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Objective: Platelet activation and adhesion to cancer cells increase the release of multiple
factors that contribute to EMT and chemoresistance. Elevated levels of D-dimer have
been associated with poor clinical outcomes in lung cancer. Platelets in high D-dimer
plasma may be activated and implicated in acquired resistance to EGFR TKI in advanced
lung adenocarcinoma with mutant EGFR.

Materials and Methods: Clinical responsive rate (RR), progression-free survival (PFS),
and overall survival (OS) were prospectively measured in treatment-naïve lung
adenocarcinoma patients with activation mutation. Plasma or platelets from patients
with high or low D-dimer level were obtained to investigate the cytotoxic effects of TKIs on
mutant cancer cells, and the mechanistic pathways were also explored.

Results: Patients with high D-dimer had worse RR, PFS, and OS. High D-dimer plasma
induced resistance to gefitinib, erlotinib, afatinib, or osimertinib in EGFRmutant lung cancer
cells. Depletion of platelets in high D-dimer plasma reversed the resistance to TKI. Platelets
of high D-dimer plasma had higher adherence capacity to cancer cells, and induced EGFR
and Akt activation as well as EMT through Src activation. Inhibition of platelet adherence or
activation of Src or Akt conquered the resistance to TKI. The acquired resistance to TKI by
high D-dimer plasma was less attributed to secondary gene mutation.

Conclusion: Increased platelet activation in the high D-dimer plasma may contribute to
first-line acquired EGFR TKI resistance. Thus, therapeutic strategy against platelet
activation in patients with high D-dimer levels may improve the efficacy of first-line
treatment with EGFR TKI.

Keywords: epidermal growth factor receptor, tyrosine kinase inhibitor, lung adenocarcinoma, platelet,
epithelial–mesenchymal transition, D-dimer, Src, Akt
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INTRODUCTION

Blockage of dysregulated EGFR with tyrosine kinase inhibitors
(EGFR-TKI) has played a central role in the treatment of
advanced non-small cell lung cancer (NSCLC) with a
significant improvement in clinical outcome: a response rate as
high as 80%, especially for lung cancer patients with exon 19
deletions or an L858R mutation. However, acquired resistance
and secondary progression are seen in almost all the patients
with a median of 10–14 months of progression-free survival
(PFS) (1–3). Molecular mechanism analysis reveals that the
T790M point mutation, which lowers TKI binding affinity to
the ATP pocket, is the most frequent underlying mechanism
(4, 5), though it is more frequent with reversible TKI (gefitinib
and erlotinib) than irreversible afatinib (6). Less frequent
resistance mechanisms include ERBB2 and MET amplifications
(7, 8) and mutations within the downstream signaling molecules
BRAF, KRAS, PIK3CA, and CTNNB1 (9). Nevertheless, the
efficacy differs a lot among patients with the same EGFR-
sensitive mutations (10). The histological transformation into
small cell or sarcomatoid lung cancer phenotypes, aberrations of
drug transporters, or lysosomal sequestration (11) has been
reported for the mechanisms underlying the diminished
efficacy of EGFR TKI. However, given the multiple possible
escape strategies, it remains a big challenge to predict the
future mechanism of resistance of a specific tumor and target
it from the beginning.

Increasing evidence has demonstrated that platelets play an
important role in cancer survival, growth, and metastasis
(12, 13). Within the blood circulation, tumor cells can
aggregate with platelets and avoid cytotoxicity of natural killer
cells (14, 15), indicating that platelet adhesion to tumor cells is a
crucial step for tumor cell survival within the blood circulation.
Direct contact of platelets with tumor cells also results in
activation (16). Platelet–tumor cell aggregates form through
binding of platelet integrin aIIbb3 to tumor cell integrin avb3
via RGD-containing proteins including fibrinogen, von
Willebrand factor, and fibronectin, a process known as tumor
cell-induced platelet aggregation (TCIPA) (10). Once activated,
platelets release an array of biologically active molecules that can
modulate tumor growth, angiogenesis, and metastasis, including
transforming growth factor beta (TGF-b1), vascular endothelial
growth factor (VEGF), and platelet-derived growth factor
(PDGF), inducing epithelial mesenchymal transit (12, 13). The
roles of platelets in tumor development have also been shown to
contribute to chemoresistance (17, 18).

D-dimer is a dimerized fragment from fibrinogen and a
marker of thrombin activity and fibrin turnover, and
represents both hemostasis and fibrinolysis (19). A variety of
cancers have association between D-dimer and clinical
manifestations such as tumor stage, metastasis and growth,
and progression of cancers, as well as thromboembolic events
(20, 21). D-dimer levels are a useful predictor for survival
independent of clinical stage, histologic tumor type, and
performance status of lung cancer patients (22). The
mechanism underlying the relationship between D-dimer levels
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and lung cancer prognosis remains unknown. It is well
known that platelet activation and blood coagulation are
complementary, mutually dependent processes in hemostasis
and thrombosis (23). Platelets interact with several coagulation
factors, while the coagulation product thrombin is a potent
platelet-activating agonist (23). Thus, the platelets in patients
with high D-dimer may be further activated. On the other hand,
the enhanced fibrin formation and fibrinolysis in cancer patients
with high D-dimer may be secondary to platelet activation and
aggregation (24).

This study addressed the question whether platelets in high
D-dimer plasma of patients with mutant adenocarcinoma
conferred EGFR-TKI acquired resistance. The results of this
prospective study revealed that platelets were more activated in
patients with high plasma D-dimer levels contributing to the
development of phosphorylation of EGFR and Akt, as well as
epithelial–mesenchymal transition (EMT) through Src
activation, resulting in poor PFS and overall survival (OS). The
acquired resistance to EGFR TKI in high D-dimer plasma was
less attributed to secondary gene mutation. Thus, therapeutic
strategy against platelet activation in patients with high D-dimer
levels may improve the efficacy of first-line treatment with
EGFR TKI.
MATERIALS AND METHODS

Subjects’ Characteristics
During 2016 to 2018, 102 late-stage (Stage IV) treatment-naïve,
non-smoking patients with mutant adenocarcinoma (Exon19
deletion or exon 21 point-mutation) without primary T790M or
ERBB2 andMET amplifications or ALK and ROS1 rearrangement
intending to receive EGFR TKI treatment (gefitinib, erlotinib, or
afatinib) were recruited from the outpatient department of Chang
Gung Memorial Hospital and Taipei Medical University Hospital
(both were tertiary referral hospitals in Northern Taiwan) into this
2-year prospective observational study. The biopsied specimens of
naïve lung cancer that were routinely screened for mutation
analysis of EGFR (exon18-21) were analyzed, including exon 19
deletions and L858R and T790M missense mutations by PCR
assays with the Cobas EGFR mutation test. ERBB2 amplification
and MET fusion or variant transcript were detected by RNA
sequencing, and ALK and ROS1 rearrangement was confirmed by
immunohistochemistry (IHC) assay with anti-ALK and anti-
ROS1 rabbit monoclonal primary antibodies (VENTANA). The
levels of D-dimer were measured before treatment. Patients with
evident deep vein thrombosis, under anti-coagulant and/or anti-
platelet treatment, with symptomatic heart failure (>NYHA II),
with prior or coexistence of other malignancies, or with GOLD
stage III-IV COPD were excluded from the recruitment. The
existence of deep vein thrombosis in patients with high D-dimer
levels was systemically assessed, using duplex ultrasonography and
CT angiography. Clinical responses were assessed by response
rate, PFS, and OS. Re-biopsy of tumors after disease progression
was performed in most patients. Genetic analysis of the
June 2022 | Volume 12 | Article 876051
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mechanisms for secondary resistance to EGFR TKI was also done.
Because osimertinib was not reimbursed by the National Health
Insurance in Taiwan during this study period, most patients
received platinum-based doublet chemotherapy after disease
progression, while 10 patients in the low D-dimer group and 6
patients in the high D-dimer group received self-pay osimertinib
treatment for disease progression with the 2nd T790M mutation.
Since osimertinib has been shown to be effective in counteracting
with resistance T790M, those patients with osimertinib treatment
were excluded from the OS assessment. All patients provided
informed consent to participate in this study, which was approved
by the local ethics committee [IRB was provided by the TMU-
Joint Institutional Review Board (no. N201808072)].

Proteomic Analysis of High
D-Dimer Plasma
The proteomic analysis of patient’s plasma was performed by
Biotools service (Biotools Co., Ltd., Taiwan) according to the
manufacturer’s instructions.

Preparation of Platelet-Rich Plasma and
Platelet-Poor Plasma
Plasma was separated from the whole blood of high or low
D-dimer patients. In brief, after centrifugation, the yellow upper
phase containing the plasma component was transferred to new
tubes with great care and then centrifuged again. The lower one-
third was the platelet-rich plasma (PRP) and the upper two-
thirds was the platelet-poor plasma (PPP). At the bottom of the
tube, platelet pellets were formed (25).

Cell Lines and Cell Viability Assay
HCC827 (Cat# CRL-2868) and NCI-H1975 (Cat# CRL-5908)
were purchased from the American Type Culture Collection
(ATCC), and PC9 (Cat# 90071810) was purchased from Sigma-
Aldrich Corporation (St. Louis, MO). The cancer cells were
cultured in high-glucose RPMI with 10% FBS and antibiotics
in a humidified 37°C incubator, and seeded onto 96 wells for cell
viability assay and onto 6-cm dishes for transfection
and immunoblotting.

Surface Protein Analysis of Platelet
PRP was isolated from normal, low, or high D-dimer lung cancer
patients and then stained with CD42b-PE and glycoprotein VI-
AF647 for 30 min. After washing, the percentage of CD42b+/
GPVI+ cells was analyzed by a FACSLyrics flow cytometer and
FACSuite software (Becton Dickinson, Mountain View,
CA, USA).

Platelet Adherence to Cancer Cells
The PRP of patients with low and high D-dimer levels was added
to cultured HCC827 cells for 2 h in the presence or absence of
PGI2 or dasatinib. Platelets were labeled with CD42b-PE, and
non-adherent platelets were washed with PBS. The adherent
platelets were counted under high-power fields of fluorescence
microscopy for a total of 5 fields.
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Transfection of E-Cadherin siRNA
E-cadherin (GenBank no. NM_004360) siRNAs were generated,
following the sequence of siRNA1: 5 ’-GGGUUAAGC
ACAACAGCAA-3’ and siRNA2: 5’-CAGACAAAGACCAGG
ACUA-3’. HCC827 cells were transfected with siRNA against E-
cadherin using the DharmaFect 1 transfection reagent for 6 h, and
cells were then measured withMTT assay orWestern blot analysis.

Western Blot Analysis
Western blot analyses were performed as described previously
(26). Briefly, whole-cell lysates (50 mg) were subjected to SDS-
PAGE and transferred onto a polyvinylidene difluoride (PVDF)
membrane. Proteins were visualized by specific antibodies
and the immunoreactivity was detected using enhanced
chemiluminescence (ECL) following the manufacturer’s
instructions. Quantitative data were obtained using a computing
densitometer with scientific imaging systems (Kodak,
Rochester, NY).

Statistical Analysis
The receiver operating characteristic (ROC) curve was used to
estimate the D-dimer levels in predicting disease progression with
EGFR TKI treatment. The Kaplan–Meier method was used to
estimate the distribution of survival curves, and log-rank tests were
used to compare the distributions between groups. One-way
analysis of variance (ANOVA) followed by Dunnett’s test, where
appropriate, was used to determine the statistical significance of the
difference between means for the results of in vitro cell line studies.
Values of p less than 0.05 were considered statistically significant.
RESULTS

The ROC curve for the D-dimer assay in the prediction of disease
progression is shown in Supplementary Figure S1. The cutoff
values for the D-dimer levels were determined to be 0.82 mg/ml
based on the ROC curve. The area under the curve was 0.8063 ±
0.0472, p < 0.0001 (N = 40). Based on the cutoff values from the
ROC curve, patients were divided into two groups, high and low
D-dimer groups.

Clinical Characteristics
There was no significant difference in clinical characteristics
between the high (N = 52) and the low (N = 50) D-dimer
groups of patients, but there was a significantly higher level of
fibrinogen in the high D-dimer group (Table 1). Patients in the
high D-dimer group had a lower clinical response rate (34.6%,N =
52, p < 0.02) and a worse PFS (median 5.6 months, p < 0.0001,N =
52) to TKI treatment compared to the low D-dimer group (76%,
N = 50; median 29.8 months, respectively, N = 50) (Table 1,
Figure 1A) with a hazard ratio (HR) of 4.506 (95% CI: 2.729 to
7.438, Log-rank). The disease control rate was also favored in the
low D-dimer group of patients (100% vs. 25%). Cox proportional
HR analysis of clinical variables showed that high and low D-
dimer levels and clinical response rate were independent variables
June 2022 | Volume 12 | Article 876051
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for patients’ PFS (Supplementary Table 1A). Patients in the high
D-dimer group had a worse OS (median 18.6 months, N = 42)
compared with those in the low D-dimer group (median 41.3
months,N = 41, p < 0.0001) with an HR of 3.837 (95% CI: 2.143 to
6.870) (Figure 1B). Cox proportional HR analysis of clinical
variables showed that high and low D-dimer levels and
performance status were independent variables for patients’ OS
(Supplement Table 1B).

There was no significant difference between patients with the
exon19 or L858R genotype in the proportion of patients with high
D-dimer (Table 1) or PFS of EGFR TKI treatment (Figures 1C, D).
There was no significant difference in PFS between exon19 and
L858R genotypes of patients in the high D-dimer groups (median
4.27 months,N = 28; vs. median 5.35 months,N = 24, p = 0.192) or
in the low D-dimer groups (median 24.1 months, N = 31 vs. 19.2
months, N = 19, p = 0.158) (Figures 1C, D). Neither was there a
significant difference in PFS or OS between 1st-generation TKI
(Tarceva and Iressa) and 2nd-generation TKI (afatinib) treatment
groups (Supplementary Figure S2).

Re-biopsy of tumor in patients with disease progression revealed
that a higher proportion of patients in the low D-dimer group had
the T790M mutation (61.9%, N = 21) compared to patients in the
high D-dimer group (19.4%, N = 31, p = 0.018, Chi-square
test). In contrast, EGFR mutation persisted their genotypes in
patients in the high D-dimer group (80.6%, N = 31) compared to
patients in the low D-dimer group (38.1%, N = 21)
(Supplementary Figure S3). Among those with the 2nd T790M
mutation, 10 from the low D-dimer group and 6 from the high D-
dimer group received self-pay osimertinib treatment. One from the
low D-dimer group lost to follow-up. Nine from the low D-dimer
group and 3 from the high D-dimer group had clinical response to
osimertinib, while 3 from the high D-dimer group failed to
significantly respond to the treatment (p = 0.044, Fisher’s exact
test, Supplementary Figure S4). Patients in the low D-dimer group
had better survival benefit to osimertinib treatment in terms of PFS
(median 21.0 months, N = 9, p = 0.0109) and OS (median 36.2
months,N = 8, p = 0.0288), compared with the high D-dimer group
Frontiers in Oncology | www.frontiersin.org 4
(median 7.0 months, N = 6 and 20.5 months, N = 6, respectively)
(Supplement S4).

Plasma From the High D-Dimer Patients
Induced Resistance to TKI in Mutant
Non-Small Cell Lung Cancer Cells
Plasma collected from patients in either the high or the low D-
dimer group was diluted as indicated with culture medium
before incubation with HCC827 cells. The plasma from
patients of the high D-dimer group induced more than 90%
resistance to gefitinib treatment (up to 1 mM) after incubation for
72 h at the concentrations ≥20% (Figure 2A), but not those from
the low D-dimer group (Figure 2B). The following studies
adopted 20% plasma for experiments. The 20% plasma of the
high D-dimer group also induced HCC827 cells >90% resistance
to either erlotinib or afatinib treatment (Figures 2C, D). In
contrast to the 1st- and 2nd-generation EGFR TKI, the 3rd-
generation TKI, osimertinib, could still induce cytotoxicity
approximately 50% in the presence of high D-dimer plasma
(Figure 2E). High D-dimer plasma also induced resistance to
gefitinib in PC9 and H1975 cells (Supplementary Figure S5).

Platelets in High D-Dimer Plasma Induced
Resistance to EGFR TKI
Proteomic analysis of the pooled high and low D-dimer plasma
revealed an increase in pro-coagulation factors (factors V, IX,
and XI) that led to thrombin, fibrin clot formation, and cross-
link (XIIIa); factors that promote platelet aggregation and
adherence (fibronectin, von Willebrand factor, platelet
glycoprotein Ib, thrombospondin-1, and leucine-rich alpha 2
glycoprotein); and factors released from activated platelets
(platelet factor 4 and platelet basic protein) (Figures 3A, B).
Sera of the high D-dimer group failed to induce resistance to
gefitinib in HCC827 cells (Figure 3C). To determine the role of
platelets in inducing TKI resistance, plasma of the high D-dimer
group was prepared as PRP and PPP. PPP failed to induce
resistance to gefitinib, erlotinib, or afatinib, compared with PRP
TABLE 1 | Clinical Characteristics of lung cancer patients.

High D-dimer (N = 52) Low D-dimer (N = 50) p-value

Age (years) 66.9 ± 2.0 60.5 ± 1.5 0.153¶

Gender (M/F) 18/34 15/35 0.675§

Mutation
L858R
Exon 19

28
24

31
19

NS§

TKI
Iressa
Tarceva
Afatinib

8
18
26

2
23
25

0.123§

Performance status 0.42 ± 0.10 0.27 ± 0.12 0.329¶

Response
PR+CR
SD+PD

18
34

38
12

<0.001§

D-dimer level (ng/dl) 2477.0 ± 436.6 312.2 ± 28.2 0.0006¶

Fibrinogen (mg/dl) 429.8 ± 28.7 329.5 ± 28.2 0.019¶

Thrombin time (s) 17.37 ± 0.32 17.9 ± 0.40 0.312¶

Platelet count (count ×103/ml) 245.8 ± 21.4 259.2 ± 14.6 0.66¶
June 2022 | Volume 12 | Article
Data are means ± SEM. §Chi-square test. ¶Unpaired t-test.
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(Figures 3D–G). To further exclude the influence of humoral
factors on high D-dimer plasma induced TKI resistance, platelets
of the high D-dimer plasma were replaced by concentrated
platelets from the low D-dimer plasma (LD platelet/HD PPP),
or platelets of the low D-dimer plasma were replaced by
concentrated platelets from the high D-dimer plasma (HD
platelet/LD PPP). Figure 3H reveals that HD platelet/LD
PPP induced resistance to gefitinib to the same extent as the
high D-dimer plasma. In contrast, LD platelet/HD PPP failed to
induce any resistance.

Isolated platelets from the high D-dimer plasma were found to
increase the expression of surface protein GPIb-V-XI (CD42b)
(Figure 4A) and adherence to tumor cells, compared with platelets
from the low D-dimer plasma (Figure 4B). The GPVI-Alexa 647
MFI and the proportion of GPVI+ of CD42b+ platelets were higher in
the high D-dimer plasma, compared to the low D-dimer plasma
(Figure 4A). Pretreatment with prostacyclin to inhibit platelet
adherence (Figure 4C) almost completely reversed the high D-
dimer plasma-induced resistance to gefitinib (Figure 4D).

Signaling Pathways Underlying High
D-Dimer Plasma-Induced
EGFR-TKI Resistance
To examine the role of platelets in high D-dimer plasma in inducing
EGFR-TKI resistance, platelet depletion in high D-dimer plasma
(high D-dimer PPP) acted as the negative control for high D-dimer
Frontiers in Oncology | www.frontiersin.org 5
PRP, in which platelets were enriched. Low D-dimer PRP also
examined the effects of enriched platelets in comparison with high
D-dimer PRP. The PRP of the high D-dimer plasma, but not those
from PRP of the low D-dimer plasma or PPP of the high D-dimer
plasma, induced phosphorylation of EGFR and Src, and the
downstream signal pathways, ERK and Akt (Figure 5A). In the
presence of gefitinib, phosphorylation of EGFR was suppressed in
PRP of the low D-dimer plasma or PPP of the high D-dimer
plasma-treated HCC827 cells (Figure 5A). Gefitinib also almost
completely inhibited ERK phosphorylation (Figure 5A). However,
gefitinib failed to suppress EGFR or Src or Akt phosphorylations
induced by the PRP of the highD-dimer plasma group (Figure 5A).
An Src inhibitor (dasatinib) completely suppressed EGFR, Akt, and
A B

DC

FIGURE 1 | NSCLC patients with high D-dimer have poor free survival rate. The
Kaplan–Meier survival curves of progression-free survival (A) and overall survival
(B) or L858R (C) or exon19 del (D) genotypes of patients with high or low level
of D-dimer in target therapy. p-value was compared to the low D-dimer group.
A

B

D

E

C

FIGURE 2 | Plasma from high D-dimer NSCLC patients induced tyrosine
kinase inhibitor resistance in HCC827 cells. The HCC827 cells in 96-well plates
were treated with different concentrations of the patient’s plasma from the high
D-dimer level (A) and the low D-dimer level (B) for 6 h, and then incubated with
different concentrations of gefitinib for 72 (h) After incubation, the MTT was
added in culture medium for 2 h, and the absorbance was read at 570 nm.
Data represent the mean ± SEM of five experiments, with the vehicle control as
the 100% reference. The HCC827 cells in 96-well plates were preincubated
with 20% high D-dimer plasma for 6 h, and then treated with different
concentrations of erlotinib (C) or afatinib (D) or osimertinib (E) for 72 h, and
MTT was added in culture medium for another 2 (h) The absorbance was read
at 570 nm. Data represent the mean ± SEM of three experiments, with the
vehicle control as the 100% reference. *p < 0.05 compared to corresponding
vehicle control or gefitinib group.
June 2022 | Volume 12 | Article 876051
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ERK phosphorylation induced by high D-dimer plasma
(Figure 5B) and also significantly inhibited platelets of the high
D-dimer plasma adherence to HCC827 cells (Figure 5C). PRP of
the high D-dimer-induced TKI resistance was also reversed by
dasatinib (Figure 5D).

The high D-dimer plasma also time-dependently induced a
decrease in epithelial cell markers, and an increase in
mesenchymal cell markers in HCC827 cells (Figure 6A). The
EMT-transformed HCC827 cells increased their migratory
activities compared to the controls (Figures 6A, B). Dasatinib
significantly reversed the high D-dimer plasma-induced EMT
(Figure 6C). To explore whether a loss of E-cadherin would
induce EGFR activation, the E-cadherin siRNA was used to
knock down E-cadherin. The E-cadherin defective cells showed
Frontiers in Oncology | www.frontiersin.org 6
upregulated EGFR phosphorylation (Figure 7A) and developed
partial resistance to gefitinib (Figure 7B).
DISCUSSION

In the present study, we demonstrated that patients with mutant
lung adenocarcinoma with high D-dimer levels in their peripheral
blood were less responsive to EGFR TKI, were more vulnerable to
develop early disease progression, and had shorter survival. Most of
the secondary resistance in those patients was beyond secondary
gene mutation. The platelets in high D-dimer plasma were activated
and conferred resistance to EGFR TKI via Src activation to trans-
activate EGFR and the Akt signal pathway. These results indicated
A B

D

E F

G H

C

FIGURE 3 | Platelets play a crucial role in plasma-induced TKI resistance in HCC827. Heatmap showing the proteomic results of platelet-rich plasma from high D-
dimer or low D-dimer NSCLC patients was analyzed for platelet activation factors and coagulation factors (A, B). Columns indicate biological replicates from the
experiments (blue, high; yellow, low). (C) The HCC827 cells in 96-well plates were treated with 20% of the patient’s plasma or serum from the high D-dimer level for
6 h, and then incubated with different concentrations of gefitinib for 72 h, the MTT was added in the culture medium for 2 h, and the absorbance was read at 570
nm. The HCC827 cells in 96-well plates were preincubated with 20% high D-dimer platelet-rich plasma (PRP) or platelet-poor plasma (PPP) for 6 h, and then treated
with DMSO as the controls (D) or with different concentrations of gefitinib (E), erlotinib (F), or afatinib (G) (N = 3, respectively) for 72 h; the MTT was added in culture
medium for 2 h, and the absorbance was read at 570 nm. (H) The HCC827 cells in 96-well plates were treated with 20% high or low D-dimer plasma, or high or low
D-dimer platelets for 6 h, and then incubated with different concentrations of gefitinib (N = 3) for 72 h. The MTT was added in culture medium for 2 h, and the
absorbance was read at 570 nm. Data represent the mean ± SEM of three experiments, with the vehicle control as the 100% reference. *p < 0.05; **p < 0.01
compared with the corresponding TKI treatment group.
June 2022 | Volume 12 | Article 876051
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that the D-dimer plasma levels could be a good predictor for early
development of acquired resistance to EGFR TKI in the beginning
of therapy. The platelets of the high D-dimer plasma may become a
therapeutic target to improve the efficacy of EGFR TKI in patients
with mutant lung adenocarcinoma.
Frontiers in Oncology | www.frontiersin.org 7
Cancer cells through TCIPA can confer an advantage to the
survival and growth of cancer cells, metastatic potential, evading
the body’s immune system and shielding it from high shearing
force (15, 27, 28). Proteomic analysis of the high and low D-
dimer plasma revealed that the high D-dimer plasma contained
A

B

C

D

FIGURE 4 | Increased cell adhesion and surface protein glycoprotein VI in high D-dimer platelets. (A) Isolated platelets from low D-dimer and high D-dimer patients
were stained with specific antibodies for CD42b-PE and glycoprotein VI-AF647 and then analyzed by flow cytometry. The histogram of flow cytometry analysis for
surface protein expression and MFI in platelets isolated from patients with low or high D-dimer. Data represent the mean ± SEM of five patients. *p < 0.05, **p <
0.01, ***p < 0.005, ****p < 0.001 compared to the corresponding vehicle control or low D-dimer group. ns, not significant. (B) Isolated platelets from low D-dimer
and high D-dimer patients were labeled with CFSE-DA and then incubated with HCC827 for 2 h, followed by washing twice with PBS. The images of platelet
adhesion were recorded by a fluorescence microscope, and the statistical results were calculated as the average of five HPF from five patients. Data represent the
mean ± SEM of five patients. *p < 0.05 compared to the low D-dimer group. (C) Isolated platelets from high D-dimer patients were treated with or without
prostacyclin (PGI2) for 30 min and then labeled with CD42b-PE. After labeling, isolated platelets were incubated with tumor cells for another 1 h, and washed three
times with PBS. The images of platelet adhesion were recorded by a fluorescence microscope, and the statistical results were calculated as the average of five HPF
from six patients. *p < 0.05, ***p < 0.005 compared to the corresponding vehicle control or high D-dimer group. (D) The isolated platelets were treated with PGI2 for
30 min and then incubated with HCC827 cells for 6 h in 96-well plates. After incubation, cells were treated with different concentrations of gefitinib for 72 h, and the
MTT was added in culture medium for 2 h, and the absorbance was read at 570 nm. Data represent the mean ± SEM of three experiments. *p < 0.05 compared to
the corresponding gefitinib or high D-dimer group.
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increased levels of proteins that promote platelet aggregation and
adherence, factors released from activated platelets, and
increased levels of coagulation factors that led to thrombin,
fibrin clot formation, and cross-link. Thus, the high D-dimer
plasma provided a good environment for platelet aggregation
Frontiers in Oncology | www.frontiersin.org 8
and adherence. The expression of platelet GPIb-IX-V, GPIIb/
IIIa, and P-selectin on the tight inter-junction between platelet
and cancer cells is crucial for TCIPA (29, 30). In this study,
platelets of the high D-dimer plasma were found with the
upregulated expression of GPIb-IX-V and GPIIb/IIIa,
A

B

D

C

FIGURE 5 | Plasma induced EGFR-related signal activation in HCC827 via Src. (A) The HCC827 cells in 6-cm dishes were treated with or without 1 mM gefitinib for
30 min and then incubated with 20% high D-dimer PRP, low D-dimer PRP, or high D-dimer PPP for 24 h; Western blot analysis was performed, and proteins were
detected by specific antibodies for the phosphorylation form of EGFR, Src, Akt, or ERK. Data represent the mean ± SEM of four experiments.*p < 0.05, **p < 0.01,
****p < 0.001 compared to the HD PRP group as the 100% reference; #p < 0.05 compared with the corresponding control. The exposure time of the bands of
Western blot was reduced to avoid overexposure of the bands of high D-dimer PRP, resulting in a reduced expression in low D-dimer PRP group and high D-dimer
PPP. (B) HCC827 cells were pretreated with dasatinib (1 mM) and then cells were treated with 20% high D-dimer plasma for 24 h. Western blot analysis was
performed, and proteins were detected by specific antibodies for the phosphorylation form of EGFR, Akt, or ERK. Data represent the mean ± SEM of three
experiments. *p < 0.05, **p < 0.01, ****p < 0.001 compared to the corresponding vehicle control or HD plasma group. The exposure time of the bands of Western
blot was reduced to avoid overexposure of the bands of high D-dimer plasma, resulting in a reduced expression in the control. (C) Isolated platelets from high D-
dimer patients were treated with or without dasatinib for 30 min and then labeled with CD42b-PE. After labeling, isolated platelets were incubated with tumor cells for
another 1 h, and washed three times with PBS. The images of platelet adhesion were recorded by a fluorescence microscope, and the statistical results were
calculated as the average of five HPF from six patients. *p < 0.05, ****p < 0.001 compared to the corresponding vehicle control or HD plasma group. (D) The
isolated platelets were treated with dasatinib for 30 min and then incubated with HCC827 cells for 6 h in 96-well plates. After incubation, cells were treated with
different concentrations of gefitinib for 72 h, the MTT was added in culture medium for 2 h, and the absorbance was read at 570 nm. Data represent the mean ±
SEM of three experiments. *p < 0.05 compared to the gefitinib or HD plasma group.
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indicating that those platelets were activated by TCIPA and
ready for aggregation and adherence. Another surface
glycoprotein expression of activated platelets, GPVI, a surface
receptor belonging to the immunoglobulin superfamily, which
principally binds collagen (31), was also upregulated on platelets
of the high D-dimer plasma. Prostacyclin is the most potent
known inhibitor of platelet aggregation (32) and has been shown
to inhibit TCIPA (33). In this study, treatment with prostacyclin
inhibited platelet adherence to tumor cells, and completely
reversed platelets of the high D-dimer plasma-induced TKI
Frontiers in Oncology | www.frontiersin.org 9
resistance. These results suggested that platelet activation and
adherence to tumor cells contributed to EGFR TKI resistance.
The surface receptors of platelets may be a potential therapeutic
target to conquer the resistance development in EGFR mutant
lung cancer patients.

When platelets aggregate around cancer cells, clustering of
these surface receptors in activated platelets may activate Src
family kinases (SFKs) to release a variety of cytokines and growth
factors, which have been implicated in cancer growth,
progression, and escape from apoptosis when challenged with
A

C

B

FIGURE 6 | Plasma induced EMT progression in HCC827. (A) The HCC827 cells in 6-cm dishes were incubated with 20% high D-dimer plasma for different time
intervals. Western blot analysis was performed, and proteins were detected by specific antibodies for EMT markers. The data were calculated and represent the
mean ± SEM of three experiments shown in statistical figures. *p < 0.05, **p < 0.01, ***p < 0.005 compared to the corresponding vehicle control as the 100%
reference. (B) HCC827 cells in 8 mM transwells were incubated with 20% high D-dimer plasma for 24 (h) The membrane of transwells was cut, stained with
Hoechst33342, and then counted for positive cells under fluorescence microscopy. The data were calculated and represent the mean ± SEM of three experiments
shown in statistical figures. ***p < 0.005 compared to the corresponding vehicle control as the 100% reference. (C) HCC827 cells were pretreated with dasatinib (1
mM) and then cells were treated with 20% high D-dimer plasma for 24 h. Western blot analysis was performed, and proteins were detected by specific antibodies for
EMT markers. Data represent the mean ± SEM of three experiments. *p < 0.05, **p < 0.01, ***p < 0.005 compared to the corresponding vehicle control or HD
plasma treatment group.
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chemotherapy (18, 34, 35). In the present study, depletion of
platelets from the high D-dimer plasma failed to cause EGFR
TKI resistance, suggesting that the humoral factors in the high
D-dimer plasma was not directly contributory to induce TKI
resistance. In contrast, enriched platelets of the high D-dimer
plasma (PRP) induced gefitinib-resistant phosphorylation of Src,
EGFR, and Akt signaling pathways in HCC827 cells. Src binds to
EGFR, resulting in a variety of downstream effects and an
induction of survival and migration signaling pathways (36).
This downstream pathway activation may provide a synergism
with EGFR (37) for tumor cells to escape from EGFR TKI
inhibition (11). The present study demonstrated that treatment
with dasatinib inhibited platelet adherence to tumor cells,
phosphorylation of EGFR and Akt, as well as ERK, resulting in
complete reversal of the high D-dimer plasma-induced TKI
resistance. These results suggest that Src activation through
platelet interaction with HCC827 cells plays a central role in
platelets of high D-dimer plasma-induced TKI resistance.

The PI3K/Akt signaling pathway plays an important role in
regulating cell proliferation and maintaining the biological
characteristics of malignant cells (38), and also mediates EMT
(39). Although Akt activation via PI3K and ERK via Ras are the
two principal downstream signaling pathways mediating the
oncogenic effects of EGFR (40), the high D-dimer plasma-
induced Akt phosphorylation was not inhibited by EGFR TKI
or gefitinib, but by the Src inhibitor, dasatinib, suggesting that
Akt phosphorylation was mostly beyond EGFR activation, but
resulted from a direct involvement with SFKs (41). Akt activation
Frontiers in Oncology | www.frontiersin.org 10
has been shown to be a convergent, resistance-driving signaling
event across a spectrum of EGFR-mutant NSCLCs with acquired
resistance to EGFR TKIs caused by diverse underlying
mechanisms, such as amplification, overexpression, and
activation of MET, FGFR, EphA2, Mer, and AXL or the
T790M mutation (42). Akt phosphorylation has also been
shown to increase in the majority of EGFR-mutant patients
prior to EGFR-TKI treatment and correlates with poor initial
therapeutic responses (42). In the present study, Akt inhibitors
significantly reversed the high D-dimer plasma-induced TKI
resistance, indicating that Akt activation played an important
role in SFK-mediated acquired EGFR inhibitor resistance.

The activation of SFK has also been shown to induce E-cadherin
deregulation and associated EMT, which acquired resistance to
TKIs (43–45). In NSCLC, clinical cancer specimens with acquired
gefitinib resistance showed a decrease in E-cadherin and an
increase in Hakai expression (46). The dual HDAC and HMGR
inhibitor reverses E-cadherin expression, attenuates vimentin and
stemness, and restores gefitinib sensitivity through an inhibition of
the Src/Hakai and Hakai/E-cadherin interaction (46). Here, we
showed that the high D-dimer plasma induced EMT in HCC827
cells by decreasing the expression of E-cadherin and claudin 1,
and increasing the expression of vimentin and collagen 1. The high
D-dimer plasma also increased HCC827 cell migratory activity.
Dasatinib was also shown to inhibit the high D-dimer-induced
EMT and HCC827 cell migration. Disruption of E-cadherin alone
may result in reduced suppression of EGFR-dependent signaling
pathways (47, 48), since E-cadherin has been shown to suppress
intracellular signaling pathways, which regulate cell activation,
proliferation, and differentiation (49). Our results also showed
that E-cadherin knockdown by siRNA transactivated EGFR and
became resistant to gefitinib treatment. E-cadherin loss may further
exacerbate Src-induced aberrant EGFR activation. Thus, the
reversal effect on EMT may cast an important role in the
efficiency of dasatinib in restoring EGFR TKI responsiveness.

Disruption of the SFK pathway may therefore provide a method
to overcome EGFR TKI resistance. However, several clinical trials
with dasatinib in combination with EGFR TKI failed to overcome
acquired TKI resistance (50, 51). The lack of clinical benefits of
combined therapies is attributed to an incomplete abrogation of c-
Src hyper-activation and the enrolment of molecular
uncharacterized patients (51). The heterogeneity of lung cancer
cells in expressing Src kinase activity and dependence of Src
activation in regulation of cell growth may be differentially
responsive to Src inhibition and also differentially vulnerable to
Src activation and development of EGFR TKI resistance. Src
activation by platelet adherence to tumor cells in patients with
mutant adenocarcinoma may be a predictive biomarker of
responses to Src inhibitors in conquering acquired TKI resistance.

Based on our cell line in vitro studies, osimertinib could induce
cytotoxicity approximately 50% in the presence of high D-dimer
plasma (Figure 2E). We propose that osimertinib as a first-line
treatment for patients in the high D-dimer group may have a
significant survival benefit compared with comparator EGFR TKI.
However, whether the 50% resistance to osimertinib in in vitro
studies could be clinically translated into a significant difference in
survival benefit deserves further studies if the superior efficacy of
A

B

FIGURE 7 | The HCC827 cells in 96-well plates were transfected with
E-cadherin siRNA and then incubated with different concentrations of
gefitinib, the Western blot (A) and MTT assay (B) were performed, and the
absorbance was read at 570 nm. Data represent the mean ± SEM. *p < 0.05,
**p < 0.01, ***p < 0.005 compared to the corresponding vehicle control or
treated group.
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osimertinib in lung adenocarcinoma with activating EGFR
mutation (52, 53) would conquer the induction of resistance by
high D-dimer plasma. As shown in the second-line treatment for
resistance T790M in our limited number of patients, the efficacy
of osimertinib was hindered by high D-dimer plasma in terms of
response rate, PFS, and OS.

In conclusion, our study demonstrated that platelets in the
high D-dimer plasma were activated and induced EGFR TKI
resistance through Src-mediated EGFR transactivation, Akt
activation, and EMT in patients with mutant lung
adenocarcinoma. Platelet activation in high D-dimer plasma
might play a role in acquired resistance to TKI and poor
clinical outcomes. Inhibiting platelet or/and Src activation may
be a potential therapeutic direction to improve the efficacy of
EGFR TKI in patients with high D-dimer plasma levels.
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