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A B S T R A C T   

Background: The knowledge of normal‒appearing cortical gray matter (NAGM) in multiple 
sclerosis (MS) remains unclear. In this study, we aimed to identify diagnostic biomarkers and 
explore the immune infiltration characteristics of NAGM in MS through bioinformatic analysis 
and validation in vivo. 
Methods: Differentially expressed genes (DEGs) were analyzed. Subsequently, the functional 
pathways of the DEGs were determined. After screening the overlapping DEGs of MS with two 
machine learning methods, the biomarkers’ efficacy and the expression levels of overlapping 
DEGs were calculated. Quantitative reverse transcription polymerase chain reaction (qRT‒PCR) 
identified the robust diagnostic biomarkers. Additionally, infiltrating immune cell populations 
were estimated and correlated with the biomarkers. Finally, the characteristics of immune 
infiltration of NAGM from MS were evaluated. 
Results: A total of 98 DEGs were identified. They participated in sensory transduction of the ol-
factory system, synaptic signaling, and immune responses. Nine overlapping genes were screened 
by machine learning methods. After verified by ROC curve, four genes, namely HLA‒DRB1, 
RPS4Y1, EIF1AY and USP9Y, were screened as candidate biomarkers. The mRNA expression of 
RPS4Y1 and USP9Y was significantly lower in MS patients than that in the controls. They were 
selected as the robust diagnostic biomarkers for male MS patients. RPS4Y1 and USP9Y were both 
positively correlated with memory B cells. Moreover, naive CD4+ T cells and monocytes were 
increased in the NAGM of MS patients compared with those in controls. 

List of abbreviations: AUC, area under the ROC curve; BP, biological process; CC, cellular component; CNS, central nervous system; CSF, cere-
brospinal fluid; DEGs, differentially expressed genes; EAE, experimental allergic encephalomyelitis; FA, fractional anisotropy; GEO, Gene Expression 
Omnibus; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; LASSO, least absolute shrinkage and selection operator; MF, 
molecular function; MS, multiple sclerosis; NAGM, normal‒appearing cortical gray matter; NAWM, normal‒appearing white matter; qRT‒PCR, 
quantitative reverse transcription polymerase chain reaction; ROC, receiver operator characteristic; SVM‒RFE, support vector machine‒recursive 
feature elimination. 
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Fig. 1. The flowchart of bioinformatics analysis and experimental validation. Abbreviations: DEGs, differentially expressed genes; MS, multiple 
sclerosis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; LASSO, least absolute shrinkage and selection operator; SVM‒RFE, 
support vector machine-recursive feature elimination; AUC, area under the receiver-operator characteristic curve; qRT‒PCR, quantitative reverse 
transcription polymerase chain reaction. 
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Conclusions: Low expressed Y‒linked genes, RPS4Y1 and USP9Y, were identified as diagnostic 
biomarkers for MS in male patients. The inhomogeneity of immune cells in NAGM might exac-
erbate intricate interplay between the CNS and the immune system in the MS.   

1. Introduction 

More prevalent in females, multiple sclerosis (MS) is a neurological inflammatory and degenerative disease with an increasing 
prevalence worldwide, with approximately three million people estimated to be affected [1,2]. Timely diagnosis of MS enables 
effective therapy and minimizes unpredictable dysfunction [3]. Efforts have been made to improve diagnostic criteria for MS recently 
[4]. The latest standard for MS diagnosis comprises clinical symptoms, magnetic resonance imaging lesions, cerebrospinal fluid (CSF) 
specific oligoclonal bands and exclusion of other diagnostic possibilities [5]. While the criteria are often misunderstood and inap-
propriately applied [6]. Therefore, recent researches have been attempted to explore novel diagnostic biomarkers to improve diag-
nosis, monitoring and treatment for MS [3]. Serum glial fibrillary acid protein readily distinguishes MS from healthy controls [7]. 
Kappa free light chains is demonstrated as a sensitive CSF marker of MS and already in commercial use [8]. Autophagy markers show 
promise to predict MS [9]. Besides, many other markers are impacted by treatment effects or lack specificity. Although developing 
reliable biomarkers remains challenging, continuing studies are making effort to address the unmet need for an accessible and accurate 
diagnostic approach for MS [3,4]. Notwithstanding specific triggers are still unexplicit, epidemiologic studies have considered that 
genetically predisposed individuals may develop MS for some certain environmental factors [10]. Diagnostic biomarkers at the genetic 
level might drive further investigation of the diagnosis of MS. 

There is burgeoning evidence that primitive demyelination and astrocytic scarring in the central nervous system (CNS) are the most 
distinctive pathological hallmarks of MS [11]. Moreover, pathology of normal‒appearing white matter (NAWM) and normal‒ 
appearing gray matter (NAGM) has recently been recognized as a pathogenisis in MS [12]. On MRI scans, fractional anisotropy (FA) is 
found to be increased in the NAGM of MS, NAGM‒FA has a high correlation with the progression of physical disability in MS patients 
[13]. Furthermore, the NAGM exhibits microstructural damage, the severity of which is related to cognitive impairment and neuro-
degeneration in MS [12,14]. NAMG has gained attention in the field of MS research. However, the current understanding of NAGM 
relies on the differences in imaging and is still short of generalizing the unique relationship between NAGM and genomics. 

Another limitation is that a considerable number of studies focus on the etiological effects of single or several immune cells in MS 
[10,15]. Despite their explanatory power, the overall comprehensive immune cell infiltration in MS deserves additional attention and 
appraisal. Resident brain cells, particularly immune cells, are altered to different degrees in MS. The regulation of astrocyte‒neuronal 
lactate shuttling and glutamatergic-glutamine cycle genes of NAGM in MS is changed by immune signaling, which may underlie the 
cerebral cortical dysfunction encountered in MS patients [16]. Due to the potential influence of NAGM and immune responses in MS, 
gaining a better understanding of the complex immune cellular interactions in NAGM is important for MS progression. 

In light of the above two limitations, our study draws on bioinformatics analysis and extends it to the context of NAGM in MS. In 
recent studies on transcriptomics, microarray data allow simultaneous analysis of multiple genes against the background of a certain 
disease or state [17]. Studies based on bioinformatics analysis have elucidated how the transcriptome varies among distinct pheno-
types [18]. Integrative analysis of bioinformatics methods and genomics studies, including transcriptomics, proteomics, 
high-throughput sequencing, and single‒cell sequencing has identified a group of diagnostic genes, which provide insight into the 
molecular mechanism of diseases progression [19,20]. Following their lead, we comprehensively utilized microarray data, bioinfor-
matics analysis, machine learning methods and experimental validation to identify biomarkers and explore the immune features of 
NAGM in MS. 

This article was organized into five sections. We began with a differential analysis of the microarray dataset to analyze the 
differentially expressed genes (DEGs) of NAGM in MS patients. We then analyzed the enrichment pathways of the DEGs. The third and 
fourth sections identified the diagnostic biomarkers and verified their expression in MS patients, respectively. We subsequently 
determined the correlations of the infiltrating immune cells and biomarkers and explored the immune infiltration of NAGM in MS 
(Fig. 1). 

2. Materials and methods 

2.1. Data processing 

We searched in Gene Expression Omnibus (GEO) database to download microarray datasets [21]. The GSE131281 dataset com-
prises 64 postmortem brain tissue samples from 25 MS patients as well as 42 tissue samples from 14 controls. The GSE135511 dataset 
includes gene expression profile analysis of 40 postmortem motor cortices from 20 MS patients and 10 samples from 10 
non-neurological controls. GSE135511 was used as the validation set. 

Raw idat files were subjected to outlier exclusion, background correction and normalization. The “beadarraynormalizeIllumina 
(method = quantile)” followed by log2 transformation for further analyses [22] was used. The platform offered the annotation files 
which guided converting probes into gene symbols. 
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2.2. DEGs identification 

DEGs between MS patients and controls analyzed by “limma” package [23]. The adjusted P value less than 0.05 along with the |log2 
fold change| more than 0.5 were set as threshold. The differential expression of DEGs was visualized by the volcano plot. 

2.3. Enrichment analysis 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed by “clusterProfiler” [24] and “org.Hs. 
eg.db” packages. Subsequently, “ggplot2” package was used to visualize the targets. 

2.4. Overlapping DEGs screening 

Least absolute shrinkage and selection operator (LASSO) is a shrinking methodology minimizing regression coefficients which 
reduces the potential of overfitting and selects pertinent predictor covariates for the data [25]. Support vector machines (SVM) have 
exhibited high superiority in classification but have failed to assess the importance of predictors. SVM‒recursive feature elimination 
(SVM‒RFE) is a more elegant feature-filtering method [26]. Thus, we respectively performed LASSO and SVM‒RFE to select featured 
DEGs for MS. The crossover featured DEGs selected by the two algorithms were used for subsequent validations. The “glmnet” package 
performed LASSO [27] and the generalization error was generated by 100‒fold cross validation. SVM‒RFE was performed with 
“mlbench” and “caret” packages and validated by 10-fold cross-validations. 

2.5. Verification the effectiveness of the overlapping DEGs 

The GSE135511 dataset was applied as the external validation dataset. The “pROC” package was applied to evaluate the prediction 
potency of overlapping DEGs in the GSE131281 and GSE135511 datasets and the receiver-operator characteristic (ROC) curve of each 
overlapping DEGs were estimated. The area under the ROC curve (AUC) was used for determining DEGs’ efficiency. The expression 

Table 1 
Primer sequences used for qRT‒PCR.  

Genes Forward primer sequence Reverse primer sequence 

HLA‒DRB1 CGGGGTTGGTGAGAGCTTC AACCACCTGACTTCAATGCTG 
RPS4Y1 GGTTCGAGTGGATGTCACATAC CGGAAATGTTCACCTGTCTTCTC 
EIF1AY CGGAAATGTTCACCTGTCTTCTC TAGTCCCGTAGACCAACCAAT 
USP9Y ACTCATGGCTCTCCAGTAGGA GGAAATGCAGGCTCTTCATCT 
GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG  

Fig. 2. Identification of differentially expressed genes (DEGs) between MS and control samples. (A)Volcano plot of DEGs between MS patients and 
controls in the GSE131281 dataset. The dotted lines represented |log2 fold change| = 0.5. The dots showed the number of upregulated (red) and 
downregulated (blue) genes. (B) Heatmap of top 25 DEGs in the GSE131281 dataset. Orange represented high expression, and blue represented low 
expression. Abbreviation: Not Sig, not significant. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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levels of the overlapping DEGs were calculated. The DEGs with fine AUC (AUC>0.7) and differentially expressed in GSE135511 dataset 
were chose as candidate genes for in vivo validation. 

2.6. Patients recruitment and samples collection 

The quantitative reverse transcription polymerase chain reaction (qRT‒PCR) experiments was applied to validate the biomarkers 
in peripheral blood of MS patients. The study was approved by the Ethics Committee of the First Affiliated Hospital of Chongqing 
Medical University (Ethics approval number: 2023‒180; Ethics approval date April 26th, 2023). Criteria for enrollment of MS patients: 
(1) fulfilled the 2017 McDonald criteria; (2) at least 4 weeks without steroid treatment before enrollment; (3) signed written consent. 

Fig. 3. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the DEGs. (A) The top 10 
enrichment items for 3 categories in the GO enrichment analysis. Green bars represented biological process (BP) terms, blue bars represented cell 
component (CC) terms, and red bars represented molecular function (MF) terms. (B) The top 20 enrichment items in the KEGG pathway analysis of 
DEGs. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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All participants enrolled after obtaining written consent. 
Whole blood samples (approximately 2 mL) were collected into an EDTA‒treated tube and then divided into 1.5 mL tubes (n = 20, 

100 μL/tube) with anticoagulant. Each 100 μL blood sample was mixed with 1 mL of Trizol and stored at − 80 ◦C. 

2.7. qRT‒PCR experiment to verify the expression of diagnostic biomarkers 

Total RNA was extracted from blood sample based on standard protocols of RNA Extraction Reagent (9109, Takara, Japan). The kit 
(R333, Vazyme, China) was applied for cDNA synthesis. The Mix (Q711, Vazyme, China) was provided for quantifying the gene 
expression. The 2− △△Ct method was used to calculated the expression levels. Gene expression with P value less than 0.05 was 
considered as the biomarker of NAGM for MS. The primers we used are listed in Table 1. 

2.8. Correlation analysis 

The Spearman correlation analysis and CIBERSORT were performed to analyze the correlation between the infiltrating immune 
cells and biomarkers in NAGM from MS patients. CIBERSORT is a gene expression-based arithmetic deconvoluting expression profiles 
along with estimating immunocyte subtypes abundance of samples [28]. The immunocytes in the GSE131281 dataset were determined 
by CIBERSORT with 1000 permutations. As CIBERSORT P value < 0.05, the inferred portion of the subtypes was considered reliable. 
The correlations were visualized by using “ggplot2” and “psych”. 

2.9. Immunocyte subtypes evaluation 

CIBERSORT was further implemented to explored the immune characteristics of NAGM from MS patients. The difference analysis of 
immunocyte proportions of NAGM between the MS and control samples in the GSE131281 dataset were visualized utilizing “vioplot” 
package. The correlation degree of each subtype was visualized by the heatmap plot via the “corrplot” package. 

Fig. 4. Overlapping DEGs screened via the least absolute shrinkage and selection operator (LASSO) logistic regression algorithm and support vector 
machine-recursive feature elimination (SVM-RFE) algorithm. (A) The misclassification error curve plotted versus log(λ), where λ was the tuning 
parameter. 100‒fold cross‒validation was used to tunning parameter selection in the LASSO model. (B) LASSO coefficient profiles of DEGs. (C) The 
SVM‒RFE algorithm used RMSE (root mean square error) to filter the DEGs and to select the optimal feature genes for MS. (D) Venn diagram 
depicted nine overlapping genes as defined by the LASSO and SVM‒RFE algorithms. 
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2.10. Statistical analysis 

We applied R (version 4.1.2) to analyze the datasets. Wilcoxon rank‒sum test and t‒test were utilized for the difference analysis. 
The correlation analysis was evaluated by the Spearman correlation analysis. The qRT‒PCR data were analyzed by t‒test using Prism 
8.0 (GraphPad, USA). Significant differences were considered to be P < 0.05 or adjusted P < 0.05, which defined as the raw P values 
adjusted for multiple testing using Bonferroni correction in this study. 

3. Results 

3.1. The DEGs in NAGM of MS 

The DEGs of 64 MS tissue samples and 42 control cortex tissues from the GSE131281 dataset were analyzed. Ultimately, 22 
upregulated genes and 76 downregulated genes were identified (Fig. 2A). Table S1 listed the DEGs. The overall expression patterns of 
the top 25 DEGs were visualized in a clustering heatmap. Most genes in MS samples were expressed at lower levels (Fig. 2B). 

3.2. Functional correlation analysis 

According to the GO analysis, 33 GO‒biological process (BP) terms, 18 GO‒cellular component (CC) terms and 13 GO‒molecular 
function (MF) terms were statistically significantly enriched in DEGs. The top 10 enrichment terms in each category were displayed in 
Fig. 3A. The top 3 enriched GO‒BP terms included detection of chemical stimuli involved in sensory perception, sensory perception of 
smell and detection of chemical stimuli involved in sensory perception of smell. The five most enriched GO‒CC terms showed that the 
DEGs were significantly associated with endocytic vesicles, vesicle lumens, cytoplasmic vesicle lumens, secretory granule lumens, and 
coated vesicles. The three most enriched terms in the GO-MF were olfactory receptor activity, antigen binding and immune receptor 
activity. 

KEGG pathway analysis also revealed that DEGs associated strongly with olfactory transduction, graft-versus-host disease and 
antigen processing and presentation (Fig. 3B). 

3.3. Screening, validation and effectiveness of feature DEGs in NAGM of MS 

LASSO regression identified 20 genes (Fig. 4A and B). A subset of 20 items were finally selected by the SVM‒RFE algorithm 
(Fig. 4C). Eventually, nine overlapping genes were defined by the two machine learning algorithms: RPS4Y1, EIF1AY, USP9Y, TTTY6B, 
HCG4, HLA‒DRB1, KIR2DS3, TTTY17A and PIK3C2A (Fig. 4D). 

The nine overlapping DEGs for MS were further verified in the GSE135511 dataset to obtain more precise and credible biomarkers. 
The AUC of each overlapping gene in the GSE131281 dataset was 0.813 for RPS4Y1, 0.787 for EIF1AY, 0.783 for USP9Y, 0.769 for 
TTTY6B, 0.761 for HCG4, 0.822 for HLA-DRB1, 0.773 for KIR2DS3, 0.778 for TTTY17A and 0.827 for PIK3C2A (Fig. 5A). In the 

Fig. 5. Validation of overlapping genes in the training dataset and the validation dataset. (A) ROC curve evaluating the diagnostic effectiveness of 
the nine overlapping genes in the GSE131281 dataset. (B) ROC curve for diagnostic efficacy verification of the nine overlapping genes in the 
GSE135511 dataset. 
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GSE135511 dataset, RPS4Y1 (AUC = 0.794), EIF1AY (AUC = 0.768), USP9Y (AUC = 0.727) and HLA‒DRB1 (AUC = 0.84) also 
exhibited good prediction efficiency (Fig. 5B). 

Furthermore, the expression of each gene of the MS were significantly different from those of the controls in the GSE131281 dataset 
(Fig. 6A–I). We also examined the expression of these biomarkers in the GSE135511 validation dataset. The expression of RPS4Y1, 
EIF1AY, USP9Y and HLA‒DRB1 of MS patients were significantly different from that of the controls in the GSE135511 dataset (Fig. 7A, 
B, 7C, 7F). While the expression levels of TTTY6B (Fig. 7D), HCG4 (Fig. 7E), KIR2DS3 (Fig. 7G), TTTY17A (Fig. 7H) and PIK3C2A 
(Fig. 7I) were not statistically different between MS patients and controls. Therefore, RPS4Y1, EIF1AY, USP9Y and HLA‒DRB1 were 
considered as the candidate biomarkers for further validation in peripheral blood of MS patients. 

3.4. Expression level of RPS4Y1, EIF1AY, USP9Y and HLA‒DRB1 in peripheral blood samples 

Three MS patients and three paired age- and gender-matched controls were enrolled. Details of demographic characteristics were 
presented Table 2. The mRNA expression of RPS4Y1 and USP9Y were downregulated in the MS compared to that of the control group 
(Fig. 8A and B). The expression of EIF1AY and HLA‒DRB1 exhibited no differences between MS patients and controls (Fig. 8C and D). 

3.5. Correlation analysis of biomarkers between immunocytes of NAGM 

Both RPS4Y1 (r = 0.24, P = 0.011) and USP9Y (r = 0.31, P = 0.001) had positive correlation with memory B cells (Fig. 9A and B). 
USP9Y also exhibited a positive correlation with resting dendritic cells (r = 0.22, P = 0.026) and a negative correlation with M0 
macrophages (r = − 0.22, P = 0.021) and activated mast cells (r = − 0.25, P = 0.009) (Fig. 9B). 

Fig. 6. The expression of nine overlapping genes in the MS and control samples from the GSE131281 dataset (****P < 0.001).  
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3.6. Immune infiltration analysis 

The immunocyte proportions in NAGM of MS contained higher proportions of monocytes and naive CD4+ T cells, but smaller 
proportions of naive B cells, CD8+ T cells, activated memory CD4+ T cells and activated dendritic cells versus controls (Fig. 10A). 

The connections among subtypes of immunocytes in NAGM from MS patients were investigated via a correlation matrix (Fig. 10B). 
CD8+ T cells were negatively associated with resting dendritic cells (r = − 0.58, P < 0.001). Monocytes exhibited positive correlation 
with M2 macrophages (r = 0.51, P < 0.001). Activated memory CD4+ T cells negatively correlated with resting memory CD4+ T cells 
(r = − 0.61, P < 0.001). 

4. Discussion 

MS is a demyelinating inflammatory disorder that affects not only white matter lesions but normal appearing matter lesions [29]. 
The complex etiopathogenesis of MS means that there is still room for improvement of its diagnosis. This study was focus on identifying 

Fig. 7. Gene expression of nine overlapping genes in MS and control samples from the GSE135511 dataset.  

Table 2 
Demographic characteristics of MS patients and controls.  

Variables MS Control 

Cases 3 3 
Age(years) 36.0 ± 16.7 35.7 ± 15.6 
Gender Male Male 
Smoke status Never Never  

S. Zhang et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e28085

10

diagnostic biomarkers for MS from NAGM and improving better understanding of the immune infiltration of NAGM in MS. 
First, we identified DEGs of NAGM between controls and MS patients. Then, we analyzed the DEGs’ enrichment pathways. The 

DEGs enriched in olfactory transduction, synaptic signaling mainly in vesicle communication, and immune responses. The latter 
included antigen processing and presentation and graft-versus-host disease. Previous findings have indicated that the olfactory 
threshold reflects the relapse of MS [30]. Synaptic dysfunction can cause primary neuronal death in MS [31]. Meanwhile, the 
impairment of vesicle communication might affect the axonal integrity and synaptic signaling pathways, which may lead to the onset 
of MS [32]. As an acquired autoimmune condition, MS is involved in diverse immune responses and inflammatory infiltration [33]. 
Our current enrichment analysis implied that DEGs of MS contributed to MS pathogenesis. 

Next, we identified the diagnostic biomarkers of MS and determined their association with immune cells. After selecting over-
lapping candidate DEGs, we validated the candidate genes by ROC curve, external validation dataset and in vivo experiment to identify 
robust diagnostic biomarkers of MS. An unexpected observation in this study was that the diagnostic biomarkers were linked to the Y 
chromosome. RPS4Y1 encodes the 40S ribosomal protein S4, which may function in ribosomal assembly and aging‒related processes 
[34,35]. USP9Y encodes a protein that resembles ubiquitin‒specific protease. Ubiquitin and ubiquitin-like proteins regulate key 
features to buffer stimulus imbalances caused by immune attack [36,37]. The immune cell correlation analysis suggested that low 
levels of RPS4Y1 and USP9Y were involved in the immune dysfunction of MS to some extent. 

Extremely downregulated expression of RPS4Y1 and USP9Y has been observed in cancers [38]. The downregulated expression of 
RPS4Y1 and USP9Y was first reported in MS in this study. The Y chromosome is believed to contain polymorphic genes that may reduce 
susceptibility to the experimental allergic encephalomyelitis (EAE) model of MS [39]. MS occurs primarily in females; however, males 
may experience more progressive MS [40]. Our results provided evidence that RPS4Y1 and USP9Y may have implications for the 
pathogenesis of male MS. 

Finally, we explored the immune infiltration of NAGM in MS. There was an increase abundance of naive CD4+ T cells and 

Fig. 8. Quantitative reverse transcription polymerase chain reaction (qRT‒PCR) analyses of the expression levels of (A) RPS4Y1, (B) EIF1AY, (C) 
USP9Y, and (D) HLA‒DRB1 in peripheral blood samples isolated from controls and MS patients (n = 3). 

Fig. 9. Correlation between diagnostic biomarkers and infiltrating immunocyte abundance in MS patients. (A) Correlation between RPS4Y1 and 
infiltrating immunocytes. (B) Correlation between USP9Y and infiltrating immunocytes. 
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Fig. 10. Infiltration of immune cells in the GSE131281 dataset. (A) Violin plot of the differences in the abundance of infiltrating immune cell 
subtypes between the two groups. Blue represented control samples, and red represented MS samples. Horizontal and vertical axes represented 
subsets of immune cells and relative percentages, respectively. (B) Heatmap of correlations of the abundance of immune cells between MS patients 
and controls. The horizontal and vertical axes represented subsets of immune cells. Subtypes of immune cells with higher, lower, and equivalent 
correlation levels were presented in red, blue, and white, respectively. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the Web version of this article.) 
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monocytes, with a concomitant reduction of CD8+ T cells, activated dendritic cells, activated memory CD4+ T cells and naive B cells of 
NAGM in MS relative to the controls. Naive CD4+ T cells are the important responders in MS when antigen stimulates [33]. Monocytes 
implicate in the pathogenesis of MS by damaging myelin [41]. During the acute and relapsing phases of MS, B cells, CD4+ T cells and 
CD8+ T cells attack myelin, causing resultant demyelination [33,42,43]. Causing axonal loss by releasing cytolytic granules, the 
amount of CD8+ T cells are far higher than that of other immune cells in MS lesions [43]. The potential role of dendritic cells in MS and 
EAE pathogenesis is heterogeneous because they can be with pro-inflammatory or tolerogenic phenotype under certain conditions 
[44]. However, naive B cells have been shown to downregulate proinflammatory immune responses [45]. Our findings indicated that 
the altered abundance of immune cell subtypes in NAGM from MS patients might possess both protective and deleterious effects 
eliciting complicated processes. 

We found that the infiltrating immune cell subpopulations also exhibited complex correlations with each other. Monocytes infil-
trate into the CNS and participate in demyelination and tissue destruction by secreting proinflammatory cytokines, disrupting the 
blood‒brain barrier, and allowing the entry of activated T cells into the CNS [46]. M2 macrophages are recruited to the site of 
inflammation and promote repair and remyelination in MS [47]. MS involves in a complex interplay among distinct immune cell 
populations, which either ameliorate or exacerbate the disease progress [48,49]. The immune infiltration results confirmed the 
enrichment analysis and were in accordance with the earlier investigations. 

Shortcomings of this study could not be neglected. Firstly, the small blood sample size of our participants may be the reason for the 
failure validation of HLA‒DRB1 and EIF1AY. Secondly, most of the donor samples of the dataset were from progressive forms of MS, 
which limits the impact of the findings, as the majority of MS patients manifest relapsing‒remitting disease. Therefore, the in-
terpretations of this study should be performed cautiously. 

5. Conclusions 

DEGs of NAGM in MS were enriched in olfactory transition, synaptic signaling, and the immune response. Low expression of the Y‒ 
linked genes, RPS4Y1 and USP9Y, may be important in the pathogenesis of male MS patients. Immune cells not only infiltrated lesions 
but NAGM. The inhomogeneity of immune cells in NAGM exerted either ameliorating or exacerbating roles which exacerbated 
intricate interactions in MS. We hope that this study may further the knowledge of NAGM in MS. Further studies are needed to reveal 
effective diagnostic biomarkers, explore novel therapeutic targets, and serve as prognostic tools. 
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