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Abstract
Objectives To propose a transfer learning (TL) radiomics model that efficiently combines the information from gray scale and
elastogram ultrasound images for accurate liver fibrosis grading.
Methods Totally 466 patients undergoing partial hepatectomy were enrolled, including 401 with chronic hepatitis B and 65
without fibrosis pathologically. All patients received elastography and got liver stiffness measurement (LSM) 2–3 days before
surgery. We proposed a deep convolutional neural network by TL to analyze images of gray scale modality (GM) and elastogram
modality (EM). The TL process was used for liver fibrosis classification by Inception-V3 networkwhich pretrained on ImageNet.
The diagnostic performance of TL and non-TL was compared. The value of single modalities, including GM and EM alone, and
multimodalities, including GM + LSM and GM + EM, was evaluated and compared with that of LSM and serological indexes.
Receiver operating characteristic curve analysis was performed to calculate the optimal area under the curve (AUC) for classi-
fying fibrosis of S4, ≥ S3, and ≥ S2.
Results TL in GM and EM demonstrated higher diagnostic accuracy than non-TL, with significantly higher AUCs (all p < .01).
Single-modal GM and EM both performed better than LSM and serum indexes (all p < .001). Multimodal GM + EM was the
most accurate prediction model (AUCs are 0.950, 0.932, and 0.930 for classifying S4, ≥ S3, and ≥ S2, respectively) compared
with GM + LSM, GM and EM alone, LSM, and biomarkers (all p < .05).
Conclusions Liver fibrosis can be staged by a transfer learning modal based on the combination of gray scale and elastogram
ultrasound images, with excellent performance.
Key Points
• Transfer learning consists in applying to a specific deep learning algorithm that pretrained on another relevant problem,
expected to reduce the risk of overfitting due to insufficient medical images.

• Liver fibrosis can be staged by transfer learning radiomics with excellent performance.
• The most accurate prediction model of transfer learning by Inception-V3 network is the combination of gray scale and
elastogram ultrasound images.
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Abbreviations
2D SWE Two-dimensional shear wave elastography
APRI Aspartate aminotransferase to platelet

ratio index
AUC Area under the receiver operating

characteristic curve
CHB Chronic hepatitis B
CLD Chronic liver disease
EM Elastogram modality
FIB-4 Fibrosis index based on the four factors
GM Gray scale modality
IQR Interquartile range
LR− Negative likelihood ratios
LR+ Positive likelihood ratios
LSM Liver stiffness measurement
Non-TL Non-transfer learning
NPV Negative predictive values
PPV Positive predictive values
TL Transfer learning

Introduction

The multiple causes of chronic liver disease (CLD) follow a
common pathway of progressive liver fibrosis, ultimately cul-
minating in cirrhosis. It has been proved that liver fibrosis and
early cirrhosis are partly reversible [1]. Hence, an accurate
diagnosis of liver fibrosis is essential for the management
and determination of the prognosis of patient with CLD.
Traditionally, liver biopsy is the reference for assessing hepat-
ic fibrosis. However, it is invasive and painful and has limita-
tions in accuracy influenced by sampling error and intra- and
interobserver variability [2–5]. Given these limitations, liver
biopsy is not an ideal method for the repeated assessment of
disease progression.

Recently ultrasound elastography has been widely used to
evaluate the degree of CLD [6]. The shear wave–based
elastographic methods mainly include transient elastography,
point shear wave elastography, and two-dimensional shear
wave elastography (2D SWE), with good intra- and
intersonographer reproducibility [7, 8]. 2D SWE quantitative-
ly estimates the tissue stiffness and provides a more accurate
correlation of liver elasticity with liver fibrosis stages com-
pared with transient elastography, virtual touch tissue
quatification, and serum liver fibrosis indexes [9]. However,
liver stiffness measurement (LSM) by 2D SWE can be affect-
ed by many factors, such as the operator experience, obesity,
the level of transaminases, and the degree of steatosis and
necroinflammatory activity [9–12]. The thresholds of 2D
SWE for identifying fibrosis stages in patients with chronic
hepatitis B (CHB) have shown great variability in previous
studies [1, 9, 10, 13]. Therefore, using 2D SWE values alone

is likely to be insufficient for accurately assessing liver fibro-
sis stages.

According to previous studies, radiomics has great poten-
tial for the classification of liver fibrosis. Gao et al [14] used
texture analysis to classify ultrasound liver images, and the
classification accuracies of S0–S4 were 100%, 90%, 70%,
90%, and 100%, respectively. Kayaaltı et al [15] used deter-
mine liver fibrosis stage by analyzing some texture features of
liver CT images. Acharya et al [16] used the kernel discrimi-
nant analysis and analysis of variance techniques to classify
images into various stages of liver fibrosis. Yeh et al [17]
extracted image features from gray level concurrence and
non-separable wavelet transform to classify fibrosis with sup-
port vector machine. There are various kinds of traditional
methods for calculating features, but they cannot guarantee
the completeness of the feature extraction. Recently, deep
learning methods have also been used to evaluate liver fibro-
sis. For example, Wang et al [18] designed four convolutional
layers and applied a fully connected layer for the binary liver
fibrosis classification. Lee et al [19] developed a deep
convolutional neural network and trained four-class model
(F0 vs. F1 vs. F23 vs. F4) for predicting METAVIR scores
using B-mode ultrasonography images. For deep learning to
be successful, it is necessary to use a large training dataset.
However, in clinical applications, access to a large number of
medical images is difficult and expensive. One pathway to
address the issue is the use of transfer learning to improve
the performance by transferring knowledge from another do-
mains to the medical US domain [20]. Yu et al [21] investi-
gated the rats fibrosis scoring by transfer learning with
AlexNet and compared them against conventional non-deep
learning-based algorithms.

In this study, we used transfer learning to analyze
elastogram modality (EM) and gray scale modality (GM)
and compared the results with the pathological diagnosis of
liver fibrosis stage. Comprehensive utilization of the high-
throughput information of gray scale and elastogram images
would improve the accuracy of liver fibrosis diagnosis.
Transfer learning is expected to solve the overfitting problems
for medical imaging caused by insufficient medical images.

Materials and methods

Patients

The retrospective study was approved by the institutional
ethics committee, and informed patient consent was obtained
from all patients. Between January 2016 and December 2016,
717 consecutive patients with local liver lesions treated by
partial hepatectomy in our hospital were recruited. The inclu-
sion criteria were (a) undergoing 2D SWE with the Aixplorer
system within two weeks before surgery and (b) age 18 years
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or older. The exclusion criteria were (a) patients with a max-
imum tumor diameter larger than 5 cm, (b) 2D SWE technical
failures because of obesity, ascites, or tumor located in seg-
ment 5 or 6 of the liver, (c) patients with a hepatitis virus
infection other than CHB, (d) antiviral treatment within six
months, (e) previous liver transplantation, ( f ) intrahepatic
cholangiectasis caused by tumor compression or portal throm-
bosis diagnosed by US or CT/MRI, and (g) patients with con-
gestive heart disease. Finally, 466 patients were enrolled in the
study; 364 patients were assigned to the training cohort with
randomization, and the other 102 patients were enrolled in the
test cohort.

Multimodal ultrasound images

The Aixplorer (SuperSonic Imagine) systemwas used to obtain
images with a convex probe (SC6–1) within 3 days before
hepatic surgery.Measurements were performed in the right lobe
of the liver through the intercostal spaces. The patients main-
tained an overnight fast before examination. The US imaging
settings including the depth, overall gain, time gain compensa-
tion, and compression were optimized. In the elastography ex-
amination, the maximum color scale of elastogram was set as
40 kPa. All gray scale and elastogram imaging settings
remained constant in all patients. Assisted by a real-time gray
scale US image, the ROI was positioned 1–2 cm under the liver
capsule and at least 2 cm from lesion margin, avoiding large
blood vessels and acoustic shadowing. Once a color map with
complete and homogeneous filling was obtained in the SWE
box, a Q-box (mean diameter, 20 mm) was used to obtain the
LSM. The mean value of the five LSMs was used as the rep-
resentative measurement of each patient [10].

Serological examination

Serological examinations were performed after an overnight
fast within 1 week before surgery. The platelet count, aspartate
aminotransferase, alanine aminotransferase, albumin, gamma-
glutamyl transpeptidase, total cholesterol, total bile acid levels,
and the international normalized ratio were recorded. The non-
invasive serum liver fibrosis indexes—APRI and FIB-4—were
determined according to the published formulas [22, 23].

Pathological examination

Surgical specimens of the focal liver lesions and the adjacent
liver tissue were fixed with 10% formalin and routinely em-
bedded in paraffin. Tissue slices of the background liver 0.5–
2.0 cm from the lesion periphery were processed with hema-
toxylin-eosin, Masson trichrome, and reticular fiber staining.
Fibrosis was staged according to the Scheuer scoring system,
including stages 0, 1, 2, 3, and 4 [24, 25]. All specimens were
analyzed by a pathologist with 10 years of experience.

Transfer learning

Transfer learning is to migrate a network trained on a large
data set to a different related task, and in this way avoid
overfitting problems caused by insufficient training data in
regular deep learning. The TL model used in this paper was
the Inception-V3 network [26] which was pretrained on
ImageNet [27]. The Inception-V3 network employs some in-
ception modules, so it is able to learn both low-level and high-
level features with difference convolution kernels. Figure 1
describes our proposed workflow for Inception-V3 (detailed
in supplementary). Our medical dataset is smaller by size but
different in content compared to the ImageNet. Therefore, we
initialized network weights that were fine-tuned on ImageNet
and used a binary layer to classify the gray scale and
elastogram ultrasound images in the dataset. Meanwhile, we
fine-tuned higher-level layers of the network, since that these
layers of the network become progressively more specific to
the subtle features. To prevent overfitting of the networks to
our limited training dataset, we also artificially augmented the
training size by random cropping and flipping.

In the elastogram image, a square ROI was drawn as large
as possible within the color-coded trapezoidal box, containing
the Q-box inside. Then the same ROI was automatically gen-
erated in the gray scale image below (Fig. 2). For the gray
scale ROI, although the image looks gray, it is still an RGB
image. The details of the TL model was described in the sup-
plementary method part. The non-transfer learning (non-TL)
model was also trained to illustrate the merits of the transfer
learning strategy in the liver fibrosis staging.

Multimodalities

Numerous studies have shown that 2D SWE has excellent
diagnostic accuracy, and LSM has a good correlation with
the pathological fibrosis stage [11, 28]. The diagnostic value
of combining the results of gray scale image analysis and 2D
SWE was analyzed in this paper. The confidence coefficient
of one image reflected its classification accuracy. After
obtaining the confidence of the 2D-SWE (detailed in
supplementary), we combined it with the confidence of the
gray scale image as features input by logistic regression. We
then implemented mini-batch gradient descent to find optimal
parameter for classification.

Both the gray scale image and the elastogram contain di-
agnostic information relating to liver fibrosis. Therefore, after
extracting 2048-dimensional features from GM model and
EM model trained in previous single-mode experiments, we
concatenated features of the two modalities into 4096-
dimensional features and used 3 fully connected layers as a
classifier. Our proposed workflow for the GM + EM was
described in supplementary method.
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Statistical analysis

Descriptive statistics were summarized as mean ± standard
deviation (SD) or median and interquartile range (IQR).
Comparisons between quantitative variables were made with

the t test or Mann-Whitney U test, and categorical variables
were compared using the chi-squared test or Fisher’s test. The
area under the receiver operating characteristic curve (AUC)
was used as an accuracy index for evaluating diagnostic per-
formance. Differences between AUCs were compared using a

Fig. 2 Illustration of the 2D SWE
measurement and the ROI of
transfer learning (TL) in this
study. Image of elastogram image
(top), gray scale image (bottom),
liver stiffness measurement with
Q-Box (white circle area), and
ROI of TL (red square area)

Fig. 1 Illustration of the overall transfer learning framework of this study. All the convolutional and pooling layers except the last multinomial logistic
classification layer of the Inception-V3 model were taken out as the feature extractor of this study

2976 Eur Radiol (2020) 30:2973–2983



Delong test. The sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and positive
and negative diagnostic likelihood ratio (LR+, LR−) were
calculated. The statistical analyses were performed using
SPSS software V.22.0 (IBM Corp.), and MedCalc software
V.11.2 (MedCalc Software bvba). Statistical significance level
was set as p < .05.

Results

Patient characteristics

A total of 466 patients were enrolled in the study, including
364 patients with 1820 2D SWE images assigned to the train-
ing cohort with randomization, and 102 patients with 510 2D
SWE images assigned to the time-independent test cohort to
evaluate the diagnostic performance of the developed model.
Among the 466 patients, there were 401 CHB-infected pa-
tients and 65 patients without CHB infection proved to be
S0 by hepatectomy histopathology. The baseline characteris-
tics of the two cohorts were summarized in Table 1. There
were no significant differences in either the baseline charac-
teristics or the distribution of patients among the fibrosis
stages between the two cohorts (all p > .05).

Transfer learning vs non-transfer learning

In the training cohort, TL in GM and EM demonstrated
higher diagnostic accuracy (AUCs all ≥ 0.99) than non-TL
for classifying S4, ≥ S3, and ≥ S2 (all p < .01) (Table 2). The
AUCs of TL in GM reached 99.19%, 99.2%, and 99.42% for
the three stratifications, respectively, which were 0.66%,
1.38%, and 3.95% higher than those of non-TL. The AUCs
of TL in EM reached 99.37%, 99.34%, and 100% for the
three stratifications, respectively, which were 0.59%, 0.82%,
and 0.94% higher than those of non-TL. Because the EM
had not only texture and brightness information but also
color information, the AUCs in EM were slightly higher than
those in GM (Fig. 3).

In the test cohort, the AUCs of non-TL in GM were
3.84%, 4.19%, and 4.55% lower than the AUCs of TL (all
p < .01). The AUCs of non-TL in EM were also 5.9%, 4.9%,
and 4.0% lower than the AUCs of TL (all p < .01) (Fig. 3,
Table 2).

In the single-modal experiments, the AUCs of non-TL
were lower than that of TL. This is because ImageNet
pretrained weights can be shared on the bottle layer,
which not only solves the problem of insufficient data
and overfitting but also extracts a number of excellent
common features.

Table 1 Patient characteristics between the training cohort and test cohort

Characteristic Training cohort Test cohort p value

Number of patients 364 102 /

Number of malignant tumors 317 (87.1%) 92 (90.2%) .40

Age (year)† 54.6 ± 12.2 54.4 ± 12.1 .59

Number of men/women 281/83 72/30 .17

ALT (U/L)‡ 24 (17–38) 28 (17–39.5) .42

AST (U/L)‡ 24.5 (20–35) 25 (20–35.5) .71

ALB (g/L)‡ 42 (39–45) 43.5 (40–47) .09

GGT (U/L)‡ 48 (27.3–81.8) 39.5 (23–94.3) .37

PLT (× 109/L)‡ 167 (121–226) 156.5 (108.8–197.3) .11

INR† 0.98 (0.9–1.0) 1 (0.95–1.06) .10

Total bile acid (μmol/L)‡ 6.9 (4.1–11.4) 6.4 (3.4–10.8) .73

Total cholesterol (mg/dl)‡ 4 (3.6–4.6) 4 (3.4–4.4) .24

Fibrosis stages .99

S0 79 20
S1 42 13

S2 53 15

S3 43 13

S4 147 41

†Data are mean ± standard deviation
‡Data are the median, with the interquartile range in parentheses

ALT alanine aminotransferase, AST aspartate aminotransferase, ALB albumin, GGT gamma-glutamyl transpeptidase, PLT platelet count, INR interna-
tional normalized ratio
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Multimodalities vs single modalities

As the AUCs of TLwere statistically higher than those of non-
TL, we used the TL in the multimodal experiments.

In the training cohort, EM demonstrated statistically
higher AUCs than GM for the three stratifications
(p < .001) (Table 3). In the test cohort, the AUCs of GM
+ LSM reached 92.0%, 92.7%, and 93.7% for diagnosing
liver fibrosis ≥ S2, ≥ S3, and S4, respectively, which were
significantly higher than the AUCs of GM and LSM alone
(all p < .01). The AUCs of GM + EM were significantly
higher than those of GM and EM alone (all p < .01)
(Fig. 4). The sensitivity and specificity analyses also dem-
onstrated that GM + LSM and GM + EM were universally
better than GM, EM, and LSM alone (Table 3). GM + EM
demonstrated the highest AUCs, reaching 93.0%, 93.2%,
and 95.0% for the three stratifications, respectively, which
were 1.0%, 0.5%, and 1.3% higher than GM + LSM
(all p < .05).

Transfer learning vs liver stiffness measurement
and serum indexes

In the training cohort, the AUCs of GM and EM were signif-
icantly higher than those of LSM, APRI, and FIB-4 for iden-
tifying cirrhosis, fibrosis ≥ S3, and ≥ S2 (all p < .0001). In the
test cohort, the multimodalities (GM + LSM and GM + EM)
and single modalities (GM and EM alone) all demonstrated
higher diagnostic accuracy than LSM and serum indexes for
classifying S4, fibrosis ≥ S3, and ≥ S2, and differences in the
AUCs were all significant (p < .01) (Table 3). Figure 5
demenstrates the various stages of liver fibrosis with both gray
scale and elastogram modality.

Discussion

The accurate and non-invasive classification of liver fibrosis is
of crucial importance in clinical practice. Deep learning system

Table 2 The diagnostic performance of TL and non-TL in GM and EM

Stage and method AUC p value Sensitivity (%) Specificity (%) PPV
(%)

NPV
(%)

LR+ LR−

Training cohort
S4
GM non-TL 0.957 (0.945–0.968) < .001 91.0 88.4 88.8 89.9 7.2 0.1
TL 0.994 (0.945–0.968) 95.1 95.6 96.3 95.8 21.3 0.0
EM non-TL 0.991 (0.983–0.995) .001 96.3 93.9 97.4 96.6 18.6 0.0
TL 1.0 (0.992–1.0) 100.0 100.0 100.0 100.0 / 0.0

≥ S3
GM non-TL 0.978 (0.966–0.989) .002 92.1 93.1 95.3 88.5 13.3 0.1
TL 0.992 (0.981–0.997) 96.9 95.0 97.1 95.0 19.0 0.0
EM non-TL 0.985 (0.977–0.990) .002 96.5 89.1 95.0 92.7 8.7 0.0
TL 0.993 (0.983–0.998) 97.4 95.8 98.1 97.0 23.4 0.0

≥ S2
GM non-TL 0.985 (0.976–0.991) .001 93.9 95.2 97.58 87.27 19.5 0.1
TL 0.992 (0.9719–1.0) 95.7 94.4 97.50 95.04 22.3 0.0
EM non-TL 0.988 (0.981–0.991) .001 92.8 96.9 98.33 84.77 20.9 0.1
TL 0.994 (0.981–0.998) 98.8 96.0 98.08 97.04 25.8 0.0

Test cohort
S4
GM non-TL 0.852 (0.785–0.901) .002 81.6 75.3 79.8 77.5 3.3 0.2
TL 0.897 (0.831–0.940) 86.0 83.6 87.8 81.3 5.2 0.2
EM non-TL 0.862 (0.787–0.920) .002 81.1 75.9 82.1 74.5 3.4 0.3
TL 0.921 (0.897–0.951) 89.1 87.0 92.8 81.3 6.9 0.1

≥ S3
GM non-TL 0.843 (0.768–0.901) .002 80.5 66.7 78.5 72.3 2.4 0.3
TL 0.885 (0.827–0.919) 87.7 84.3 92.1 76.8 5.6 0.2
EM non-TL 0.861 (0.785–0.916) .002 83.6 82.5 91.8 76.7 5.1 0.1
TL 0.910 (0.853–0.952) 85.2 90.0 93.1 73.3 8.1 0.2

≥ S2
GM non-TL 0.844 (0.769–0.902) .001 70.0 74.1 76.2 67.2 2.7 0.4
TL 0.882 (0.825–0.918) 87.1 83.3 89.9 70.6 5.3 0.1
EM non-TL 0.867 (0.793–0.917) .003 85.9 81.4 90.1 74.7 4.6 0.2
TL 0.907 (0.793–0.917) 87.9 83.2 90.2 76.0 5.5 0.2

Data in parentheses are 95% confidence intervals

Non-TL non-transfer learning, TL transfer learning, GM gray scale modality, EM elastogram modality, NPV negative predictive value, PPV positive
predictive value, LR+ positive diagnostic likelihood ratio, LR− negative diagnostic likelihood ratio
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for staging liver fibrosis using CT images has been reported
recently and showed good performance [29, 30]. US is a more
common and non-invasive imaging modality for routine exam-
ination, and there have been few reports of deep learning used
in the analysis of US images. In this study, we analyzed not
only gray scale images but also elastogram images of 2D SWE
in CHB-infected patients with transfer learning for the classifi-
cation of liver fibrosis. Thus far, there have been no reports on
the diagnostic value of transfer learning in combination of GM
and EM for assessing liver fibrosis stages.

Gray scale US images contain original information, such as
the reflection and scattering of fine structures in the liver pa-
renchyma, which is associated with the accumulation of col-
lagen fibers, a loss of portal vein wall definition, and irregu-
larity of hepatic vein margins, all indicative of the process of
liver fibrosis. Coarse hepatic echotexture and mildly increased
echogenicity of the liver parenchyma are common in cirrhosis.
The assessment of these findings is subjective, however, with
poor inter- and intraobserver agreement, and the findings also
largely depend on the equipment used [31]. Furthermore,
these indicators are seen mainly in cirrhosis and are less fre-
quent in the early stages of fibrosis. Therefore, a quantitative
and objective method for analyzing gray scale US images
might be valuable. In the study, we provide an objective meth-
od, transfer learning, to explore the valuable information of
gray scale US images.

Histopathologically, hepatic fibrosis is a consequence of the
excessive accumulation of extracellular matrix components in
the liver. This process is caused by a wound healing response
to persistent liver damage, inducing hepatic stellate cell

activation, high alpha smooth muscle actin production, and
collagen type I and III secretion, and can progress to cirrhosis
[32]. The stiffness of the liver parenchyma increases with the
progression of liver fibrosis, which can be reflected by LSM
and the color-coded elastograms of 2D SWE.

In the case of medical image analysis, the implementation
of TL techniques has been reported in several papers [33–35].
Banerjee et al [36] adapted a TL approach in which the
pretrained AlexNet model was fine-tuned on fused multimod-
al MR scans for rhabdomyosarcoma soft tissue sarcoma clas-
sification. In this study, we used TL to objectively assess gray
scale and elastogram images, which demonstrated good per-
formance than non-TL. These results showed that the weights
learned by using a large number of natural images could be
better applied to medical images through fine-tuning.

We performed an innovative multimodal analysis, includ-
ing GM + LSM and GM + EM. In the GM + LSM analysis,
based on the characteristics and clinical analysis of the confi-
dence function, we constructed a confidence function of the
mathematically significant LSM. Meanwhile, we creatively
combined GM and EM, automatic classifier learning was
achieved through three fully connected layers. The multimod-
al GM + EM and GM + LSMmethods demonstrated superior
performance compared to the single-modal methods, indicat-
ing that the multimodalities carried more diagnostic
information.

There have been some reports on traditional machine
learning and deep learning methods for diagnosing CLD.
Gatos et al [37] reported a multicenter study of 126 patients
with 2D SWE images, from which they extracted 35 hard-

Fig. 3 Comparison of ROC curves between TL and non-TL for the as-
sessment of liver fibrosis stages in training and test cohort, respectively. a,
d S0–S3 versus S4 in training and test cohort. b, e S0–S2 versus S3–S4

(≥ S3) in training and test cohort. c, f S0–S1 versus S2–S4 (≥ S2) in
training and test cohort. TL, transfer learning; Non-TL, non-transfer
learning

Eur Radiol (2020) 30:2973–2983 2979



coded radiomic features; the AUC reached 0.87 for the pro-
posed machine learning method. Kayaaltı et al [15]
obtained a comprehensive set of texture features from CT
images which were classified using two methods, namely,
support vector machines and k-nearest neighbors. Kun
Wang et al [18] performed a study evaluating the value of

deep learning radiomics of shear wave elastography
(DLRE) in staging liver fibrosis in CHB-infected patients
and reported that DLRE showed the best overall perfor-
mance compared with LSM and serum indexes. There are
some differences between their study and our study. Their
model referred to the information of EM rather than GM

Table 3 The diagnostic performance of EM, GM, LSM, APRI, and FIB-4 in evaluate liver fibrosis stages in training and test cohort

Stage and method AUC p value * p value ** Sensitivity (%) Specificity (%) PPV (%) NPV (%) LR+ LR−

Training cohort
S4
APRI 0.715 (0.663–0.767) < .001 < .001 65.9 66.3 56.8 75.0 1.9 0.5
FIB-4 0.690 (0.636–0.744) < .001 < .001 69.1 61.2 55.8 72.4 1.9 0.6
LSM 0.926 (0.899–0.953) < .001 < .001 84.8 91.2 79.8 93.3 5.8 0.1
GM 0.994 (0.984–0.999) / < .001 95.1 95.6 96.3 95.8 21.3 0.0
EM 1.0 (0.992–1.0) / / 100.0 100.0 100.0 100.0 / 0.0

≥ S3
APRI 0.778 (0.730–0.827) < .001 < .001 71.3 75.8 73.9 72.8 2.6 0.3
FIB-4 0.745 (0.695–0.795) < .001 < .001 69.0 66.3 67.9 65.5 1.9 0.5
LSM 0.906 (0.876–0.937) < .001 < .001 86.8 85.3 86.7 84.7 6.0 0.2
GM 0.992 (0.981–0.997) / < .001 96.9 95.0 97.1 95.0 19.0 0.0
EM 0.993 (0.983–0.998) / / 97.4 95.8 98.1 97.0 23.4 0.0

≥ S2
APRI 0.781 (0.73–0.832) < .001 < .001 75.2 73.3 84.8 58.2 2.8 0.4
FIB-4 0.729 (0.673–0.785) < .001 < .001 62.8 73.3 79.7 54.4 2.0 0.4
LSM 0.906 (0.873–0.940) < .001 < .001 82.6 87.7 89.5 75.6 4.2 0.2
GM 0.992 (0.972–1.0) / < .001 95.7 94.4 97.5 95.0 22.3 0.0
EM 0.994 (0.981–0.998) / / 98.8 96.0 98.1 97.0 25.8 0.0

Test cohort
S4
APRI 0.716 (0.617–0.815) < .001 < .001 60.7 75.6 55.4 78.3 1.8 0.4
FIB-4 0.698 (0.598–0.798) < .001 < .001 60.7 68.3 53.9 74.0 1.7 0.5
LSM 0.884 (0.821–0.947) .003 < .001 83.6 78.0 72.7 84.5 4.0 0.3
GM 0.897 (0.831–0.940) .002 < .001 86.0 83.6 87.8 81.3 5.2 0.2
EM 0.921 (0.897–0.951) .01 .005 89.1 87.0 92.8 81.3 6.9 0.1
GM + LSM 0.937 (0.907–0.970) / .013 89.0 92.5 90.2 87.3 12.1 0.1
GM + EM 0.950 (0.917–0.972) / / 90.1 94.3 94.9 88.0 15.7 0.1

≥ S3
APRI 0.741 (0.645–0.838) .001 .001 58.3 72.2 65.0 64.3 1.7 0.5
FIB-4 0.721 (0.622–0.821) < .001 < .001 58.3 68.5 64.9 62.2 1.6 0.5
LSM 0.898 (0.839–0.956) .004 .001 83.3 74.1 80.3 74.5 3.9 0.3
GM 0.885 (0.827–0.919) .003 .004 87.7 84.3 92.1 76.8 5.6 0.2
EM 0.910 (0.853–0.952) .022 .004 85.2 90.0 93.1 73.3 8.1 0.2
GM + LSM 0.927 (0.893–0.958) / .016 87.8 85.8 90.5 78.2 8.2 0.1
GM + EM 0.932 (0.899–0.961) / / 89.9 87.9 90.7 80.3 8.1 0.2

≥ S2
APRI 0.796 (0.711–0.881) .001 < .001 63.6 73.9 81.0 53.9 2.0 0.4
FIB-4 0.801 (0.711–0.890) .001 < .001 66.7 75.4 82.8 57.9 2.3 0.4
LSM 0.896 (0.834–0.957) .004 .001 75.8 85.5 87.0 72.7 3.2 0.2
GM 0.882 (0.825-0.918) .003 < .001 87.1 83.3 89.9 70.6 5.3 0.1
EM 0.907 (0.849–0.950) .022 .007 87.9 83.2 90.2 76.0 5.5 0.2
GM + LSM 0.920 (0.886–0.951) / .019 88.0 88.2 92.5 87.3 6.6 0.1
GM + EM 0.930 (0.899–0.962) / / 90.0 87.8 94.2 77.6 7.2 0.1

Data in parentheses are 95% confidence intervals
* Compared with GM in training cohort and compared with GM + LSM in testing cohort
** Compared with EM in training cohort and compared with GM + EM in testing cohort

GM gray scale modality, EM elastogram modality, LSM liver stiffness measurement, GM + EM, gray scale modality and elastogram modality, GM +
LSM gray scale modality and liver stiffness measurement, NPV negative predictive value, PPV positive predictive value, LR+ positive diagnostic
likelihood ratio, LR− negative diagnostic likelihood ratio
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and did not develop a more comprehensive integration of
the two modalities. Furthermore, we concluded that the TL
method converges faster than the non-TL method. Based on
the published literatures, we summarized some reported
methods and performance of traditional machine learning
and deep learning on analyzing medical images to assess
liver fibrosis in Table S1 in the supplementary material.

There were some limitations in our study. First, the distri-
bution of patients among fibrosis stages, particularly S4, was
uneven. This was mainly because of the large proportion of
patients with hepatocellular carcinoma and cirrhosis among
those who underwent partial hepatectomy. Second, the num-
ber of patients in our study was limited; thus, a multicenter
validation and prospective studies should be performed to
evaluate the value of TL in GM and EM. Third, we will study
how to extract better features suitable for the current domain
from across fields and study a more generalized model for

liver fibrosis staging. Fourth, the gray scale and elastogram
ultrasound images are susceptible to reconstruction and pro-
cessing algorithms, which may affect the diagnosis perfor-
mance of the method of a deep convolutional neural network
by a transfer learning modal.

In conclusion, liver fibrosis can be staged by transfer learning
modal with better performance than non-transfer learning, and
the combination of gray scale modality and elastogrammodality
was themost accurate predictionmodel comparedwith the com-
bination of gray scale modality and liver stiffness measurement,
gray scale modality, elastogram modality, and liver stiffness
measurement alone, and serum liver fibrosis indexes. These
results indicate that transfer learning in gray scale and
elastogram modality is a promising method with potential for
application in clinical liver fibrosis staging, and further multi-
center and large-scale studies should be performed to improve
and verify the model.

Fig. 4 Comparison of AUCs between GM + EM, GM + LSM, EM, GM,
LSM, APRI, and FIB-4 for the assessment of liver fibrosis stages in test
cohorts. a S0–S3 versus S4 (S4); b S0–S2 versus S3–S4 (≥ S3); c S0–S1
versus S2–S4 (≥ S2). GM + EM, gray scale modality and elastogram

modality; GM + LSM, gray scale modality and liver stiffness measure-
ment; GM, gray scale modality; EM, elastogram modality; LSM, liver
stiffness measurement
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Fig. 5 The demonstration of elastogram and gray scale modalities of different liver fibrosis stages. a, e Elastogram and gray scale modalities of S0~1. b, f
Elastogram and gray scale modalities of S2. c, g Elastogram and gray scale modalities of S3. d, h Elastogram and gray scale modalities of S4
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