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Abstract: Anti-virulence agents are non-bacteriostatic and non-bactericidal emerging therapeutic
options which hamper the production of virulence factors in pathogenic flora. In Staphylococcus aureus
and Enterococcus faecalis, regulation of virulence genes’ expression occurs through the cyclic peptide-
mediated accessory gene regulator (agr) and its ortholog fsr quorum sensing systems, respectively.
In the present study, we screened a set of 54 actinomycetales secondary metabolites as novel anti-
virulence compounds targeting quorum sensing system of the Gram-positive bacteria. The results
indicated that four compounds, Phenalinolactones A–D, BU–4664LMe, 4,5-dehydrogeldamycin,
and Questinomycin A, potentially inhibit the agr quorum sensing system and hemolytic activity of
S. aureus. On the other hand, Decatromicin A and B, Okilactomycin, Rishirilide A, Abyssomicin I,
and Rebeccamycin selectively blocked the fsr quorum sensing system and the gelatinase production
in E. faecalis at sub-lethal concentrations. Interestingly, Synerazol uniquely showed the capability
to inhibit both fsr and agr quorum sensing systems. Further, in silico molecular docking studies
were performed which provided closer insights into the mode of action of these compounds and
proposed that the inhibitory activity of these compounds could be attributed to their potential
ability to bind to the ATP-active site of S. aureus AgrA. Taken together, our study highlights the
potential of actinomycetales secondary metabolites with diverse structures as anti-virulence quorum
sensing inhibitors.

Keywords: quorum sensing system; agr system; fsr system; Enterococcus faecalis; Staphylococcus aureus;
actinomycetales metabolites; anti-virulence compounds; quorum sensing inhibitor; molecular docking
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1. Introduction

Quorum sensing (QS) is a dynamic process of cell-density-dependent regulation
of gene expression that regulates various bacterial processes such as biofilm formation,
virulence, and antibiotic resistance [1–3]. The accessory gene regulator (Agr) is a well-
characterized central regulatory locus of the QS system in the Gram-positive bacteria which
has been extensively studied in S. aureus [4,5]. On the other hand, the fsr QS system, an
ortholog of the agr-like QS system, has been found in E. faecalis [6,7]. While the agr QS
system is mediated by thiolactone-autoinducing peptides, the fsr QS system is mediated by
gelatinase biosynthesis-activating peptide (GBAP) containing lactone [8]. Staphylococcus
aureus, an opportunistic Gram-positive human pathogen, is the main cause of several infec-
tions, ranging from superficial skin and soft tissue infections to life-threatening toxic shock,
pneumonia, endocarditis, and septicemia [9,10]. The agr locus mediates S. aureus infection
by regulating the formation of biofilm and the release of different virulence factors [11,12].
In S. aureus, the agr locus consists of two divergent transcription units, RNAII and RNAIII,
which are driven by the promoters agr P2 and agr P3, respectively [4]. RNAII encodes the
AgrBDCA operon, the structural components of the QS system, whereas RNAIII encodes
delta hemolysin, which functions as a regulatory of RNA that is involved in a series of viru-
lence genes [11]. Enterococci are another group of opportunistic Gram-positive pathogens
which reside in the gastrointestinal tract as commensals. They frequently cause several
serious infections such as endocarditis, bacteremia, and urinary-tract infection [13,14]. The
gelatinase production controlled by the fsr QS system has been reported to be a factor in
the pathogenicity of enterococci [8]. The fsr locus consists of four genes, fsrA, fsrB, fsrC, and
fsrD, which positively regulate the expression of gelatinase [15].

Methicillin-resistant S. aureus (MRSA) and vancomycin-resistant Enterococci (VRE)
are among the most serious drug-resistant pathogens. Several antibiotics were shown
to be ineffective against these pathogens, and therefore their therapeutic intervention
become substantially tricky. In 2017, The World Health Organization (WHO) raised a
strong concern for the development of novel antimicrobials against 12 multi-drug-resistant
(MDR) pathogens, including MRSA and VRE as high-priority pathogens. The tremendous
global spread of antibiotic resistance in pathogenic bacteria and the lack of potent and
novel antibiotics against these pathogens can led to high morbidity and economic burden
in the near future worldwide [16,17]. The QS system regulates the virulence of many
drug-resistant opportunistic pathogens. Thus, the interference of QS has been considered
as an alternative resort to the threats by these pathogens [18–21]. Indeed, targeting QS
represents one of the emerging strategies for the development of anti-virulence agents
which can attenuate virulence without a bactericidal effect [20,22–24]. Such QS-inhibitors
could be used alone or synergistically in combination with antibiotics, which would reduce
the emergency of wide-spectrum antibiotics and simultaneously minimize the risk for
horizontal spread of drug-resistance genes [19,25–28]. Natural product-driven molecules
comprise about 50% of the drugs recently used for clinical purposes [29]. Currently, several
potent anti-QS agents have been identified which showed a promising therapeutic efficacy
for impeding the pathogenicity of Gram-positive bacteria in vitro and in vivo levels, but
they have not yet reached the clinical stage [30–35]. We have previously reported a novel set
of QS-inhibitors which significantly attenuated fsr QS in Enterococci [30,36]. Furthermore,
Desouky et al. have identified cyclodepsipeptides, obtained from actinomycetes culture
extracts, as potent receptor antagonists for the agr/fsr QS systems [37]. Based on the above-
mentioned facts and in continuation of our interest in identifying novel natural compounds
with a unique mode of action, herein we extensively explore the inhibitory activity of a
library of 54 natural antimicrobials from Actinomycetes spp. toward QS systems. Our study
identified of a set of natural compounds which could potentially inhibit agr/fsr QS systems.
Furthermore, we have performed a molecular docking study to investigate the binding
affinity of the identified compounds towards the active site of S. aureus AgrA protein. This
study represents a repertoire of natural compounds that are effective in controlling QS and
advances knowledge towards the exploration of novel antimicrobial agents.
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2. Results
2.1. Screening of Inhibitory Activity of Actinomycetales Metabolites against agr/fsr QS Systems

A set of 54 compounds of actinomycetales metabolites (Table S1) were screened for
their activity to target the agr/fsr QS systems at 10 µg/mL using the lux/gfp dual reporter
strain, S. aureus 8325-4 (pSB2035) and E. faecalis OG1RF (Table 1). Our initial screening
results revealed that 14 compounds were able to potentially inhibit the agr/fsr QS systems.
Interestingly, we found that some compounds possess selectivity to target the QS systems
(Table 1). Phenalinolactones A–D (35), BU–4664LMe (7), Dehydrogeldamycin (15), and
Questinomycin A (50) significantly inhibited the agr QS systems without influencing the
growth of S. aureus. Phenalinolactones A–D and BU–4664LMe exhibited a potent inhibitory
activity (80%), while Dehydrogeldamycin and Questinomycin A showed moderate activity
(50% inhibition). On the other hand, Rebeccamycin (44), Rishirilide A (45), Abyssomicin I
(1), Decatromicin A (13), Decatromicin B (14), and Okilactomycin (33) were shown to be
selective and potent inhibitors for the fsr QS systems, with 80% inhibitory activity at the
tested concentration without any considerable effect on the bacterial growth. Remarkably,
Decatromicin A (13), Decatromicin B (14), and Okilactomycin (33) displayed considerable
effects on the growth of S. aureus (80–50%) without affecting the agr QS system. Further,
Rakicidin A (45), Rakicidin B (9), and Lysolipin (28) exhibited a substantial influence on
the growth of both S. aureus and E. faecalis without any significant effect on the agr/fsr
QS systems. Excitingly, BU–4664LMe (7) and Synerazol (50) demonstrated the ability
to inhibit both the agr and fsr QS systems. While BU–4664LMe exhibited a substantial
inhibitory activity towards the fsr QS system (80%), it also showed the ability to inhibit the
agr QS system with 30% at the tested concentration. Conversely, Synerazol was shown to
potentially inhibit the agr QS system and, in addition, it displayed a considerable inhibitory
activity toward the fsr QS system. Based on these results, the hit compounds were divided
into three different groups and were further investigated to confirm their activities.

Table 1. Compound library screening against luciferase activity and gelatinase production.

No. Compound S. aureus 8325-4 E. faecalis OG1RF
Growth Luciferase Growth Gelatinase

1 Abyssomicin I - - - +++
2 Bb47-6-4 - - - -
3 Bg32-12c - - - -
4 Borrelidin - - - -
5 Bu–4664L - - - -
6 BU–4664LAc - - - -
7 BU–4664LMe - +++ - +
8 Chi15a - - - -
9 Chi93a - - - -
10 Chromone - - - -
11 Collismycin - - - -
12 Coumarine - - - -
13 Decatromicin A +++ NA - +++
14 Decatromicin B +++ NA - +++
15 Dehydrogeldamycin - ++ - -
16 Derivative EX1 - - - -
17 Derivative EX2 - - - -
18 Enterocin - - - -
19 Mycolic acid - - - -
20 Fistupyrone - - - -
21 Furanone - - - -
22 Gmku - - - -
23 HF599 Maleimide - - - -
24 Isi1-1-C - - - -
25 Leptomycin A - - - -
26 Lupinacidin C - - - -
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Table 1. Cont.

No. Compound S. aureus 8325-4 E. faecalis OG1RF
Growth Luciferase Growth Gelatinase

27 Lydicamycin - - - -
28 I4,5-Lysolipin +++ NA +++ NA
29 Maklamicin +++ NA - -
30 Mucidone - - - -
31 Myxochelinamide - - - -
32 Nocardimicin H - - - -
33 Okilactomycin + NA - +++
34 Pseurotin A - - - -
35 Phenalinolactones A–D - +++ - -
36 Pradimicin S - - - -
37 Preussin - - - -
38 Pristinamycin IIA - - - -
39 Pyridoxatin - - - -
40 Questinomycin A - ++ - -
41 Radiciccol - - -
42 Rakicidin A ++ NA +++ NA
43 Rakicidin B ++ NA +++ NA
44 Rebeccamycin - ± - +++
45 Rishirilide A - - - +++
46 Sek34 - - - -
47 Sek34b - - - -
48 Sje059-B - - - -
49 Sporogen AO-1 - - - -
50 Synerazol - + - +++
51 Ta39s5 - - - -
52 Tetrangulol - - - -
53 Watasemycin A - - - -
54 291-46 - - - -

+, 30% inhibition; ++, 50% inhibition; +++, 80% inhibition; -, no inhibition; ±, increasing activity; NA not applicable.
All experiments were performed in triplicate.

2.2. Compounds Targeting Both agr and fsr Systems

Synerazol (52) is a known fungal metabolite that has been isolated from Aspergillus fu-
migatus (Figure 1A). To further investigate the dual activity of this compound on agr and fsr
systems, we have examined the QS suppression activity of Pseurotin A (53) and Synerazol
at different concentrations toward E. faecalis OG1RF and S. aureus 8325-4 (Figure 1B). The
results revealed that Synerazol at 0.4 µM attenuated the gelatinase production of E. faecalis
by 50% without inhibiting the bacterial growth (Figure 1C). Complete inhibition of gelati-
nase production was obtained at 2 µM of Synerazol. It is noteworthy that Azocoll was
included in this experiment in order to avoid the possibility of direct inhibition of Synerazol
on the gelatinase production. Additionally, Synerazol at 20 µM suppressed the expres-
sions of GFP and luciferase in the dual reporter strain S. aureus 8325-4 (pSB2035) by 25%
and 50%, respectively, without affecting bacterial growth (Figure 1E). On the other hand,
Pseurotin A, which has been used as a negative control, showed no inhibition activity on
both bacterial growth and gelatinase production of E. faecalis at concentrations up to 20 µM
(Figure 1D). Further, Pseurotin A did not display a considerable inhibitory activity on the
GFP expressions or luciferase in S. aureus at concentrations lower than 50 µM (Figure 1F).
Taken together, these results indicate that Synerazol is a promising QS inhibitor which acts
by targeting both agr and fsr QS systems. The structure of Synerazol and Pseurotin A is
quite similar, whereby the former is the dehydrated form of Pseurotin A. This indicates
that the Oxirane heterocycle is playing a critical role in the activity of the compound and
that the Synerazol scaffold can be considered as a promising scaffold for the development
of novel QS inhibitors.
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Figure 1. Compounds targeting agr/fsr QS systems. Structures of Synerazol (A) and Pseurotin A (B).
(C,D) Effect of various concentrations of Synerazol and Pseurotin A on the cell growth and gelatinase
production of E. faecalis. (E,F) Effect of Synerazol or Pseurotin A on agr expression in S. aureus 8325-4
(pSB2035).

2.3. Compounds Targeting fsr System
2.3.1. Decatromicins A and B

Decatromicins A and B (13, 14) are antibiotics which were first isolated from Actino-
madura MK73-NF4 by Momose et al. [38]. While the structures of decatromicins A and B
are quite similar, consisting of macrocyclic lactone containing a tetronic acid, they differ in
the pyrrole ring: the hydrogen atom in decatromicin A is replaced by a chlorine atom in
decatromicin B (Figure 2A). Previous studies reported that decatromicins A and B have
potent inhibitory activities toward the growth of Staphylococci with a MIC of 3.13 µM [38]. In
our study, these compounds demonstrated a sub-micromolar inhibitory activity toward the
gelatinase production of E. faecalis with a minor effect on the bacterial growth (Figure 3A).
Full inhibition of gelatinase production was achieved at 1 µM of compound. These results
indicated that decatromicins A and B antibiotics could be considered as influential drugs
against the fsr QS system.
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Figure 2. Chemical structures of compounds targeting the fsr QS system of E. faecalis. (A) Decatromicin
A and B, (B) Okilactomycin, (C) Abyssomicin I, (D) Rishirilide A, (E) Rebeccamycin.

2.3.2. Okilactomycin

Okilactomycin (33) is a well-known antibiotic against Gram-positive bacteria which is
isolated from Streptomyces griseoflavus [39] and Streptomyces scabrisporus [40]. Structurally,
it has a cyclohexene ring with a spirocenter and a 2,6-cis-tetrahydropyranone moiety
(Figure 2B). Okilactomycin potentially inhibited the growth of E. faecalis IID 682 and
S. aureus FDA209PJC-1 with a MIC of 250 and 125 µM, respectively [40]. In our screening,
Okilactomycin displayed a significant inhibitory activity toward the fsr QS system. Toward
this end, we further investigated the effect of Okilactomycin on the gelatinase production
and the bacterial growth. As shown in Figure 3B, Okilactomycin inhibited 70% of the
gelatinase production of E. faecalis at a 10 µM concentration without a dramatic influence
on the bacterial growth. These results revealed that the mode of action of Okilactomycin
may involve targeting the bacterial fsr QS system.

2.3.3. Abyssomicin I

Abyssomicin I (1) is a newly modified polycyclic polyketide (Figure 2C), which was
isolated from Streptomyces sp. CHI39 [41]. Although it has been reported that Abyssomicin I
inhibits the growth of S. aureus with a MIC of 50 µM, we did not observe a substantial effect
on the growth of E. faecalis at concentrations up to 30 µM. On the other hand, Abyssomicin
I exhibited a potent inhibitory activity against the gelatinase production regulated by the
fsr QS system with a MIC of 12 µM without affecting the bacterial growth (Figure 3C).

2.3.4. Rishirilide A

Rishirilide A (45) is a plasmin antagonist with a highly oxygenated anthracene skeleton
which is produced by Streptomyces rishiriensis OFR-1056 (Figure 2D) [42]. As depicted in
Figure 3D, Rishirilide A did not display a significant growth inhibitory activity against
E. faecalis up to a 35 µM concentration. On the other hand, Rishirilide A drastically inhibited
the gelatinase production of E. faecalis at an 8 µM concentration (70% inhibition). As for
the above inhibitors, Rishirilide A did not display a direct inhibitory activity towards the
gelatinase of E. faecalis.
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2.3.5. Rebeccamycin

Rebeccamycin (44) is an antibiotic which is produced by Saccharothrix aerocolonigenes
(Figure 2E) (55). It has a wide range of biological activity, ranging from antitumor to an-
timicrobial activity [17]. Rebeccamycin displayed a considerable inhibitory activity toward
the growth of S. aureus A953 with a MIC of 2 µM (55). In our investigations, Rebeccamycin
did not show a significant effect on the growth of E. faecalis at the concentrations up to
20 µM (Figure 3E). However, it slightly attenuated the gelatinase production (up to 27%) at
15 µM without affecting cell growth (Figure 3E). Further, a direct inhibitory activity toward
the gelatinase of E. faecalis was not observed. Interestingly, Rebeccamycin completely
inhibited the gelatinase production of E. faecalis at 20 µM, however this was accompanied
by a reduction of bacterial growth (20% inhibition).
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2.4. Compounds Targeting agr System
2.4.1. Phenalinolactones A–D

Phenalinolactone is an antibiotic produced by Streptomyces sp. U4664l and displays
a potent inhibitory activity toward tumor, invasion, and angiogenesis [43]. This com-
pound significantly inhibited the agr system in S. aureus and affecting the cell growth
(Figures 4A and 5A).
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2.4.2. 4,5-Dehydrogeldanamycin

Geldanamycin (15) was first isolated from Streptomyces hygroscopicus in 1970 [44]. This
compound plays an important role in attenuating the highly virulent H5N1 influenza
virus infection by reducing the host’s inflammatory responses [45]. Our result showed
that 4,5-dehydrogeldanamycin (derivative of Geldanamycin) reduced the expression of
the agr QS system in S. aureus 8325-4 (pSB2035) at the concentration of 2.5 µg/mL by
reducing luciferase production by 93.3% without affecting cell growth (Figure 4C). This
compound attenuated the anti-hemolytic activity of the S. aureus ATCC 29213 strain at the
concentration of 5 µg/mL (Figure 5B).

2.4.3. Questinomycin A

Questiomycin A (40) has been reported as a causative agent of apoptotic cell death in
the gastric and colon cancer cell lines (Figure 4D) [46]. Our results showed that Questino-
mycin A inhibited the regulation of agr QS by 87.5%, as indicated by luciferase induction of
S. aureus 8325-4 (pSB2035) at a 5 µg/mL concentration without affecting cell growth. When
the activity of this compound was assessed against S. aureus ATCC 29213, it exhibited a
reduction of relative hemolysis of this strain of 21.2% (Figure 5C).

2.4.4. BU–4664L, Me, Ac

BU–4664L (5) is a secondary metabolite initially discovered from the actinomycete of
the genus Micromonospora (Figure 4B) [47]. This compound is described as a heterocyclic
core, dibenzodiazepinone, modified with a farnesyl carbon chain (Figure 5D). BU–4664L
is comprised of two distinct substructures, the dibenzodiazepine core and the aliphatic
farnesyl sidechain. In order to assess which part is responsible for bioactivities, two
derivatives of BU–4664L were obtained [48], BU–4664LAc and BU–4664LMe by acetylation
and methylation of BU–4664L, respectively (Figure 4B). We analyzed the QSI activity of
BU–4664L against the agr QS system of S. aureus 8325-4 (pSB2035) at concentrations ranging
from 1 to 8 µM. It was observed that BU–4664LMe inhibited luciferase up to 90% without
affecting cell growth, whereas BU–4664L and BU–4664LAc affected the cell growth at a
concentration of 5 µg/mL for both (Figure 5D–F).

2.5. Antihemolytic Activity

The tested compounds exhibited diverse effects against the hemolytic activity of
S. aureus ATCC 29213 (Figure 6). BU–4664LMe was the most potent sample tested. It
significantly (p < 0.05) reduced the hemolytic activity of S. aureus by up to 74.4% and 47.3%
at concentrations of 40 and 20 µg/mL, respectively, without combating the bacterial cell
growth in a dose-dependent manner. On the other hand, other tested compounds were
neglected either for their effect on the bacterial growth at the same concentrations or for
exhibiting non-significant hemolytic activities against S. aureus (Figure 6).
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2.6. In Silico Molecular Modeling Study

To further explore the inhibitory potency of the discovered potent inhibitors (Phenali-
nolactones A–D (35), BU–4664LMe (7), 4,5-dehydrogeldamycin (15), Questinomycin A (40),
and Synerazol (50)), a detailed in silico molecular docking simulation study was performed
toward the active site of Staphylococcus aureus AgrA targets (PDB code: 3BS1) [49,50]. The
investigation of the AgrA binding site revealed the key amino acid residues that interact
with the DNA backbone (Ser168, Arg170, Tyr183, Lys187, Ser202, Arg218, and Asn234) to-
gether with the three amino acid residues that perform direct, base-specific contacts (His169,
Asn201, and Arg233) [50]. All tested compounds (Phenalinolactones A–D, BU–4664LMe,
4,5-dehydrogeldamycin, Questinomycin A, and Synerazol) showed a high binding affinity
to the ATP-active site of AgrA, with energy scores of −10.43, −10.16, 10.20, −8.55, and
−11.10 kcal/mol, respectively. As shown in Figure 6, Phenalinolactones A–D formed a
stable binding mode to the active site of the ATP pocket by forming a hydrogen bond
between the oxygen of methoxy group at the pyran ring and the Arg233 residue (distance:
2.60 Å). Further, the 2,4-dihyroxy-5-oxofuran contributed to the binding fixation through
two H-bonds, one between the carbonyl oxygen and the Arg198 residue and the other
between the hydroxyl group and the Ser190 residue (distance: 2.67 and 2.60 Å, respectively).
As show in Figure 7C,D, the methoxy group at the dibenzodiazepinone scaffold maintained
the improved potency in BU–4664LMe through hydrogen bond formation between the
oxygen atom and the sidechain of the important Asn201 residue (distance: 3.48 Å). Ad-
ditionally, the centroid of the 4,6-dimethoxybenzene ring was facing the essential amino
acids Ser164, His169, and Ser202.
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The adjacent methoxy and carbamate fragments play an essential role in the fixation
of 4,5-dehydrogeldamycin within AgrA through the formation of two H-bonds with the
sidechain of His169: one is an acceptor with the oxygen of methoxy and the other is a donor
with the proton of NH2 group (distance: 3.08 and 2.07 Å, respectively). Moreover, the
cyclohexadiene assisted the binding via two hydrogen bond acceptors between the oxygens
of carbonyl and methoxy groups with the sidechain of Ser202 (distance: 2.48 and 3.11 Å,
respectively). Additionally, the oxygen of the amide moiety exhibited an H-bond acceptor
with the sidechain of Arg198 (distance: 2.67 Å) (Figure 7E,F). The phenoxazine scaffold of
Questinomycin A demonstrated the ability to embed and bind to the ATP-active pocket of
AgrA through the formation of two main hydrogen bonds. As illustrated in Figure 6, the
NH2 group demonstrated an H-bond donor to the Tyr183 residue (distance: 1.40 Å). On
the other hand, the carbonyl oxygen in the scaffold bonded as an H-bond acceptor to the
Lys146 residue in the active site (distance: 2.62 Å) (Figure 7G,H).

The molecular modeling of Synerazol revealed a high binding affinity toward the
ATP-active pocket of AgrA, which was demonstrated by the ability to form several H-bonds
to the active site of the protein. In this regard, the oxygen atom of the oxirane moiety
demonstrated an H-bond acceptor with the Arg233 residue (distance: 2.27 Å). The binding
mode was further stabilized by several other hydrogen bonds afforded by the Asn234
and Ser231 residues. While the Asn234 residue served as an H-bond donor with the two
oxygens of benzoyl and hydroxyl fragments (distance: 2.49 and 2.73 Å, respectively), it also
acted as an H-bond acceptor with the hydroxyl oxygen (distance: 2.63 Å). On the other
hand, the Ser231 residue demonstrated an H-bond donor site with the hydroxyl oxygen
(distance: 2.74 Å) (Figure 7I,J).

3. Discussion

Several antipathogenic compounds targeting QS in Gram-negative bacteria have been
discovered [20,51]. However, there are limited QSIs against Gram-positive bacteria reported
in the literature. Previously, our research group discovered ambuic acid, a known antifungal
compound which inhibited the biosynthesis of cyclic peptide autoinducers of S. aureus and
Listeria innocua as well as GBAP of E. faecalis [52]. We have also identified actinomycete
metabolites such as alasso peptide, siamycin, and cyclodepsi peptides of WS9326s as potent
QSIs. Siamycin was found to inhibit the fsr QS of E. faecalis, whereas WS9326s was found to
have anti-virulence activity by obstructing the agr, fsr, and VirSR QS of S. aureus, E. faecalis,
and Clostridium perfringens, respectively [37]. These findings suggested that ambuic acid
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and WS9326s offer wide-spectrum QSIs for Gram-positive pathogens. The research has
motivated us to explore more secondary metabolites which can effectively attenuate agr
and fsr QS systems of S. aureus and E. faecalis, respectively. Indeed, the three-step high-
throughput screening system exhibited in this study will accelerate the discovery of a wide
range of drug candidates, and may offer a new type of antimicrobial chemotherapy and
also knowledge leading to the rational design of QSIs in a next step. In this study, a total of
10 compounds were discovered as new QSIs targeting agr or fsr QS systems (Table 1). The
QSI Phenalinolactone, produced by Streptomyces sp. Tü6071, has been previously reported
to have antibacterial activity [53]. Questiomycin A, an analog of actinomycin D, is known
to have anticancer properties and cause apoptosis in the different cancer cell lines, but the
mechanism of its action is unknown [54]. We observed in this study that Phenalinolactones
A–D and Questiomycin A inhibit the agr-type QS systems and blood hemolysis in S. aureus.

Rebeccamycin is known as a topoisomerase I inhibitor, which has been previously
isolated from Saccharothrix aerocolonigenes, Gram-positive bacteria (55). It has been shown to
have strong antitumor activity against mouse B16 melanoma cells (IC50 = 500 nM) and P388
leukemia cells (IC50 = 480 nM), and it also has antibacterial properties [55]. Rebeccamycin
and its analogues are currently undergoing clinical phase II trials for the treatment of lung
cancer, liver cancer, breast cancer, lymphoma, retinoblastoma, kidney cancer, and ovarian
cancer. This study showed significant inhibition of fsr QS in E. faecalis without influencing
the agr system and bacterial growth of S. aureus.

Decatromicins A and B, initially isolated from Actinomadura sp. MK73-NF4, have
been reported to inhibit the growth of MRSA and other Gram-positive bacteria [38]. These
compounds strongly inhibited the fsr-induced gelatinase production with a neglected shift
in the bacterial growth. The difference between Decatromicins A and B is the substitution
of hydrogen by a chlorine atom attached to the pyrrole ring (Figure 2A). We observed
that there is no difference in effective dose between Decatromicins A and B for growth
inhibition or QSI activity against E. faecalis OG1RF. Our results indicated that the chlorine
atom or halogenation are not at all important for the QSI mechanism of Decatromicins.
Okilactomycin, a polyketide antibiotic produced by Streptomycesgriseoflavus, is known to
have antitumor activity and weak antimicrobial activity against Gram-positive bacteria.
This study indicated that Okilactomycin strongly inhibited GelE production of E. faecalis
OG1RF at a 20 µM concentration, with a slight attenuation in the bacterial growth. Previ-
ously, Zhang et al. investigated that Okilactomycin targets small ribosomal protein S4 in
the growth inhibition mechanism of S. aureus [40].

Notably, Synerazol efficiently inhibited both fsr and agr QS systems. The structure of
Synerazol was interesting in terms of its structure and activity relationship as its analogue,
Pseurotin A, did not show any QSI activity (Figure 1D). The structural difference between
these two compounds is only diol in Pseurotin A instead of epoxide of Synerazol at the same
position (Figure 1A,B), suggesting that the epoxide is associated with the inhibitory activity
against the cyclic peptide-mediated QSI in Gram-positive bacteria. From the previous
results, it was found that most of the examined compounds exhibited moderate to high
activities. Synerazol showed a unique activity as a global regulator of both fsr and agr QS
systems. The higher inhibitory activity of Synerazol than Pseurotin A could be attributed
to the presence of the Oxirane fragment, which is important in the binding with Arg233.
With the opening of the Oxirane ring in Pseurotin A (which is typical in the structure
of Synerazol, except for the Oxirane ring), the activity is totally diminished. The most
active compounds targeting agr are Phenalinolactones A–D, BU–4664L, Geldnamycin, and
Questinomycin A.

In view of the structural composition of the compounds, we found that most of them
contain the methoxy group, which is of great importance in the process of linking with
the amino acids. For example, Phenalinolactones can form a hydrogen bond acceptor
between the oxygen of the methoxy group at the pyran ring and the sidechain of Arg233.
Furthermore, among the three derivatives of BU–4664L (R = H, COCH3, CH3), it was
noted that BU–4664LMe bearing three methoxy groups at the dibenzodiazepinone scaffold
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revealed an excellent inhibitory activity due to the presence of the three methoxy groups,
which have a +M effect rather than OH and COCH3 which have a–I effect. Moreover,
Geldnamycin showed binding of methoxy and carbamate fragments within AgrA through
the formation of two H-bonds with the sidechain of His169. The only different structure
was Questinomycin A, which lacks the presence of a methoxy group, and here, the binding
occurred through the carbonyl oxygen with amino acid Lys146, while the amino group
revealed an H-bond donor with the backbone of Tyr183. On the other hand, we found
some other compounds targeting fsr, which are Decatromicins A and B, Okilactomycin,
Abyssomicin I, Rishirilide A, and Rebeccamycin. Four of them, Decatromicins A and B,
Okilactomycin, Abyssomicin I, and Rishirilide, have a furanone moiety in addition to other
functional groups, which may be important in activity, as the furanone (21) itself is inactive.
The important groups are the carboxylic group, which is present in Decatromicin (A and B)
and Okilactomycin, and also the sugar moiety, that is present in Decatromicins A and B.
Rebeccamycin, which contains a sugar moiety in addition to pyrrole rings, which is the
bioisostere for the furan ring, also represents higher activity.

4. Materials and Methods
4.1. Bacterial Starins and Growth Conditions

E. faecalis OG1RF was used as an isogenic gelatinase-positive strain to assay the QSI
activity of samples for screening [56]. E. faecalis OG1RF was cultured in 36.4 g/L of Todd–
Hewitt broth (THB) (Oxoid, Basingstoke, Hampshire, United Kingdom) at 37 ◦C with
gentle agitation. S. aureus 8325-4 (pSB2035) [18] and S. aureus 12600T [19] were cultured in
Luria–Bertani (LB) broth (10 g of tryptone, 5 g of yeast extract, and 10 g of NaCl per liter) at
37 ◦C with gentle agitation. For S. aureus 8325-4 (pSB2035), 7 µg/mL of chloramphenicol
for plasmid selection was added to the medium. S. aureus 8325-4 (pSB2035) was procured
from Prof. Paul Williams at The University of Nottingham, UK. S. aureus ATCC 29213, a
highly hemolysin-producing strain [12], was used for the antihemolytic assay.

4.2. Compound Library

Fifty-four compounds of different chemical structures, isolated from Actinomycetales sp.,
were obtained from the Biotechnology Research Center at Toyama Prefectural University [41].
These compounds were investigated for anti-fsr and anti-agr activities.

4.3. Screening and Assessment of E. faecalis fsr System Inhibition

The assay for the inhibition of the E. faecalis fsr QS system was carried out essentially
as described previously [57]. For the overnight grown culture of E. faecalis OG1RF (3 µL),
0.5 McFarland (1.5 × 108 CFU) was inoculated into 0.5 mL of THB medium containing
5 µg of the tested compounds (54 compounds) dissolved in methanol and was cultured
for 5 h at 37 ◦C with gentle shaking. The growth was measured at an OD of 600 nm
(OD600). After centrifugation at 9100× g for 5 min, 40 µL of culture supernatant was
collected and subjected to the gelatinase assay using azocoll (Calbiochem, San Diego,
CA, USA) as a substrate, as described previously [30,36,41]. Briefly, 40 µL of E. faecalis
culture supernatant was added to 0.8 mL of azocoll suspension, incubated for 4 h with
constant mixing (170 rpm), and centrifuged at 20,000× g for 5 min, and the OD of the
supernatant was then measured at OD540. The inhibitory effect was assessed by evaluating
the growth of the culture with tested compounds and the non-cultured control sample,
which was considered as a negative control. Inhibition of growth by more than 50% was
judged as significant inhibition and the compound was considered for further studies. The
experiment was performed in triplicate.

4.4. Screening and Assessment of S. aureus agr System Inhibition

The assay for the inhibition of the S. aureus agr QS system was carried out using the
S. aureus agr reporter strain, 8325-4, which carries plasmid pSB2035 encoding luciferase
and GFP genes under the agr P3 promoter. For the inhibitory assay of the agr system, in an
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overnight culture of S. aureus 8325-4 (pSB2035), 0.5 McFarland (1.5 × 108 CFU) was diluted 1
to 50 into 200 µL of fresh LB broth containing 2 µg of the tested compounds (54 compounds)
and then cultured in a 96-well titer plate with shaking at 120 rpm. For the positive and
negative controls, S. aureus 8325-4 (pSB2035) and S. aureus 12600 were cultured in the same
way without compounds, respectively. After 7 h, the OD of the culture at 620 nm was
measured by a microtiter plate reader (Immuno Mini NJ-2300; Nihon InterMed, Tokyo,
Japan). Simultaneously, bioluminescence of the culture was quantified by a luminescence
image analyzer (LAS-4000mini; Fuji Photo Film, Tokyo, Japan) with FUJIFILM Multi-Gauge
software. If the OD620 was less than 50% of the positive control, the sample was judged
to have growth inhibitory activity and removed from the batch for the QSI assay. The
induction level of luciferase was calculated by subtracting the luminescence of the negative
control. The full induction level was calculated by subtracting the luminescence of the
negative control from that of the positive control. An inhibitory effect of more than 90%
was judged as significant inhibition. To quantify the GFP expression level, the culture was
collected from the well and the cells were harvested by centrifugation at 13,000× g for 2 min,
washed twice in an equal volume of phosphate-buffered saline (PBS), and then suspended
into 600 µL of PBS. The fluorescence (excitation at 470 nm (F470) and 490 nm (F490) and
emission at 525 nm) of each sample was measured by a fluorescence spectrophotometer
(F-7000; Hitachi High technologies). The fluorescence of GFP was represented by F490–F470.
The induction level of GFP was calculated by subtracting the F490–F470 value of the negative
control. The full induction level was calculated by subtracting the F490–F470 value of the
negative control from that of the positive control. The experiment was performed separately,
three times.

4.5. Quantitative Assessment of Anti-Hemolytic Effect

Hemolysin production was quantitatively assessed according to the previous method
with some modifications [37]. The overnight culture of S. aureus ATCC 29213 was diluted to
1:100 in TSB and then grown with or without sublethal concentrations of the investigated
compounds at 37 ◦C for 16 h with shaking at 250 rpm. Then, 100 µL of the cell culture
was added into the diluted human red blood cells that had previously been separated by
centrifugation at 900× g for 5 min, washed with PBS buffer three times, and then diluted to
3% in PBS buffer. For hemolytic activity, the mixture was incubated at 37 ◦C for 3 h with
250 rpm shaking. The supernatant was collected by centrifugation at 16,600× g for 10 min
and the optical density (OD) was measured at 543 nm [41]. The anti-hemolysin activity of
the tested compounds was determined by comparing the hemolytic activity of S. aureus
cultured with/without the investigated compounds and then calculating the ratio [42]. The
experiment was performed in triplicate.

4.6. Molecular Docking Study

The molecular docking simulation study was performed using Molecular Operating
Environment (MOE®) 2008.10 software [58–63]. The crystal structure of Staphylococcus au-
reus AgrA (PDB code: 3BS1) was retrieved from Protein Data Bank [49]. The 2D structures of
the five potent compounds: phenalinolactones A–D, BU–4664LMe, 4,5-dehydrogeldamycin,
questiomycin A, and synerazol, were drawn by ChemDraw. Then, the protonated 3D struc-
tures were built using standard bond angles and lengths, with the MOE 10.2008 software.
Geometry optimization and energy minimization were performed to employ the Conf
Search module in MOE, and then the MOE files were saved to be available for the docking
process. The structure of AgrA was prepared for molecular docking using the Protonate
3D protocol in MOE with the default options. The Triangle Matcher placement method
and London dG scoring function were applied in the docking protocol according to the
reported procedure [58–60,64–67].
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4.7. Statistical Analysis

Three replicates were performed for each assay and all resulted values were the
averages of three independent experiments. To analyze the differences between a sample
and the corresponding control, Student’s t-test was used. Differences were considered
significant if the p-values were <0.05.

5. Conclusions

This study highlighted the antimicrobial compounds with potential anti-QS activity
which will subsequently pave the way to cope with bacterial infections. This study has
gained substantial knowledge about the chemical structures of QSIs capable of attenuating
the virulence of potential drug-resistant Gram-positive bacteria. In this context, resources
of microbial secondary metabolites have a high potential as the screening library for anti-
virulence agents targeting agr and fsr QS of Gram-positive bacteria. Accordingly, a set of
compounds have been discovered which showed the ability to potentially target the agr
and/or fsr QS systems of the bacteria. Further studies should be performed in the future to
investigate the potency of the discovered compounds on sensitive and resistant strains.
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