
entropy

Article

Quantum Maps with Memory from Generalized Lindblad Equation

Vasily E. Tarasov 1,2

����������
�������

Citation: Tarasov, V.E. Quantum

Maps with Memory from Generalized

Lindblad Equation. Entropy 2021, 23,

544. https://doi.org/10.3390/

e23050544

Academic Editor: Alessandro Sergi

Received: 1 April 2021

Accepted: 21 April 2021

Published: 28 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
tarasov@theory.sinp.msu.ru

2 Faculty “Information Technologies and Applied Mathematics”, Moscow Aviation Institute (National Research
University), 125993 Moscow, Russia

Abstract: In this paper, we proposed the exactly solvable model of non-Markovian dynamics of
open quantum systems. This model describes open quantum systems with memory and periodic
sequence of kicks by environment. To describe these systems, the Lindblad equation for quantum
observable is generalized by taking into account power-law fading memory. Dynamics of open
quantum systems with power-law memory are considered. The proposed generalized Lindblad
equations describe non-Markovian quantum dynamics. The quantum dynamics with power-law
memory are described by using integrations and differentiation of non-integer orders, as well as
fractional calculus. An example of a quantum oscillator with linear friction and power-law memory
is considered. In this paper, discrete-time quantum maps with memory, which are derived from
generalized Lindblad equations without any approximations, are suggested. These maps exactly
correspond to the generalized Lindblad equations, which are fractional differential equations with
the Caputo derivatives of non-integer orders and periodic sequence of kicks that are represented by
the Dirac delta-functions. The solution of these equations for coordinates and momenta are derived.
The solutions of the generalized Lindblad equations for coordinate and momentum operators are
obtained for open quantum systems with memory and kicks. Using these solutions, linear and
nonlinear quantum discrete-time maps are derived.

Keywords: non-Markovian quantum dynamics; open quantum system; power-law memory; Lind-
blad equation; discrete map with memory; fractional dynamics; fractional derivative; fractional
integral; fractional differential equation
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1. Introduction

In recent decades, the theory of open quantum systems has been actively developing
(for example, see basic papers [1–4], books [5–9], and reviews [10–12]). The dynamics of
open quantum systems can be described in terms of the infinitesimal change of quantum
observables (or states) of these systems. This change is defined by some form of infinitesi-
mal generator. The most general explicit form of the infinitesimal generator was suggested
by Gorini, Kossakowski, Sudarshan and Lindblad in [1–4]. The equations, which describe
dynamics of quantum observables and quantum states, contain derivatives of the first
order with respect to time. Therefore, these equations are operator ordinary differential
equations of first order in operator spaces (for example, see book [9]). Due to the use of only
derivatives of the integer orders, the differential equations of integer orders cannot describe
processes with memory. These processes with memory are characterized by the property of
the dependence of the system behavior at a given time point on the history of its behavior
at a certain past time interval. Integer-order derivatives are defined in an infinitesimally
small neighborhood of a given time instant and do not take into account memory.
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In mathematics, the differential equations of non-integer order and fractional deriva-
tives of arbitrary (integer and non-integer) positive orders (for example see books [13–17]
and handbooks [18,19]) are known. Fractional differentiation and fractional integration
go back to many great mathematicians, such as Leibniz, Liouville, Riemann, Abel, Weyl,
Kober, Erdelyi, Hadanard, Riesz, and have a long history from 1695 [20–24]. Fractional
integrals and fractional derivatives of a non-integer order are, in fact, integro-differential
operators forming a certain calculus, called fractional calculus. We should note that many
standard properties of the first-order derivative are not realized for fractional derivatives of
the non-integer order [25]. For example, a product rule—chain rule—semigroup property
has strongly complicated analogs for fractional derivatives [26–30].

Fractional differential equations of non-integer orders, with respect to time, are pow-
erful tools for describing processes with memory, as well as non-locality in time in various
sciences, including physics [31,32], economics [33,34], and other sciences. Physical systems,
which are described by fractional differential equations with derivatives of non-integer
orders with respect to time, can be characterized by memory effects that correspond to
intrinsic dissipative processes [35–38].

Attempts to construct a non-Markovian theory of open quantum systems with memory
have been actively undertaken in recent years (see, for example, reviews [39–41], and
articles [42–44], and references therein). The non-Markov character of quantum processes
was often interpreted as memory effects; that is, the dependence of the dynamics at the
current moment of time on the history of the system’s behavior on a finite interval in
the past. All these attempts were not associated with the use of fractional calculus and
mathematical theory of equations, with derivatives and integrals of non-integer orders.

For the first time, the use of fractional derivatives and integrals of a non-integer order,
with respect to time, to take into account memory effects (non-Markovity) in open quantum
systems was proposed in work [45] (see Chapter 20 in book [45–47]).

For the first time, fractional powers of Lindblad superoperators were defined and
used to describe open quantum systems with memory in work [9] in 2008 (see Chapter 20
in book [9], Chapter 20 in book [45,48,49]). Solutions of generaized Lindblad equations,
which describe non-Markovian quantum dynamics, were derived in works [9,45,48,49].

We also note some other possibilities for constructing a theory of non-Markovian
dynamics of open quantum systems in the following directions:

1. Non-Markovian dynamics of open quantum systems with memory [46], (pp. 477–
482, [45]).

2. Generalization of Markovian equations of closed and open quantum systems by
using fractional power of the Lindblad superoperator [48–50], (pp. 433–444, [9]),
(pp. 458–464, 468–477, [45]), and generalization using Grunvald–Letnikov fractional
derivatives [51].

3. Non-Markovian dynamics of open quantum systems with memory and time-dependent
parameters [47,52].

4. Uncertainty relation for open quantum systems [53].
5. Path integral for open quantum systems [54], (pp. 475–485, [9]).
6. Pure stationary states of open quantum systems [55,56], (pp. 453–462, [9]).
7. Open quantum system as quantum computer with mixed states [57], (pp. 487–520, [9]).
8. Relativistic open classical systems [58,59] and quantum systems with memory [60].
9. Classical system with memory as open system [61].
10. Quantization of open classical systems [62], (pp. 361–407, [9]), and [63].

Note the non-Markovian quantum dynamics are also considered in the framework
of generalizations of equations for closed systems described by the Schrodinger and
Heisenberg equations. For example, we can note the Schrodinger equation with fractional
derivatives with respect to time [64–66], and the fractional Heisenberg equations [9,50],
(pp. 457–466, [45]).

An important approach to description of dynamics is discrete-time maps (for example,
see [67–71]). In classical theory, the discrete maps with memory are considered in the



Entropy 2021, 23, 544 3 of 19

papers [72–77]. In these works, the form of these discrete maps with memory was simply
postulated and not derived from any principles or equations. It should be emphasized that
all these discrete maps with memory were not derived from any differential equations of
either integer or non-integer orders. In this regard, it is important to derive discrete-time
maps with memory from fractional differential equations that describe dynamical systems
with memory.

For the first time, discrete maps with memory were obtained from fractional differ-
ential equations in works [78–80] (see also (pp. 409–453, [45]) and [81,82])). It should be
emphasized that no approximations were used when obtaining maps with memory (for
details, see (pp. 409–453, [45])). These discrete maps with memory are exact solutions of
of the fractional differential equations with periodic kicks [45,78–80]. Then, this approach,
which is based on the equivalence of the fractional differential equations and the discrete
maps with memory, has been applied in works [34,81–94] to describe properties of the
discrete maps with memory. Computer simulations of some discrete maps with memory
demonstrate new types of chaotic behavior and the existence of new kinds of attractor.

The memory in discrete maps means that the present step depends on all past steps.
For the first time, discrete maps with memory are obtained from the fractional differential
equations of classical dynamical systems in works [78–80] (see also Chapter 18 in book [45]).

In the proposed paper, quantum discrete maps with memory are derived from frac-
tional differential equations with Caputo fractional derivatives. These quantum maps with
memory are obtained as solutions to the generalized Lindblad equations for quantum ob-
servables. The proposed quantum maps describe non-Markovian discrete-time dynamics
of open quantum systems with memory and periodic kicks.

2. Generalized Lindblad Equation for Open Quantum System with Memory

The first description of processes with memory and nonlocality in time was given by
Ludwig Boltzmann in 1874 and 1876 [95,96]. The first physical model with memory was
proposed by Boltzmann to describe isotropic viscoelastic media. Boltzmann assumed that
the stress at time t depends on the strains not only at the present time t, but also on the
history of changes for τ < t. He also proposed the linear superposition principle and the
memory fading principle. Boltzmann suggested the use of integro-differential equations to
describe the dynamics of the isotropic viscoelastic media, whose behavior is interpreted as
memory effects.

The Boltzmann uperposition principle can be expressed in the form

tk=t

∑
tk=0

M(t, tk)∆X(tk) = F(t). (1)

Equation (1) means that the influence of the history of process changes with memory
is linearly additive. Boltzmann postulated that expression (1) is valid for all small-enough
step sizes ∆X(tk) = X(tk+1)− X(tk) (or ∆tk = tk+1 − tk). If X = X(t) can considered as a
continuous differentiable function of time, then Equation (1) can be represented as∫ t

0
M(t, τ)X(1)(τ)dτ = F(t) (2)

for continuous time case.
The dynamics of open quantum systems can be described in terms of the infinitesimal

change of the quantum observable. The general explicit form of the infinitesimal super-
operator (infinitesimal generator) which describes this change was proposed by Gorini,
Kossakowski, Sudarshan and Lindblad in [1–3]. In these papers, master equations of the
quantum Markovian dynamics were proposed.



Entropy 2021, 23, 544 4 of 19

The quantum Markovian equation can be writtten in the form

dA(t)
dt

= − 1
ih
[H, A(t)] +

1
2h

∞

∑
k=1

(V∗k [A(t), Vk] + [V∗k , A(t)]Vk), (3)

where A(t) is a quantum observable, H is the Hamiltonina operator, Vk are the Lindblad
operators [9]. If Vk = 0 for all k ∈ N, then Equation (3) gives the standard Heisenberg equa-
tion.

For the description of non-Markovian quantum processes, we can take into account a
memory, which means that the behavior of the quantum observable A(t) or its derivative
A(1)(t) = dA((t)/dt may depend on the history of previous changes of this operators. To
describe this type of behavior, we cannot use differential equations of integer orders. We
need use mathematical tools that allow us to take into account the presence of memory in
quantum processes.

To take into account a memory, we can consider integro-differential equations instead
of differential equations of the integer orders. If we take into account the memory, then we
can generalize the Lindblad equation by using the integro-differential equation∫ t

0
M(t, τ)A(1)(τ)dτ = −LV A(t), (4)

where LV is defined by

LV A(t) =
1
ih
[H, A(t)]− 1

2h

∞

∑
k=1

(V∗k [A(t), Vk] + [V∗k , A(t)]Vk), (5)

and M(t, τ) is a memory function. Some general properties of the memory functions are
described, for example, in (pp. 3–52, [34]). For M(t, τ) = δ(t− τ), Equation (4) gives the
standard Lindblad Equation (3) that described quantum Markovian dynamics without
memory.

We can consider the power-law form of memory fading and power-law memory
functions due to the following reason. The power-law memory function can be considered
as an approximation of the generalized memory functions. In works [34,97], using the
fractional Taylor series in the Trujillo–Rivero–Bonilla form [98] for the memory function,
we proved that the memory M(t, τ) = M(t− τ) for a wide class of functions can be
represented through the power-law kernels.

The Trujillo–Rivero–Bonilla form of generalized Taylor’s formula [98] gives the equa-
tion for the memory function

M(t) =
m

∑
j=0

cj

Γ((j + 1)β)
t(j+1)β−1 + R2,m(t) ≈

c0

Γ(β)
tβ−1, (6)

where β ∈ [0; 1], Γ(z) is the gamma function, and

cj = Γ(β) [t1−β
(

Dβ
RL;0+)

j M(t)
]
(0+), (7)

R2,m(t) =
((Dβ

RL,0+)
m+1M)(ξ)

Γ((m + 1)β + 1)
t(m+1)β, ξ ∈ [0; t]. (8)

In addition to using the fractional Taylor series in time variable, we can use this series
for Fourier transform of the memory funstion with respect to the frequency [99]. In order
to consider a more general case of power-law fading, we will not be limited in advance by
the conditions for obtaining a power-law memory function from the expansion of a more
general kernel in a fractional Taylor series and condition β ∈ (0, 1]. This is due to the fact
that the power-law form of time nonlocality can be obtained by other methods [34,45,99].
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Using the first term of expression (6) the memory function can be described by the
following power-law form

M(t, τ) =
1

Γ(1− α)
(t− τ)−α, (9)

where Γ(z) is the gamma function, α = 1− β > 0 is the memory fading parameters for
quantum system with memory. The value β = 0 (α = 1) corresponds to the memory-
less case.

If we take into account the power-law fading memory with memory function (9), then
Equation (4) is a generalization of Lindblad equation for quantum observable in the form(

Dα
C,0+A

)
(t) = −LV A(t), (10)

where LV is defined by Equation (5), and the operator Dα
C,0+ is the Caputo fractional

derivative with respect to time t (dimensionless variable) that is defined by the equation

(
Dα

C;a+A
)
(t) =

(
IN−α
RL;a+A(N)

)
(t) =

1
Γ(N − α)

∫ t

a
(t− τ)N−α−1 A(N)(τ)dτ, (11)

where t ∈ [a, b] and A(N)(τ) is the derivative of the integer order N, with respect to τ. It is
assumed that A(τ) ∈ ACN [a, b], i.e., the function A(τ) has integer-order derivatives up to
(N − 1)-th order, which are continuous functions on the interval [a, b], and the derivative
A(N)(τ) is Lebesgue summable on the interval [a, b].

For α = 1, Equation (10) with (5) has the form of the standard Lindblad Equation (3).
For α is non-integer, Equation (10) defines the Markovian quantum dynamics with

power-law memory.
If Vk = 0 for all k ∈ N, then Equation (10) gives [45–47] the Heisenberg equation

with memory (
Dα

C,0+A
)
(t) = − 1

ih
[H, A(t)]. (12)

Let us consider the Cauchy problem for fractional differential Equation (10), and the
initial condition is given at the time t = 0 by

lim
t→0+

A(t) = A(0). (13)

The solution of this Cauchy problem can be given [45–47] in the form

A(t) = Φt(α)A(0), (t ≥ 0). (14)

The quantum dynamical map Φt(α) is represented by the equation

Φt(α) = Eα[−tαLV ], (15)

where Eα[z] is the Mittag-Leffler function [100] with the superoperator argument

Eα[−tαLV ] =
∞

∑
k=0

(−tα)k

Γ(αk + 1)
Lk

V . (16)

The Mittag-Leffler function satisfies [100] the equation(
Dα

C,a+ Eα[λ(τ − a)α]
)
(t) = λ Eα[λ(t− a)α] (17)

for λ ∈ C, t > a, a ∈ R, and α > 0 (for example, see Lemma 2.23 in book [16]).
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For α = 1, the superoperators Φt = Φt(1), t ≥ 0 are completely positive superopera-
tors on operator algebra M. If Φt(I) = I, then Φt satisfies the inequality

Φt(A∗A) ≥ Φt(A∗) Φt(A) (18)

for t ≥ 0, and A ∈ M where A∗, A∗A ∈ M (for details, see Sections 15.7 and 15.8 in (pp.
319–323, [9]).

If Φt is a superoperator such that Φt(A∗) = (Φt(A))∗ for all A ∈ M. Then Φt is
positive superoperator

Φt

(
A2
)
≥ (Φt(A))2 (19)

that can be proed by the transformations

Φt
(

A2) = Φt(A∗A) ≥ Φt(A∗)Φt(A) =

= (Φt A)∗(Φt A) = (Φt A)2 ≥ 0.
(20)

As a result, we can state that for open quantum systems, we have the inequalities

(AB)(t) 6= A(t) B(t), A2(t) 6=
(

A2
)
(t). (21)

The quantum dynamical map, which is represented by the superoperators Φt(α) with
t_0, describes dynamics of open quantum systems with power-law memory. The superop-
erator LV can be considered as a generator of the one-parameter groupoid {Φt(α)| t_0} on
operator algebra M of quantum observables(

Dα
C,0+Φτ(α)

)
(t) = −LVΦt(α). (22)

The set {Φt(α)| t_0 ≥ 0} forms a quantum dynamical groupoid [45–47] which is
characterized by the following properties

Φt(α)I = I, (23)

(Φt(α)A)∗ = Φt(α)A, (A∗ = A), (24)

lim
t→0+

Φt(α) = LI , (25)

where LI is an identity superoperator (LI A = A).
As a result, the superoperators Φt(α), t_0 ≥ 0 are real and unit preserving dynamical

maps on operator algebra M of quantum observables [45–47].
We should note that the dynamical maps (15), which are described by Φt(α) =

Eα[−tαLV ], do not have the semigroup property for non-integer values of the memory
fading parameter α > 0. In general, we have the inequality

Φt(α) Φs(α) 6= Φt+s(α) (26)

for t, s > 0 and α 6= 1. This property is based on the fact that the Mittag-Leffler function
violated the semigroup property [101–103] for non-integer values of α:, and we have
the inequality

Eα[−tαLV ]Eα[− sαLV ] 6= Eα[− (t + s)αLV ]. (27)

As a result, the quantum dynamical groupoid {Φt(α)| t_0} with α /∈ N cannot form a
quantum dynamical semigroup for non-integer values of the memory fading parameter
α > 0. This property can be interpreted as a memory.

3. Linear Quantum Oscillator with Memory

Let us consider an oscillator with power-law memory. Here we use the basic assump-
tion that the general form of a bounded completely dissipative superoperator holds for
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an unbounded superoperator LV . This means that the generalized Lindblad equations for
unbounded operators Q and P has the form(

Dα
C,0+Q

)
(t) = −LV Q(t), (28)(

Dα
C,0+P

)
(t) = −LV P(t), (29)

where LV is defined by Equation (5). We also assume that the operators H, and Vk are the
functions of the coordinate and momentum operators (Q and P) to obtain exactly solvable
fractional differential equations of the order α > 0. The functions Vk = Vk(Q, P) and
H = H(Q, P) are defined in the form

H =
1

2m
P2 +

mω2

2
Q2 +

µ

2
(PQ + QP), (30)

Vk = akP + bkQ, (31)

where ak, and bk, k = 1, 2, are complex numbers. In Hamiltonian, the momentum operator
means that this system is a linear oscillator with friction force proportional to the velocity.

Using the definition of LV in Equation (5) and the canonical commutation relations for
operators Q and P, we obtain the generalized Lindblad Equation (28) and (29) for operators
Q(t) and P(t) in the form

(
Dα

C,0+Q
)
(t) =

1
m

P(t) + (µ− λ)Q(t), (32)

(
Dα

C,0+P
)
(t) = −mω2Q(t)− (µ + λ)P(t), (33)

where
λ = Im(a1b∗1 + a2b∗2), (34)

where Dα
C,0+ is the Caputo fractional derivative with respect to time t, and t is a dimension-

less variable.
Equations (32) and (33) describe the exactly solvable model of non-Markovian dy-

namics of open quantum systems, which was first proposed in works [45–47], where
the solutions of these equations are derived. For α = 1, this model gives the standard
Markovian quantum model, which was proposed in [4,12] (see also [10,11]).

To derive solutions of Equations (32) and (33), we define the matrices

A =

(
Q
P

)
, M =

(
µ− λ m−1

−mω2 −µ− λ

)
. (35)

Using matrices (35), Equations (32) and (33) take the matrix representation of the
generalized Lindblad equation for quantum observables in the form have(

Dα
C,0+A

)
(t) = M A(t), (36)

where −LV A(t) = M A(t).
Let us consider the Cauchy problem for Equation (36) and initial condition (13). The

solution of the Cauchy problem can be represented [45–47] in the form

A(t) = Φt(α)A(0). (37)

The quantum dynamical map Φt(α) is represented through the Mittag-Leffler function
with the matrix argument

Φt(α) = Eα[tα M] =
∞

∑
n=0

tnα

Γ(αn + 1)
Mn. (38)
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For α = 1, this dynamical map takes the standard form

Φt(1) = Φt = etM =
∞

∑
n=0

tn

n!
Mn (39)

that describes the quantum dynamics of open system without memory.
To obtain exact expression of the solution for coordinate and momentum operators,

we represent the matrix M in the form

M = N F N−1, (40)

where

F =

(
−(λ + ν) 0
0 −(λ− ν)

)
, (41)

N =

(
− µ−ν

A− − µ+ν
A+

mω2

A−
mω2

A+

)
, (42)

and
A± =

√
|µ± ν|2 + (mω2)2, ν =

√
µ2 −ω2. (43)

Using (40), the quantum dynamical map Φt(α) is represented in the form

Φt(α) =
∞

∑
n=0

tnα

Γ(αn + 1)
Mn = N

(
∞

∑
n=0

tnα

Γ(αn + 1)
Fn

)
N−1. (44)

As a result, we have
Φt(α) = N Eα[tαF] N−1. (45)

For α = 1, the map Φt(α) is given in the standard form Φt(1) = N etF N−1.
Substituting expression (42) and (41) into Equation (45), we obtain the dynamical map

Φt(α) =

(
Cα[λ, ν, t] + (µ/ν) Sα[λ, ν, t] (1/mν) Sα[λ, ν, t]
−
(
mω2/ν

)
Sα[λ, ν, t] Cα[λ, ν, t]− (µ/ν) Sα[λ, ν, t]

)
, (46)

where we use the functions

Sα[λ, ν, t] =
1
2
(Eα[(−λ + ν)tα]−Eα[(−λ− ν)tα]), (47)

Cα[λ, ν, t] =
1
2
(Eα[(−λ + ν)tα]+Eα[(−λ− ν)tα]). (48)

As a result, we proved the following Proposition that describes the solution of the
generalized Lindblad equation that describes non-Markovian dynamics of a quantum
system with memory [45–47].

Proposition 1. The solutions of generalized Lindblad equations for coordinate (32) and momentum
(33) can be represented as the quantum discrete-time map with memory in the form

Q(t) =
(

Cα[λ, ν, t] +
µ

ν
Sα[λ, ν, t]

)
Q0 +

1
mν

Sα[λ, ν, t]P0, (49)

P(t) = −mω2

ν
Sα[λ, ν, t]Q0 +

(
Cα[λ, ν, t]− µ

ν
Sα[λ, ν, t]

)
P0, (50)

where the functions Sα[λ, ν, t] and Cα[λ, ν, t] are defined by expressions (47) and (48), and ν is the
complex parameter such that ν2 = µ2 −ω2.
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For λ = 0, expressions (49) and (50) describe solutions of the Heisenberg equation
with memory (12) that is the equation for linear oscillator with Hamiltonian (30) and a
power-law memory.

For α = 1, we have E1[z] = exp(z), and expressions (49) and (50) describe the standard
solutions [12] of the Lindblad equation without memory (α = 1) in the form

Q(t) = e−λt
(

cos h(νt) +
µ

ν
sin h(νt)

)
Q0 +

1
mν

e−λtsin h(νt)P0, (51)

P(t) = −mω2

ν
e−λtsin h(νt)Q0 + e−λt

(
cos h(νt)− µ

ν
sin h(νt)

)
P0, (52)

where we use the expressions

S1[λ, ν, t] = e−λtsin h(νt), C1[λ, ν, t] = e−λtcos h(νt), (53)

where sin h and cos h are hyperbolic sine and cosine.
For non-integer values of the memory fading parameter α, we can use the Mainardi

representation of the Mittag-Leffler function in the form

Eα(−ztα) = fα

(
z1/αt

)
+ gα

(
z1/αt

)
, (54)

where

fα(t) =
1
π

∫ ∞

0
e−rt rα−1 sin(πα)

r2α + 2rα cos(πα) + 1
dr, (55)

gα(t) =
2
α

et cos (π/α) cos[t sin(π/α)]. (56)

The function fα(t) describes an algebraic decay as t→ ∞ . The function gα(t) describes
oscillations with the exponentially decaying amplitude with rate λ(α) = |cos(π/α)| and
the circular frequency Ω(α) = sin(π/α). Therefore, Sα[λ, ν, t] and Cα[λ, ν, t] also demon-
strate this algebraic decay and oscillations with the exponentially decaying amplitude.

As a result, we can state that the quantum system (linear oscillator) with memory
demonstrates power-law decay. We also should emphasize that power-law decay exists for
open quantum systems with memory (λ 6= 0) and closed quantum systems with memory
(λ = 0).

4. Generalized Lindblad Equation with Memory and Kicks

Let us consider the generalized Lindblad equation with power-law memory and
periodic kicks in the form

(
Dα

C,0+A
)
(t) = − 1

ih
[H, A(t)] + λDDV [A(t)]

∞

∑
k=1

δ

(
t
T
− k
)

, (57)

where T is the period of perturbation by a periodic sequence of kicks, which are described
by delta-functions, λD is an amplitude of the kicks, A(t) is quantum observable, Dα

C,0+ is
the Caputo fractional derivative of the order α > 0 with respect to time t (dimensionless
variable). The superoperator DV is called a dissipator [7] and defined by the expression

DV [A(t)] =
1

2h

∞

∑
k=1

(V∗k [A(t), Vk] + [V∗k , A(t)]Vk). (58)

Fractional differential Equation (57) contains the Dirac delta-functions, which are the
generalized functions [104,105]. The generalized functions are functionals on a space of
test functions. These functionals are continuous in a topology on the space of test functions.
Therefore, Equation (57) should be considered in a generalized sense, i.e., on the space of
test functions, which are continuous. In Equation (57), the product of the delta-functions
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and the functions A(t) is meaningful, if the dissipator DV [A(t)] as a function of time is
continuous at the points t = kT. We can use A(t− ε) with 0 < ε < T ( ε→ 0+ ) instead
of A(t) to make a sense of the right side of Equation (57) for the case 0 < α < 1, when
A(kT − 0) 6= A(kT + 0), [90–92].

Let us consider a free particle with memory and interaction with the environment.
The perturbation by the environment is described by a periodic sequence of kicks with
the period T and amplitude λD. We assume that the operators Vk = Vk(Q, P) and the
Hamiltonian H = H(P) have the form

H =
1

2m
P2, Vk = akP + bkQ, (59)

where ak and bk (k = 1, 2) are complex numbers.
Using expression (58) and the canonical commutation relations for operators Q and

P, we obtain the generalized Lindblad equation periodic kicks (57) for Q(t) and P(t) in
the form (

Dα
C,0+Q

)
(t) =

1
m

P(t)− λQ(t)
∞

∑
k=1

δ

(
t
T
− k
)

, (60)

(
Dα

C,0+P
)
(t) = −λP(t)

∞

∑
k=1

δ

(
t
T
− k
)

, (61)

where
λ = λD Im(a1b∗1 + a2b∗2). (62)

Let us derive exact solutions of these equations and then the quantum dynamical
maps with memory. To obtain a solution of the suggested fractional differential equation,
we will use the the Riemann–Liouville fractional integral and the second fundamental
theorem of fractional calculus.

The left-sided Riemann-Liouville fractional integral is defined by the equation

(
Iα
RL;a+ f

)
(t) =

1
Γ(α)

∫ t

α
(t− τ)α−1 f (τ)dτ, (63)

where Γ(α) is the gamma function, and the function f (t) satisfies the condition f (t) ∈
L1(a, b). The relationship between the Caputo fractional derivatives and the Riemann–
Liouville fractional integrals is described by properties, which are the fundamental theo-
rems of fractional calculus (for example, see Lemmas 2.21 and 2.22 of (pp. ~95–96, [16]).
The second fundamental theorem of fractional calculus for these operators is described
by Lemma 2.22, which states (p. ~96, [16]) the following: Let α > 0, N = [α] + 1 for
non-integer α and N = α for integer α. If f (t) ∈ ACN [a, b] or f (t) ∈ CN [a, b], then we have
the equality (

Iα
RL;a+Dα

C;a+ f
)
(t) = f (t)−

N−1

∑
k=0

f (k)(a+)

k!
(t− a)k. (64)

In particular, for 0 < α ≤ 1, (N = 1), the equation(
Iα
RL;a+Dα

C;a+ f
)
(t) = f (t)− f (a) (65)

is valid if f (t) ∈ AC[a, b] or f (t) ∈ C[a, b].
The application of the Riemann–Liouville fractional integral to Equations (60) and

(61) with 0 < α ≤ 1, and the use of the second fundamental of fractional calculus gives the
equations

Q(t)−Q(0) =
1
m
(

Iα
RL,0+P

)
(t)− λ

(
Iα
RL,0+Q(τ)

∞

∑
k=1

δ
( τ

T
− k
))

, (66)
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P(t)− P(0) = −λ

(
Iα
RL,0+P(τ)

∞

∑
k=1

δ
( τ

T
− k
))

. (67)

Using the definition of the Riemann-Liouville integral (63), Equations (66) and (67)
can be writtten as

Q(t)−Q(0) =
1
m
(

Iα
RL,0+P

)
(t)− λ

Γ(α)

∫ t

0
Q(τ)(t− τ)α−1

∞

∑
k=1

δ
( τ

T
− k
)

dτ, (68)

P(t)− P(0) = − λ

Γ(α)

∫ t

0
P(τ)(t− τ)α−1

∞

∑
k=1

δ
( τ

T
− k
)

dτ. (69)

For nT < t < (n + 1)T, Equations (68) and (69) take the form

Q(t) = Q(0) +
1
m
(

Iα
RL,0+P

)
(t)− λ

Γ(α)

n

∑
k=1

∫ t

0
Q(τ)(t− τ)α−1δ

( τ

T
− k
)

dτ, (70)

P(t) = P(0)− λ

Γ(α)

n

∑
k=1

∫ t

0
P(τ)(t− τ)α−1δ

( τ

T
− k
)

dτ. (71)

The Dirac-delta function has the property∫ t

0
f (τ)δ

( τ

T
− k
)

dτ = T f (kT)θ(t− kT), (72)

which holds if 0 < kT < t and f (t) is continuous function in τ = kT, where θ(t− kT) is
the Heaviside step function, which is equal to zero when k > t/T (i.e., t < kT).

Using this property, Equations (70) and (71) for t ∈ (nT, (n + 1)T), can be written in
the form

Q(t) = Q(0) +
1
m
(

Iα
RL,0+P

)
(t)− λT

Γ(α)

n

∑
k=1

Q(kT)(t− kT)α−1θ(t− kT), (73)

P(t) = P(0)− λT
Γ(α)

n

∑
k=1

P(kT)(t− kT)α−1θ(t− kT). (74)

To obtain expression for
(

Iα
RL,0+P

)
(t), we should use Property 2.1 in (p. ~51, [16]) in

the form (
Iα
RL,a+(τ − a)β

)
(t) =

Γ(β + 1)
Γ(α + β + 1)

(t− a)α+β (75)

for t > a, α > 0, β > 0. In particular,

(
Iα
RL,a+1

)
(t) =

1
Γ(α + 1)

(t− a)α. (76)

Therefore, for nT < t < (n + 1)T, the action of the Riemann–Liouville fractional
integral on Equation (74) gives(

Iα
RL,0+P

)
(t) = P(0)

(
Iα
RL,0+1

)
(t)−

λT
Γ(α)

n
∑

k=1
P(kT)(Iα

RL,0+(τ − kT)α−1θ(τ − kT)(t) =

P(0)(Iα
RL,0+1)(t)− λT

Γ(α)

n
∑

k=1
P(kT)(Iα

RL,kT+(τ − kT)α−1)(t) =

P(0) 1
Γ(α+1)τα − λT

Γ(α)

n
∑

k=1
P(kT) Γ(α)

Γ(2α)
(t− kT)2α−1θ(t− kT) =

P(0) 1
Γ(α+1)τα − λT

Γ(2α)

n
∑

k=1
P(kT)(t− kT)2α−1θ(t− kT),

(77)
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where we use Iα
RL,0+ θ(t− kT) = Iα

RL,kT+.
Substitution of expression (77) into Equation (73) gives the equations for coordinate

operator Q(t).
As a result, we proved the following Proposition.

Proposition 2. The solutions of generalized Lindblad equations for coordinate (60) and momentum
(61) at t ∈ (nT, (n + 1)T) has the form

Q(t) = Q(0) + P(0) 1
mΓ(α+1) tα−

λ T
mΓ(2α)

n
∑

k=1
P(kT)(t− kT)2α−1θ(t− kT)−

λ T
Γ(α)

n
∑

k=1
Q(kT)(t− kT)α−1θ(t− kT),

(78)

P(t) = P(0)− λ T
Γ(α)

n

∑
k=1

P(kT)(t− kT)α−1θ(t− kT), (79)

where θ(z) is the Heaviside step function.

Equations (78) and (79) are exact solutions of the generalized Lindblad Equations (60)
and (61) for 0 < α ≤ 1 and t ∈ (0, (n + 1)T). These solutions describe the non-Markovian
dynamics of an open quantum system with power-law memory.

Let us derive expressions for the non-Markovian quantum dynamics in the form
of quantum discrete-time maps with memory. For the left side of the (n + 1)th kicks
(t = (n + 1)T − ε), where

Qn+1 = lim
ε→0+

Q(T(n + 1)− ε), (80)

Pn+1 = lim
ε→0+

P(T(n + 1)− ε), (81)

solutions (78) and (79) are given by the equations

Qn+1 = Q0 + P0
Tα

mΓ(α+1) (n + 1)α−
λ T2α

mΓ(2α)

n
∑

k=1
Pk (n + 1− k)2α−1 − λ Tα

Γ(α)

n
∑

k=1
Qk (n + 1− k)α−1,

(82)

Pn+1 = P0 −
λ Tα

Γ(α)

n

∑
k=1

Pk(n + 1− k)α−1. (83)

For the left side of the n-th kicks (t = nT − ε), we have

Qn = Q0 + P0
Tα

Γ(α+1)nα−
λ T2α

mΓ(2α)

n−1
∑

k=1
Pk(n− k)2α−1 − λ Tα

Γ(α)

n−1
∑

k=1
Qk(n− k)α−1,

(84)

Pn = P0 −
λTα

Γ(α)

n−1

∑
k=1

Pk (n− k)α−1. (85)

Subtracting from the expressions for n+ 1 the expressions for n, we obtain the discrete-
time quantum maps with memory.

As a result, we proved the Proposition that describes the quantum discrete map
with memory.
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Proposition 3. The solutions of generalized Lindblad equations for coordinate (60) and momentum
(61) can be represented as the quantum discrete-time map with memory in the form

Qn+1 = Qn + P0
Tα

Γ(α+1)Vα+1(n)− λT2α

mΓ(2α)
Pn − λT2α

mΓ(2α)

n−1
∑

k=1
PkV2α(n− k)−

λTα

Γ(α)Qn − λTα

Γ(α)

n−1
∑

k=1
QkVα(n− k),

(86)

Pn+1 = Pn −
λTα

Γ(α)
Pn −

λTα

Γ(α)

n−1

∑
k=1

PkVα(n− k), (87)

where we use the function
Vα(z) = (z + 1)α−1 − zα−1, (88)

where z > 0.

It should be emphasized that the proposed discrete maps with memory are obtained
from the generalized Lindblad equations for Q and P without using any approximations.

As a result, we can see that the quantum dynamical maps (86), (87) with α /∈ N are
maps with fading memory. The memory means that evolution of the quantum observable

A(tn+1) = Φn+1(α)A(0) (89)

depends on all past values of A(tk) for k ≤ n, (tk < tn+1).

5. Nonlinear Quantum Map with Memory from Generalized Lindblad Equation

Let us consider an example of nonlinear quantum map that can be derived from the
generalized Lindblad equation and periodic kicks for coordinate and momentum operators.

Let us consider the non-Markovian master equation for an open quantum system
with power-law memory and periodic kicks in the form (57), where the Lindblad operators
Vk = Vk(Q, P) and the Hamiltonian H = H(Q, P) have the form

H =
1

2m
P2, Vk = akF(P) + bkG(Q), (90)

where ak, and bk, k = 1, 2, are complex numbers, F(P) and G(Q) are entire functions or
polynomials of the coordinate and momenta operators, and 0 < α ≤ 1.

The generalized Lindblad equations (90) with power-law memory and periodic kicks
for the coordinate and momentum have the forms

(
Dα

C,0+Q
)
(t) =

1
m

P(t)− λD DV [Q(t)]
∞

∑
k=1

δ

(
t
T
− k
)

, . (91)

(
Dα

C,0+P
)
(t) = λD DV [P(t)]

∞

∑
k=1

δ

(
t
T
− k
)

. (92)

Using that
LVΦt(α) = Φt(α)LV , (93)

we obtain for Equations (91) and (92) in the form

DV [Q(t)] = DV [Φt(α) Q] = Φt(α) DV [Q] = DV [Q](t), (94)

DV [P(t)] = DV [Φt(α) P] = Φt(α) DV [P] = DV [P](t). (95)

Because of this, we can substitute expressions (90) into Equation (58) to obtain an
explicit form of dissipators for the coordinate and momentum operators. Using the expres-
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sion (90), the definition of DV and the canonical commutation relations for operators Q
and P, we obtain the expressions

DV [Q] = 1
2h (λa [F(P),[Q, F(P)]]+Re(λab) [G(Q),[Q, F(P)]]+

i Im(λab) {G(Q), [Q, F(P)]}+),
(96)

DV [P] = 1
2h (λb [G(Q),[P, G(Q)]]+Re(λab) [F(P),[P, G(Q)]]−

i Im(λab) {F(P), [P, G(Q)]}+),
(97)

where
{A, B)+ = AB + BA, (98)

λa =
2

∑
k=1

aka∗k , λb =
2

∑
k=1

bkb∗k , λab =
2

∑
k=1

akb∗k . (99)

For example, if we use the functions

F(P) = P, G(Q) = Q, (100)

then Equations (96) and (97) take form

DV [Q] = −Im(λab) Q, (101)

DV [P] = −Im(λab) P. (102)

In this case, Equations (91) and (92) give Equations (60) and (61).
If we use the functions

F(P) = P, G(Q) = Q2, (103)

then Equations (96) and (97) take the form

DV [Q] = −Im(λab) Q2, (104)

DV [P] = −h Re(λab) + Im(λab) (Q P + P Q). (105)

The application of the Riemann–Liouville fractional integral to Equations (91) and (92)
with 0 < α ≤ 1, and the second fundamental of fractional calculus, gives the equations

Q(t)−Q(0) =
1
m
(

Iα
RL,0+P

)
(t)− λD

(
Iα
RL,0+ + DV [Q](τ)

∞

∑
k=1

δ
( τ

T
− k
))

, (106)

P(t)− P(0) = −λ

(
Iα
RL,0+DV [P](τ)

∞

∑
k=1

δ
( τ

T
− k
))

(107)

Using the definition of the Riemann–Liouville integral (63), we have

Q(t)−Q(0) = 1
m

(
Iα
RL,0+P

)
(t)−

λD
Γ(α)

∫ t
0 DV [Q](τ)(t− τ)α−1 ∞

∑
k=1

δ
(

τ
T − k

)
dτ,

(108)

P(t)− P(0) = − λD
Γ(α)

∫ t

0
DV [P](τ)(t− τ)α−1

∞

∑
k=1

δ
( τ

T
− k
)

dτ. (109)
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Carrying out the transformations performed in the previous section, we can obtain
the solution of the nonlinear equations for the coordinate and momentum. As a result, we
have the solution of the considered equations for t ∈ (nT, (n + 1)T) in the form

Q(t) = Q(0) + P(0) 1
Γ(α+1) tα − λDT

mΓ(2α)

n
∑

k=1
DV [P](kT) (t− kT)2α−1−

λDT
Γ(α)

n
∑

k=1
DV [P](kT) (t− kT)α−1,

(110)

P(t) = P(0)−−λDT
Γ(α)

n

∑
k=1

DV [Q](kT) (t− kT)α−1, (111)

Let us use the coordinate and momentum for the left side of the k-th kicks (t = kT− ε),
where

Qk = lim
ε→0+

Q(kT − ε), Pk = lim
ε→0+

P(kT − ε) (112)

with k ∈ N.
Using the transformations performed in the previous section, we attain the quantum

discrete-time map with memory.
As a result, we obtain the Proposition that describes the nonlinear quantum discrete-

time map with memory.

Proposition 4. The solutions of generalized Lindblad equations for coordinate (91), (96) and
momentum (92), (97) can be represented as the quantum discrete-time map with memory in the form

Qn+1 = Qn + P0
Tα

mΓ(α+1)Vα+1(n)−
λDT2α

mΓ(2α)
Dn[P]− λDT2α

mΓ(2α)

n−1
∑

k=1
Dk[P]V2α(n− k)−

λDTα

Γ(α) Dn[Q]− λDTα

Γ(α)

n
∑

k=1
Dk[Q] Vα(n− k),

(113)

Pn+1 = Pn −
λDTα

Γ(α)
Dn[P]−

λDTα

Γ(α)

n

∑
k=1

Dk[P] Vα(n− k), (114)

where
Dk[Q] = lim

ε→0+
DV [Q](kT − ε), (115)

Dk[P] = lim
ε→0+

DV [P](kT − ε) (116)

with k = 1, . . . , n and T > 0.

We should emphasize that, in general, we have the inequalities

DV [Q](t) 6= DV [Q(t)], DV [P](t) 6= DV [P(t)], (117)

where
DV [A](t) = Φt(α)(DV [A]), DV [A(t)] = DV [Φt(α)A], (118)

since, for open quantum systems

Φt(α)(A B) 6= Φt(α)(A) Φt(α)(B) (119)

for t > 0, in general, i.e., (AB)(t) 6= A(t)B(t). In particular, we have

Φt(α)
(

A2
)
6= (Φt(α)A)2, or

(
A2
)
(t) 6= (A(t))2. (120)
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An important characteristic of open quantum systems is the following: the evolution
of the product of operators does not coincide with the product of the evolved operators.
This property is independent of the presence or absence of memory. The property is due
to the fact that the Lindblad superoperator LV is not a derivative operator on the space of
operators (for example, see [9,12,53]).

As a result, we have the inequalities

Dk[Q] 6= 1
2h (λa [F(Pk),[Qk, F(Pk)]]+

Re(λab) [G(Qk),[Qk, F(Pk)]] + i Im(λab) {G(Qk), [Qk, F(Pk)]}+,
(121)

Dk[Pk] 6= 1
2h (λb [G(Qk),[Pk, G(Qk)]]+

Re(λab) [F(Pk),[Pk, G(Qk)]]− i Im(λab) {F(Pk), [Pk, G(Qk)]}+),
(122)

where k ∈ N.
For example, if we use the functions F(P) = P and G(Q) = Q2, then Equations (121)

and (122) take the form
Dk[Q] = −Im(λab) (Q2)k, (123)

Dk[Pk] = −h Re(λab) + Im(λab) (QP + PQ)k. (124)

where
(Q2)k = lim

ε→0+

(
Q2
)
(kT − ε) = lim

ε→0+
ΦkT−ε(α)

(
Q2
)

, (125)

(QP + PQ)k = lim
ε→0+

(QP + PQ)(kT − ε) = lim
ε→0+

ΦkT−ε(α)(QP + PQ). (126)

Note that we should take into account the inequality

(Q2)k 6= (Qk)
2, (QP + PQ)k 6= QkPk + PkQk (127)

To have the expressions (Q2)k and (QP + PQ)k, we should consider the generalized
Lindblad Equation (57) and the superoperator (5) for A = Q2 and A = QP + PQ. In the
nonlinear case, we have a system of interconnected equations (chain of equations).

The quantum dynamical maps with α /∈ N are maps with fading memory, since
behavior of the quantum observables on the (n + 1)-step A(tn+1) = Φn+1(α)A(0) depends
on all past k-step values for k ≤ n.

We should emphasize that the proposed dynamical maps are nonlinear. Therefore, we
can assume that it may exhibit chaotic behavior.

6. Conclusions

In this paper, we consider non-Markovian dynamics of open quantum systems with
the power-law memory and periodic kicks. Non-Markovian generalizations of the Lindblad
equations are suggested in the form of fractional differential operator equations with
the derivative of non-integers with respect to time. The exact solution of the proposed
generalized Lindblad equations for coordinate and momentum operators are derived. We
assumed that fractional differential operator equations have found many applications in the
construction of non-Markovian theory of open quantum systems and quantum processes
with fading memory.

We assume that proposed discrete quantum maps with memory can find different
applications in quantum dynamics with memory.

It is safe to hope that the proposed quantum maps with memory can simplify sim-
ulations of the behavior of non-Markovian quantum dynamics with power-law fading
memory in computer simulations. However, this modeling remains an open question.
Hopefully, it will be solved in future research.
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