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Abstract
A lipidome is the set of lipids in a given organism, cell or cell compartment and this set

reflects the organism’s synthetic pathways and interactions with its environment. Recently,

lipidomes of biological model organisms and cell lines were published and the number of

functional studies of lipids is increasing. In this study we propose a homology metric that

can quantify systematic differences in the composition of a lipidome. Algorithms were devel-

oped to 1. consistently convert lipids structure into SMILES, 2. determine structural similar-

ity between molecular species and 3. describe a lipidome in a chemical space model. We

tested lipid structure conversion and structure similarity metrics, in detail, using sets of iso-

meric ceramide molecules and chemically related phosphatidylinositols. Template-based

SMILES showed the best properties for representing lipid-specific structural diversity. We

also show that sequence analysis algorithms are best suited to calculate distances between

such template-based SMILES and we adjudged the Levenshtein distance as best choice

for quantifying structural changes. When all lipid molecules of the LIPIDMAPS structure

database were mapped in chemical space, they automatically formed clusters correspond-

ing to conventional chemical families. Accordingly, we mapped a pair of lipidomes into the

same chemical space and determined the degree of overlap by calculating the Hausdorff

distance. We named this metric the ‘Lipidome jUXtaposition (LUX) score’. First, we tested

this approach for estimating the lipidome similarity on four yeast strains with known genetic

alteration in fatty acid synthesis. We show that the LUX score reflects the genetic relation-

ship and growth temperature better than conventional methods although the score is based

solely on lipid structures. Next, we applied this metric to high-throughput data of larval tissue

lipidomes of Drosophila. This showed that the LUX score is sufficient to cluster tissues and

determine the impact of nutritional changes in an unbiased manner, despite the limited infor-

mation on the underlying structural diversity of each lipidome. This study is the first effort to

define a lipidome homology metric based on structures that will enrich functional associa-

tion of lipids in a similar manner to measures used in genetics. Finally, we discuss the signif-

icance of the LUX score to perform comparative lipidome studies across species borders.
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Author Summary

Because of their role in health and disease, lipids are often the focus of biochemical studies.
Advances in analytical biochemistry have made it possible to detect all the lipids from a
cell, tissue or organism (termed lipidome). Much of this research is based on model organ-
isms, but it is difficult to transfer results from a fruit fly or yeast to human biochemistry. A
central problem is that there is no agreed-upon method for comparing lipidomes. We
have developed the LUX score, which enables us to determine the homology between lipi-
domes. All constituent lipids are first embedded in a chemical space according to their
similarity to each other. When we treat all lipids as points in such a space, one can overlay
different lipidomes and estimate their differences. We expect that this kind of metric will
be useful for translating findings from model organisms to human diseases and in under-
standing fundamental biological processes.

Introduction
A lipidome can be an indicator of health, disease, stress or metabolic state. Using model organ-
isms, the role of lipid metabolism has been studied in diseases such as diabetes, metabolic syn-
drome, neurodegeneration and cancer [1–5]. To this end, lipidomes from yeast and fruit fly
have been characterised [6–10] enabling one to identify fundamental lipid metabolic processes
[11,12]. However, a critical question remains: How relevant are lipidome changes in model
organisms to human physiology, if these lipids are not present in humans?

For example, it would be a challenge to relate differences in lipid metabolism in D.melano-
gaster or S. cerevisiae to human biochemistry (S1 Table). One only has to consider their differ-
ing sphingolipid compositions [13]. In humans, sphingomyelins (SM) are highly abundant, but
they are basically absent in the fruit fly. Furthermore, drosophila sphingolipids have shorter
sphingoid alkyl chains, but their amide linked fatty acids are usually longer than those in
humans.

The theme in this work is the development of metrics for lipidome similarity, largely based
on established methods used on protein or gene sequences. We started by converting lipid
structures to Simplified Molecular Input Line Entry Specification (SMILES) [14]. This repre-
sentation is compact and allows one to use methods developed for fast string comparisons.
One can also take advantage of the literature on SMILES-based methods in cheminformatics
[15–17]. Given this structure representation, we used alignment and scoring methods such as
Smith and Waterman [18] and the Levenshtein distance [19,20] and looked at the distances
between lipids. Building on these distances, one can represent a whole lipidome as a dissimilar-
ity matrix. This numerical representation can then be used for further analyses such as estimat-
ing the homology between lipidomes.

Analogous to chemical space models in the field of drug-discovery, the lipid similarity mea-
sures were used to define a high dimensional space [21]. This approach was evaluated on all
lipids of the LIPIDMAPS Structure Database (LMSD) [22]. We then applied the chemical
space model and determined the Hausdorff distance for four well characterized yeast strains
[6] that enabled us to lay the basis for the ‘Lipidome jUXtaposition (LUX) score’. Finally, we
characterized the LUX score properties on high-throughput lipidomics data of Drosophila lar-
val tissue [8].
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Results

Alignment based similarity scoring methods distinguish positional
isomers
The first step was to establish a template-based method to generate SMILES strings for lipids.
We were able to write SMILES in a consistent and predictable manner using template-based
structure drawing tools [23,24] and the Open Babel default SMILES algorithm (S1 Protocol).
Given these strings, we then tested alignment methods and distance metrics, analogous to
those used for protein or nucleotide sequences. Our quality criterion was based on the methods'
sensitivity to detect small structural differences commonly found in lipids. The first test dataset
consisted of a set of 17 ceramide molecules with the chemical composition C34H68O4N1. The
position of the hydroxyl group was successively changed from position 2 to 18 at the fatty acid
moiety, resulting in 17 isomeric molecules (Fig 1A and 1B). The shift of the hydroxyl group
can be easily recognized in the SMILES strings. We then tested six similarity scoring methods
(Fig 1C–1H, S1 Dataset). Three from the literature were used as described under Methods: FP2
Fingerprint [16] LINGO [15] and Bioisosteric similarity [17]. Three methods were introduced
here: the SMILIGN, Smith andWaterman [18] and Levenshtein distance [19,20].

The first clear result is that a large subset of isomeric structures cannot be distinguished by
either Open Babel FP2 Fingerprint or LINGO (Fig 1C and 1D). The FP2 Fingerprint algorithm
computed a distance of zero for 78 pairs of ceramide isomers (Fig 1C–black pixels). LINGO
gave a zero distance for 91 pairs of isomers (Fig 1D). This would only be correct if the mole-
cules were identical. Both methods segment SMILES into shorter sub-strings (1–7 characters in

Fig 1. Alignment-based distance calculation algorithms can distinguish isomeric lipid molecules. (A) Structure of 17 ceramide molecules consisting
of aC-16 sphingoid base (light green) and an amide-linked hydroxy fatty acid. The carbon atom number of the hydroxyl group position at the fatty acid chain
(red) is used for naming individual molecules. (B) SMILES representation of first and last molecules. Colour coding of atoms is identical in SMILES- and
structure- representations. (C-H) Heat map of pairwise distances calculated using Open Babel’s FP2 Fingerprint (C) LINGO (D) Bioisosteric (E) SMILIGN (F)
Smith-Waterman (G) and Levenshtein distance (H) algorithms. Bioisosteric method uses CACTVS canonical SMILES, whereas for all other methods
template-based SMILES were used. Colour bars in each panel indicate range of distances values of the particular method. Black pixels denote a distance of
zero, indicating identical molecules. Numbers in rows and columns represent 1) the molecule name and 2) the position of hydroxyl group in fatty acid moiety.

doi:10.1371/journal.pcbi.1004511.g001
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the Path-length Fingerprint and 4 characters by LINGO) and apply the Tanimoto coefficient
for determining distances. This segmentation loses the information on the position of the
hydroxyl group. In contrast, the Bioisosteric algorithm distinguished all 17 isomeric structures,
even though it uses CACTVS Canonical SMILES. There are no zero distances off the diagonal
(Fig 1E). The Bioisosteric method also segments SMILES into sub-strings, but in a hierarchical
manner, preserving information on the position of the hydroxyl group [17]. There is a distinct
pattern in the heat map of the Bioisosteric method characterized by a gradual increase in dis-
tance values for isomers having the hydroxyl group closer to the terminal methyl carbon. The
Bioisosteric method returns a distance of 0.13 units for the shift of the hydroxyl group from
position 5 to 7 (Fig 1E–yellow pixel), but returns 0.26 units for position 10 to 12 and for posi-
tions 16 to 18, a distance of 0.41 was calculated (Fig 1E—blue pixel). This dependence of the
distance values on the position of the hydroxyl group leads to an unwanted weighting, which is
a clear problem with the approach.

In the SMILIGN algorithm, SMILES strings are treated as if they were amino acid sequences
and a multiple sequence alignment was calculated with MUSCLE [25]. Similarity within pairs
of lipids was calculated using an identity matrix. The SMILIGN method distinguished all 17
ceramide isomers (Fig 1F), but we noticed an irregular distribution of distance values. For
example, comparing molecule pairs where the hydroxyl group was shifted by one position 11–
12, 12–13, 13–14 and 14–15 resulted in four different distance values of 0.03, 0.13, 0.25 and
0.06 units respectively. In this regard, we identified two problems with the algorithm. First,
there were several misalignments that lead to incorrect distances (S1 Dataset, worksheet 5).
Second, one needs 35 characters to represent all the structural details of all lipid molecules of
the LMSD, but the software is limited to only 20 characters and too much information is lost.
To overcome these two limitations of SMILIGN, we tested two pair-wise alignment methods
that do not require conversion to amino acid sequences.

With the Smith-Waterman method, pair-wise alignments are carried out directly with the
SMILES strings. All ceramide isomers were distinguished, but we noticed an anomaly in dis-
tance values for molecules 17 and 18 (Fig 1G). A closer examination of the pair-wise align-
ments revealed an inherent issue when applying local alignment procedure to lipids. In the
aligned SMILES pairs 2–17 and 2–18, the hydroxyl groups in the fatty acid were ignored, while
for the pairs 2–15 and 2–16 the characters were retained (S1 Dataset, worksheet 6). The Smith-
Waterman algorithm is designed to find high scoring regions in strings, so differing ends are
ignored by design and not by accident. This means that functional groups at the omega posi-
tion are ignored, despite their role in biology [26]. Although one could try to adjust parameters,
the Smith-Waterman method is fundamentally not appropriate for this kind of comparison.

Finally, we tested the Levenshtein distance for measuring similarities between lipid mole-
cules (Fig 1H). Unlike Smith-Waterman, the Levenshtein approach always aligns all characters
for a given pair of SMILES. This method was the most successful. It distinguished all ceramide
molecules and for each molecule, it correctly scored and ranked distances up to the molecule’s
third closest isomers. From the fourth closest isomer onwards, a fixed distance of 0.12 was
determined. Unlike other methods, it guarantees a symmetric distance matrix with no
unwanted weighting of groups due to their positions. These tests of structural similarity mea-
sures led to two conclusions. First, the alignment step is necessary. Second, the Levenshtein dis-
tance was most likely to be generally applicable for all molecules in a lipidome.

From structural similarity to chemical space
A set of distances between nmolecules defines an (n − 1) dimensional space. The coordinates
of molecule i are simply the distances to all members of the set (including the zero distance to
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molecule i itself). This is formally a vector space, in which similar molecules will have similar
coordinates. It is, however, not very compact and because of structural similarities, coordinates
in some dimensions would be highly correlated with others. Principal component analysis
(PCA) was then used to reduce the dimensionality and see how much information would be
lost. The first test was performed on a set of 16 phosphatidylinositol molecules (S1 Protocol).

Considering just the first two principal components was sufficient to highlight problems
with some of the distance measures. For example, the map in Fig 2A shows a clear weakness
with the Bioisosteric method. The extension of the fatty acid chain at the sn2 position and
degree of unsaturation are not accurately represented (Fig 2A, scatter plot). We also computed
the Euclidian distance between molecules in the plane of the first two components. This
showed an inconsistent trend in the distance increase with each structural alteration (Fig 2A,
bar graph). Principal components can often be interpreted in terms of the original descriptors
and in the case of SMILIGN, the first two components are dominated by the extension of the
acyl chain at the sn2 position (Fig 2B). For SMILIGN, the first two principal components are
not sufficient to distinguish molecules that differ only in the presence of a double bond, but the
third principal component does capture it (S1 Fig).

In contrast, distances based on Smith-Waterman and Levenshtein algorithms reflected all
gradual structural changes in the molecules (Fig 2C and 2D). In both cases, the projection leads
to a set of points in a U shape and, if we take molecule 10 as a reference, stepwise changes to
the chemistry are reflected in distinct shifts in the principal coordinates. We further recognized
that the changes in coordinates, when the acyl chain is extended by two methylene groups
(molecules 15–17, 17–19) are about twice as large as the difference between pairs differing by a
single methylene group (Fig 2C and 2D). The first two principal components combined,
accounted for 95% of the variability in the underlying data set for Smith-Waterman and
Levenshtein. Summarizing the results, we see the Levenshtein method coupled with template-
based SMILES as the best approach for calculating structural differences in small molecule sets.
PCA is an appropriate way to reduce dimensionality and the relation between molecules can be
depicted in a PCA map, which we treat as chemical space.

The set of 16 phosphatidylinositol molecules is useful for highlighting details, but one is
interested in using the method on much larger molecule sets. To this end, we used the 3510
sphingolipids (SP) from LMSD as a test dataset [22]. All lipid structures were converted into
template-based SMILES and pair-wise distances were computed using the Levenshtein method.
Fig 3A shows the position of all molecules in terms of the first three principal components.
There are two clear observations. First, three principal components account for 99% of the
total variance (Fig 3A) and no two SP's have the same coordinates (S2 Dataset, worksheet 1).
Second, there was no biochemical knowledge put into the procedure, but the molecules natu-
rally cluster into chemically similar groups (Fig 3A). Sphingosines, ceramides and phospho-
sphingolipids were clustered separately from the complex glycosphingolipids (GSL).
Furthermore, the acidic and neutral GSL where placed in different clusters. Looking at the
globo, lacto, neolacto and isoglobo series of neutral GSL, one can see changes in the sugar moiety
and a clear separation from the simple Glc series (Fig 3B). This observation fits the intuitive
expectation that the Glc series with simple sugar moieties (glucose, galactose or lactose) should
be farther from lipids with complex sugars. We noted that changes in the sugar moiety of neu-
tral GSL, which have a strong impact on biochemical behaviour, were separated by a larger dis-
tance compared to changes in the ceramide backbone (Fig 3B). In addition, we were intrigued
by the recurring appearance of geometric patterns in the form of I, C and L shapes and investi-
gated the structure within these clusters. Within each cluster, lipids were organized based on
changes in the ceramide moiety (Fig 3C) so that, for example, eight molecules of the isoglobo
series formed a twisted L shape with each successive lipid carrying a gradual change in the
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Fig 2. The relationship between phosphatidylinositol (PI) molecules is retained in a two dimensional
structural space. Pairwise distances between 16 PI’s were calculated with Bioisosteric, SMILIGN, Smith-
Waterman and Levenshtein methods (A-D). PCA was carried out on the distance matrices to generate two-
and three- dimensional maps. The contribution of each principal component to the total variance is shown in
brackets. Molecules with double bonds are in grey and without double bonds are in black. Euclidian distances

Lipidome Homology

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004511 September 22, 2015 6 / 20



ceramide backbone (Fig 3C–light brown coloured points). Analogous geometric arrangements
were observed for the globo, lacto and neolacto series (Fig 3C–red, violet and light-blue points).
Next, we tested how all 30 150 lipids of the LMSD would be organized in a chemical space
based on only structural similarity. All lipid molecules had unique coordinates in this space (S2
Dataset, worksheet 2), indicating that our approach can distinguish between all lipid structures
within known, natural lipidomes. With no additional input, the method grouped lipids into
clusters that correspond to the popular lipid classification of LIPIDMAPS (Fig 4A) [27].

Fatty acyls, glycerophospholipids (GPL), sphingolipids (SP) and polyketides occupied oppo-
site ends of the chemical space (Fig 4A). In contrast, glycerolipids and GPL shared a common
region because of their head group similarity. Sterol lipids formed a distinct cluster due to their
unique four-ringed core structure. Prenol lipids were widely distributed in the chemical space
reflecting their varying chemical composition. For GPL, we observed several distinct clusters,
which on closer examination, could be recognized as spatially separated lipid classes like phos-
phatidylcholine (PC), phosphatidylserine (PS) and phosphatidylinositol (PI) (S2 Fig).

The spatial organization of lipids is robust to changes in background
molecule ensemble
As with the set of PI molecules described above (Fig 2D), the PC molecules in the two-dimen-
sional representation form an inverted U pattern (Fig 4C). However, the PC molecules formed
a flipped L pattern if all other 30 136 lipids of the LMSD were present (Fig 4D). In both cases
(Fig 4C and 4D), the sequential arrangement of the PC molecules in the two-dimensional
chemical space accurately represents the gradual increase in acyl chain length. We also
observed a gradual increase of the Euclidian distance from the first PC molecule to the last (Fig
4C and 4D, bar graphs). When we gradually increased the complexity of the set of lipid mole-
cules, we noticed that the PCA approach could disturb relationships between structurally simi-
lar molecules. In the case of a set consisting of only GPLs and only GPLs and SPs (S3 Fig), we
noticed that the distances between molecule 12 and molecules 21–26 did not reflect the sn2
chain length increase anymore. Interestingly, one can observe that the gradual addition of
more diverse lipid structures spanning a broader chemical variety compensates for this bias. At
the same time we recognized that for other lipid classes like cholesteryl esters and triacylglycer-
ols (TAG) incremental changes in the acyl chains cluster together (S4 Fig). In case of TAG
molecular species, a homologues series can be recognised due to the difference of one double
bond on the sn3-linked fatty acid (S4C Fig). It seems that the Levenshtein distances and the
projection to a chemical space automatically reconstructs conventional lipid class definitions
while also clustering closely related molecules in accordance to chemical rules. The next natural
step is to test these lipid coordinates, computed from template based SMILES and Levenshtein
distances, for their suitability for analysing and comparing complete lipidomes.

The Lipidome jUXtaposition (LUX) score, a single metric for calculating
the similarity between lipidomes
The approach to lipidome comparison was then tested on real data. All lipids from four yeast
strains BY474, Elo1, Elo2 and Elo3 [6] were combined, yielding a reference lipidome with 248
members, each with unique coordinates (S3 Dataset, worksheet 3). For clarity, this is shown in a

between the first PI molecule and all others in the PC1-PC2 plane are shown as bar graphs on the right side
of panels. Molecules were numbered according to the length of the sn2 acyl chain length, wherein an
underlined number xx indicate the presence of the double bond.

doi:10.1371/journal.pcbi.1004511.g002
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Fig 3. The structural spacemodel clusters thousands of sphingolipids (SP) according to their
chemical relationship. (A) Three-dimensional map of 30 510 SP obtained by PCA from a pair wise distance
matrix calculated with Levenshtein distance. (B) Plot of all neutral SP within the same coordinate system as
(A) indicating several associated glycosphingolipid series. (C) Complex glycosphingolipids are highlighted
showing the influence of structural changes in the ceramide backbone and sugar moiety.

doi:10.1371/journal.pcbi.1004511.g003
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Fig 4. Spatial distribution of related phosphatidylcholines (PC) molecules remains stable in the
background of large structure data sets. (A) Lipid map of 30 150 lipid molecules obtained from LMSD.
Pairwise distances were calculated using the Levenshtein method of template-based SMILES. (B) Structures
of the 14 PCmolecules. Molecules are named based on the number of carbon atoms of the sn2 acyl chain.
(C) Two-dimensional map of the selected PCmolecules displaying their chemical relation to each other.
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2Dmap (Fig 5A), which is the basis of comparisons of the four strains and two culturing tem-
peratures (24°C and 37°C). Triacylglycerols (TAG) occupy the largest area on the map in terms
of the number and variety of structures. Mannose-bis(InositolPhospho)Ceramides [M(IP)2C]
form a distinct cluster located in the top-left quadrant of the reference map. In the top right
quadrant of the reference map, there is a cluster of GPLs consisting of phosphatidic acid (PA),
phosphatidylethanolamines (PE), phosphatidylcholines (PC) and TAG. The reference lipidome
map clearly shows temperature- and strain-specific changes. The lipidomes of the wild type
yeast strains BY4741 and Elo1 grown at 24°C showed only minor differences (Fig 5B). In con-
trast, the lipidome of the Elo2 mutant is very different to the wild type strain BY4741 (Fig 5C).
The mutation has led to dramatic changes amongst the inositol phosphorylceramides (IPC)
seen in the top-left quadrant and the appearance of new species not present in the wild type.
Using this well-defined lipidome map, one can determine the closest related lipid in the wild
type strain. If one calculates the distances that lipids would have to move to make the members
of each pair overlap, one can use the Hausdorff distance to compare lipidomes (Fig 5C and 5D,

Euclidian distances in PC1-PC2 plane between the smallest molecule (name 12) and all others are shown in
the bar graph. (D) Spatial distribution of 14 PC in the background of 30 136 lipids determined from three
principal components and projected on the PC1-PC2 plane. Euclidian distances between first molecule
(name 12) and all others were determined from the first two principal components and its trend is shown as
bar graph.

doi:10.1371/journal.pcbi.1004511.g004

Fig 5. Lipidomemaps highlight relationships between yeast strains. (A) All lipids from yeast strains, BY4741, Elo1, Elo2 and Elo3 cultured at 24°C and
37°C are combined to create a reference map of the yeast lipidome. Each coloured circle corresponds to a unique lipid. (B) Comparison of lipidomes from
strains BY4741 and Elo1 (cultured at 24°C). Arrows in first plot indicate lipids that are present in Elo1, but not in BY4741 and vice versa in the second plot. (C)
Comparison of BY4741 and Elo2 lipidomes. A two dimensional Lipidome jUXtaposition (LUX) score is calculated for a pair of lipidomes using reference-map
coordinates (S3 Dataset, worksheet 3).

doi:10.1371/journal.pcbi.1004511.g005
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arrow marked lipids). For that, we chose the coordinates of all lipids in the two dimensional
coordinate system of the first lipidome and determined the Euclidean distance to its closest
structural neighbour in the second. Subsequently, the average of all distances was determined,
including all distance values of zero for identical molecular species. Because the Hausdorff dis-
tance depends on the direction of the comparison, we used the maximum of the two values
(max(dAB, dBA)). We named this measure as the ‘Lipidome jUXtaposition (LUX) score’. This
score is a distance, so larger values indicate more dissimilarity and identity results in a LUX
score of zero. From that perspective, one can see that the LUX score between BY4741 and the
Elo2 strain is three-fold larger than the distance between BY4741 and Elo1 (Fig 5B and 5C).

Next we evaluated the LUX score by computing a hierarchical clustered tree of all eight
reported lipidomes of yeast (Fig 6A) and compared it to dendrograms based on the lipid con-
centrations (Fig 6B), and by simply counting common lipids (Fig 6C). This allowed us to test if
our approach can correctly depict the genetic and phenotypic relationship between the yeast
strains reported earlier [6]. A dendrogram based purely on correlation of lipid abundances
would neglect the structural changes in the lipidome. This approach implies that the largest dif-
ference can be found between BY4741 and Elo1 mutants grown at 24°C and 37°C (Fig 6B).
Alteration in lipid class profile as well as increased fatty acid length and less double bond con-
tent was reported in response to increased growth temperatures [9]. This response however, is
well captured in a solely quantity-based lipidome comparison (Fig 6B) because most of the
molecular species are present at different temperatures. The tree computed from the LUX
score as well as common lipid count indicates that mutation of the Elo1 gene had less influence
on the composition of the lipidome than the temperature shift. Both strains, BY4741 and Elo1
were closest neighbours to each other at the culturing temperature of 24°C and 37°C. The lipi-
domes from mutant strains Elo2 and Elo3 were clustered together using the LUX score (Fig
6A) but in counting common lipids, Elo2 clustered with BY4741 and Elo1 (Fig 6C). This marks
the major difference between both metrics. It was reported that no aberrant phenotype for Elo1
was observed and that Elo2 and Elo3 had distinct alterations in their intracellular organization
[6,28], which seems better represented with the LUX score. However, we verified this finding
with an error model that modify only the presence and quantity for low abundant lipids to esti-
mate a robustness for the observed clustering. One can recognize that the LUX score (Fig 6A)

Fig 6. The LUX score accounts for genetic alteration of yeast strains. For the yeast strains, BY4741 (wild type), Elo1, Elo2 and Elo3 (Elongasemutants)
cultured at 24°C and 37°C, dendrograms were computed from two-dimensional LUX scores (A) Comparing concentrations of common lipids (B) and counting
the percentage of common lipids in a pair of lipidomes (C). All dendograms are based on complete linkage using Euclidean distance as the similarity metric
(a.u—arbitrary units). The number of occurrences for each branch in 100 iterations is indicated with coloured numerals that correspond to the utilized
parameter set for detection threshold tdetect and standard deviation s applied in the error model (see methods).

doi:10.1371/journal.pcbi.1004511.g006
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as well as the common lipid count (Fig 6C) comprise a sufficiently robust tree topology and
groups Elo2 systematically different. We concluded from this experiment that compositional
differences itself are useful to assign a phenotype while comparison purely based on quantities
are dominated by changes of abundant lipids (Fig 6B). We also note that just counting of lipids
is a simplistic, binary measure of compositional differences. In contrast, the LUX score pro-
vides a refined measure of lipidome structural diversity, which we recognize as an advantage.

The complexity of the yeast lipidome comparison is relatively small compared to higher
organisms. Nevertheless, the two-dimensional structural space reflecting 63% of the overall
variability of the dataset (Fig 5A) is sufficient to determine lipidome similarities based upon
the LUX score. We also note that the tree topology does not change whether one uses just three
principal components (covering 83% of the variability) or the original pairwise distance matrix
(S4 Dataset).

The LUX score enables tissue lipidome comparison
Next, we tested the LUX score on the more complex tissue lipidome of Drosophila [8]. In this
experiment the lipidome composition of six different larval tissues (gut, lipoprotein, fat body,
salivary gland, wing, disc, and brain) were determined in conjunction with two nutrition regi-
mens (yeast food and plant food). In contrast to the yeast dataset, the fatty acid composition
and sphingosine structures were not defined, so lipid structures were compiled based on
prior knowledge detailed in S3 Protocol. In our analysis, we included 346 lipids structures of
12 classes, which corresponds to 97.2% coverage of the reported lipidome. The structural rep-
ertoire of the larval tissue lipidomes is shown in Fig 7A and 7B. For visualization purposes,
one is obviously bound to two and three dimensional representation, but because of the set's
complexity, we prefer the LUX score based on the original high-dimensional distances for
biological interpretation. As one would expect, the dendrogram topology is somewhat sensi-
tive to the dimensionality of the LUX score (Fig 7C–7E). Nevertheless, interesting properties
of the larval tissue lipidome are recognizable in all dendrograms. The fat body shows the
strongest influence regarding the nutrition regimen of all tissues (Fig 7C–7E). This is consis-
tent with the expectation that the primary storage organ of the larvae reflects the nutritional
differences more strongly than other tissues. All other tissues exhibit a systematic composi-
tional shift, but with less than half the LUX score value. Interestingly, the gut lipidome was
the least affected by the nutrition, which points to its function as barrier organ, where the
lipid composition is tightly controlled to maintain cell membrane integrity. We further rec-
ognize that the salivary glands and wing discs lipidomes are clustered together. Using the
complete distance matrix, these are the only tissue where the compositional shift induced by
the nutrition is scored slightly higher than tissue lipidome similarity (Fig 7E). That might
point to the lower structural specificity of the LUX score, that has to be expected because
fatty acid composition of the phospholipids and sphingolipids were not experimentally
defined. However, even with this limitation, one can cluster lipidomes in a manner similar to
gene expression analysis.

Discussion
Our study offers a general approach to characterizing and comparing lipidomes based on the
structures of their constituents. It is certainly useful for making function/phenotype associa-
tions and allows one to correlate changes with habitat, genetic relationships and environmen-
tal stresses. The approach is dependent on the initial SMILES strings which is both an
advantage and possible weakness. One can compare the issue with small molecule classifica-
tion. There, the problem is sometimes easier, especially when one is dealing with derivatives
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Fig 7. Hierarchical clustering of Drosophila tissue lipidomes based on the LUX score. (A) Two dimensional reference lipidomemap of 6 Drosophila
larval tissues (gut, brain, wing disc, salivary glands, fat bodies and lipoprotein) grown on Yeast Food (YF) and Protein Food (PF). (B) The same reference
lipidome depicted in the three dimensions. The PC1/PC2 plane is situated on the bottom of the three dimensional representation. Dendrogram were
computed on the basis of the pairwise LUX derived from the two dimensional (C) and three dimensional chemical space model (D). (E) Hierarchical cluster
tree based on the matrix of pairwise Levenshtein distances of all 346 lipid molecular species. All dendrograms are based on complete linkage using
Euclidean distance as the similarity metric (a.u—arbitrary units).

doi:10.1371/journal.pcbi.1004511.g007
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which are closely related, but even in small molecule cheminformatics, there is no universally
accepted scheme [29]. Optimization of such structures often depends on the interaction sites
of a protein and pharmaceutical requirements for administration of drugs [30,31]. In this
study, the analysis does not stop after comparing the details of individual structures. The aim
is whole lipidome comparison and these are sets of structures whose members are functionally
related. In this work, we took advantage of a SMILES generation scheme, which works well on
large sets, but there will probably be pathological examples where it does not perform well. It
definitely seems useful when working with lipids where it reflects 1) chain length 2) double
bond position and 3) bond frequency. However, lipids are special with regards to their struc-
tural diversity, and some better similarity metric might be available in future. Here, a combi-
nation of SMILES with SMARTS will allow a weighting of structural alteration of lipids
similar to usage of substitution matrices in sequence analysis. In this regard, lipidome research
is at an infancy stage where appropriate weights cannot yet be automatically predicted on
basis of experimental data.

The definition of structural similarity and the chemical space model concisely depict the
complexity of a lipidome. The projection down to two- and three-dimensional maps lead to
clusters that fit standard lipid nomenclature, so one can quickly see qualitative differences
between lipidomes. The reference map for multiple comparisons also shows changes in the
overall organization of a lipidome, which can support functional association related to mem-
brane organization and metabolic adaptations. Consequently, the LUX score enables the stan-
dardization of lipidome comparisons outside of conventional correlation based approaches.
The yeast lipidome comparison can be seen as a model for an evolutionary change in lipid bio-
synthesis where the mutations in Elo2 and Elo3 induce new structural variants. With the chem-
ical space model such molecules are placed in relation to the complete lipidome (Fig 5C). In
this way, alterations in the structural space can be objectively calculated and findings for inter-
species, cell type and cell compartment lipidome analyses can be depicted in a well-defined
graphical illustration. At the same time, the LUX score workflow is customizable in regards to
the complexity of the lipidome study (S5 Fig). We further show that the LUX score approach is
compatible with high-throughput lipidomics. However, we note that it is preferable to utilize
lipidomics data where fatty acid and sphingosine compositions are experimentally determined.
For the analysis of compositional differences between lipidomes and its interpretation, we rec-
ommend to apply an error model as introduced in this study. We recognized that clustering
approaches are often not verified with an error model, which negatively affects the value of sub-
sequently derived biological and/or medical interpretations.

The LUX score based lipidome comparison is based solely upon an identity matrix for
exchange values, which does not account for quantitative changes. This is parsimonious, but
obviously not optimal for capturing the complexity of lipidomes. In future work, we will test
how quantitative changes should be weighted with respect to changes in the structural compo-
sition of a lipidome. We will estimate such weight measures from well understood model sys-
tems based on larger data sets that are now becoming available [32,33]. However, this study
shows that the structural arrangement of a lipidome is sufficient to recognize the degree of
genetic alteration and temperature dependence in yeast in an unsupervised manner. We fur-
ther show that approach is applicable for high-throughput lipidomics.

In summary, we see potential in the LUX score to identify evolutionarily conserved compo-
sitional constraints that are linked to cellular functions. This is of special importance for study-
ing the lipid metabolism in animal models of human diseases, where inherent lipidome
differences should be considered for developing new therapeutic strategies. To utilize the full
potential of lipidome homology metrics in a biological context, improvements in lipidomics
technology and reporting standards have to be made in analogy to the present wealth of
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available genomics data [37]. In this regard, our approach enables to estimate and compare the
structural complexity of lipidomes, which can nurture systems-biology approaches. The chemi-
cal space model of a lipidome and the LUX score will facilitate inter-species functional associa-
tion that are applied in comparative genomics.

Methods
Details of SMILES generation, principal component analysis (PCA), structural similarity meth-
ods and annotation of lipids are given in supplementary methods (S2 Protocol).

Lipid structure datasets
Lipid structures for Figs 1 and 2 were drawn and SDF files were generated using PubChem
Sketcher [34]. The complete LIPIDMAPS Structure Database (LMSD) in SDF format was
downloaded on Nov 9, 2011 from www.lipidmaps.org (LMSDFDownload9Nov11.zip) [22].

Lipidome data of yeast mutants was taken from Ejsing et.al. [6]. LIPIDMAPS structure
drawing tools were customized to draw all required lipid structures for yeast. For ergosterol
and ergosta-5,7-dien-3β-ol, SDF files were obtained from the LMSD. SMILES for phytosphin-
gosine 1-phosphate was made by hand from the corresponding phytosphingosine. For some
molecules, the number of hydroxylations and double bonds was known, but their position was
not. In these cases, a list of possible isomers was generated. The position of double bonds and
hydroxylations in yeast fatty acids were taken from previous studies [35]. Pairwise distances
between all isomers were calculated using the Levenshtein distance method [19,20]. The isomer
with smallest average distance to other isomers was chosen as representative molecule (S2
Protocol).

Lipidome data for Drosophila is based on Carvahlo et al. [8] described in detail in S3
Protocol.

Template-based SMILES
LIPIDMAPS perl scripts were modified to generate a wider spectrum of lipid structures
[23,24]. These scripts are provided in supplementary information (S5 Dataset) and also avail-
able at http://lux.fz-borstel.de. Molecular structures in SDF format were converted to SMILES
using the OpenBabel molecular conversion tool with the default algorithm [16]. Characters
indicating chirality, cis–trans isomerism and charges were removed automatically for the yeast
lipidome analysis.

Structural similarity scoring methods
Six similarity scoring methods were tested 1) OpenBabel FP2 Fingerprint 2) LINGO 3) Bioisos-
teric similarity 4) SMILIGN 5) Smith Waterman Local Alignment 6) Levenshtein distance.
Details are given in supplementary methods (S1 Methods). The Levenshtein method was
applied for analysing the LMSD, yeast and Drosphila lipidome (Figs 4–7). This algorithm was
originally designed for correcting spelling errors, but the principle can be applied to compare
any pair of strings including SMILES [19,20]. The source code used in this study is provided in
supplementary information (S5 Dataset) and also at the website http://lux.fz-borstel.de.

Lipidome Juxtaposition Score (LUX) calculation
The LUX score is based on the Hausdorff distance [36] and summarizes the similarity between
lipidomes. In pseudocode, the distance from lipidome A to B is calculated from:
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for each lipid in A
find distance d to most similar lipid in B
dsum ∶ = dsum + d
n = n +1

return dsum/n

This yields the average shortest distance dAB from A to B. The larger of dAB and dBA was
used as the lipidome homology score (AB).

Hierarchical cluster analysis
Complete linkage clustering was performed with R, version 2.14.1, library–‘stats’ and function
‘hclust’ using the LUX score, Pearson and common lipid count as similarity metrics. An error
model for the yeast lipidome analysis was computed by iterating all lipid quantities x of the
original data set according to:

for each lipid with abundance x
x' = x + rnorm(1,0,s)
if x' > tdetect

return x'

The detection limit tdetect and standard deviation s were defined so that only low abundant
lipids were significantly affected. We chose the following three parameter sets: 1) tdetect = 0.003
mol %- 4.3% of all reported quantities, s = 0.001mol %- 11.4% of all reported standard devia-
tions 2) tdetect = 0.003 mol %, s = 0.002 mol%- 20.3% of all reported standard deviations and 3)
tdetect = 0.006 mol%- 8.7% of all reported quantities, s = 0.004 mol%- 34.7% of all reported stan-
dard deviations. The number of occurrences for each branch was counted after 100 iterations
using the R library, ape::boot.phylo::prop.part.

Supporting Information
S1 Table. Main structural features of abundant membrane lipids in mammals, drosophila
and yeast.
(PDF)

S1 Protocol. Procedure for template-based SMILES generation.
(DOCX)

S2 Protocol. Supplementary methods. Includes computer configuration, annotations and
abbreviations used in the manuscript.
(DOCX)

S3 Protocol. Compilation of the Drosophila larvae tissue lipidome data.
(DOCX)

S1 Dataset. SMILES, distance matrices and alignments for Fig 1. Excel worksheets are orga-
nized as follows: (1) Input SMILES. Pairwise distances between for input SMILES calculated
with FP2 Fingerprint (2) LINGO (3) Bioisosteric distance (4) SMILIGN (5) Smith-Waterman
(6) and Levenshtein (7). Problems associated with Multiple Sequence Alignment approach
used in SMILIGN method are highlighted in sheet (5) and problems associated with local align-
ment approach of Smith-Waterman in sheet (6).
(XLSX)
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S2 Dataset. SMILES and coordinates for Figs 3 and 4.Worksheet 1 contains x, y and z coor-
dinates of 3510 Sphingolipids and worksheet 2 for all 30 150 lipids of LIPIDMAPS Structure
Database.
(XLSX)

S3 Dataset. SMILES and coordinates for Figs 5 and 6.Worksheet 1: Representative isomer
for all lipids in yeast lipidome. Worksheet 2: Template-based SMILES for yeast lipids. Work-
sheet 3: PCA coordinates for all lipids in yeast lipidome.
(XLSX)

S4 Dataset. The relation between the yeast lipidomes is not influenced by the number of
dimensions used (matrices for Fig 6.) Use the files Yeast_Lipidome_Homology_Scores.htm
(Firefox Browser suggested) or Yeast_Lipidome_Homology_Scores.xlsx (Excel 2013) to navi-
gate through the complete yeast lipidome dataset. Plots and additional distance matrices are
linked.
(ZIP)

S5 Dataset. Source code. Includes scripts, README files and data files for Figs 1, 2, 6, 7 and
S6.
(ZIP)

S1 Fig. Three-dimensional representation of 16 phosphatidylinositol molecules in chemical
space (Fig 2A) using SMILIGNmethod. Underlined molecules indicate the presence of the
double bond.
(TIF)

S2 Fig. Spatial distribution of glycerophospholipid classes. Pairwise distances between
30 150 lipid molecules of LMSD were determined using the Levenshtein method. Only glycero-
phospholipids are depicted.
(TIF)

S3 Fig. Relative position of 14 PC molecules in the background of large and diverse lipid
structure sets. (A) Map of 14 phosphatidylcholine (PC) molecules (Fig 4B) in the background
of 7744 Glycerophospholipids. (B) Distribution of the 14 PC molecules in the background of
11 268 Glycerophospholipids and Sphingolipids. (C) Map of 14 PC molecules in the back-
ground of 15 304 Glycerophospholipids, Sphingolipids and Fatty acyl molecules. All structures
were obtained from LMSD and converted to non-canonical SMILES. Pair wise distances were
calculated with Levenshtein method. First row of plots show 14 PC molecules along with indi-
cated lipid structure classes. Second row plots show only 14 PC molecules maintaining the
coordinates of corresponding first row plots. Third row of plots show Euclidean distance
between first molecule (name 12) and other 13 PCs. Euclidean distance is calculated in Princi-
pal Component 1 and Principal Component 2 plane as shown in second row of plots.
(TIF)

S4 Fig. Spatial distribution of selected triacylglycerol and cholesteryl esters. (A) Pairwise
distances between 30 150 molecules from LIPIDMAPS Structure Database were determined
using Levenshtein distance. Principal Component Analysis was carried out on pairwise dis-
tance matrix and the first three components were plotted. Selected triacylglycerols (TAG) and
cholesteryl esters (CE) are highlighted while the remaining 30 131 lipids were shown as grey
dots. (B) Spatial distribution of 9 CEs differing in the fatty acid chain length (12–22 carbon
atoms). Molecule coordinates are the same in Panels A and B. (C). Spatial distribution of 10
TAGs with C16:0 fatty acid in sn1 and sn2 position and third fatty acid chain length varying
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from 16 to 22 carbon atoms and one double bond. (D) and (E) Manually rendered plots based
on the screen-capture of panels B and C respectively (Original screen-captures are shown as
inserts). Please note that panels D and E are manually rendered, hence, slight differences in the
coordinates might occur.
(TIF)

S5 Fig. Workflow to determine homology between lipidomes. (A) All identified lipid molec-
ular species of a lipidome are combined into a non-redundant list (B). (C) If the lipidomics
data is not sufficient to describe the molecular species, all possible isomer structures are
inferred from literature and a representative isomer structure is chosen for each lipid. (D) Tem-
plate-based SMILES are generated for each chosen lipid isomeric structure as the basis for the
determination of the structural similarity between all pairs of molecules using Levenshtein dis-
tance method (E). (E-F) Pair-wise LUX scores are determined for all lipidome pairs. (G) Hier-
archical clustering of LUX scores is performed to depict homology between lipidomes.
(TIF)
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