Shannon and Chao1 alpha diversity. For all analyses, bacterial

data was subsampled for 2,500 reads. For fungal analyses subsampling was performed at 500

reads. Biomarker discovery analysis was performed using the LEfSe tool [76]. Linear discrimi-

nant analysis (LDA) scores greater than 2.0 are considered to be significant [76]. Microbial

community state types (CSTs) were assigned on the basis of hierarchical clustering of the 20

most abundant OTUs. Prior to clustering, OTUs were agglomerated at the species level or the
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lowest identified taxonomic level. Clustering was performed using the wardD2 algorithm

using Euclidian distances.

Statistical analysis

R v3.4.2 [77] was used for statistical analyses. The Kruskal-Wallis test was used to assess signifi-

cance of continuous data. Linear regression was used to assess the significance of variables

associated with the ordered outcome states of a HR-HPV infection (1). Logistic regression was

performed using the GLM function and a binomial family generalized linear model in R. For

categorical data, dummy variables were created and each individual factor level was tested in a

univariate GLM analysis. Models were adjusted for age, smoking, HPV16 and CSTs. Smoking

status was determined through a questionnaire and incorporated into the model as ordered

categories: never smoked, former smoker and current smoker [40]. Power of GLM results was

computed using the lmSupport package [78].

We performed a statistical mediation analysis to test whether V1 Gardnerella (an indepen-

dent variable) could be acting by inducing a subsequent elevated microbiome diversity at V2

(mediator variable) that influences the outcome of HR-HPV progression using the package

mediation [79]. The outcome model we used was binary clearance/progression. Models were

adjusted for age, CST, smoking status and HPV16 infection status. In the results we present

the mediation effect (average causal mediation effects (ACME)), which is the total effect of V2

Shannon diversity and V1 Gardnerella minus the direct effect of V1 Gardnerella. Additionally,

we estimate the direct of effect (presented using the average direct effect (ADE)) of V1 Gard-
nerella on the binary outcome clearance/progression, minus the effect of the V2 Shannon

diversity mediator; the total effect, which is the sum between the indirect effect of the V2 Shan-

non diversity and the direct effect of the V1 Gardnerella; and the proportion mediated which

is the ratio of the ACME and total effect estimates.
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