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Abstract: Pain is an essential modality of sensation in the body. Purinergic signaling plays an
important role in nociceptive pain transmission, under both physiological and pathophysiological
conditions, and is important for communication between both neuronal and non-neuronal cells.
Microglia and astrocytes express a variety of purinergic effectors, and a variety of receptors play
critical roles in the pathogenesis of neuropathic pain. In this review, we discuss our current knowledge
of purinergic signaling and of the compounds that modulate purinergic transmission, with the aim of
highlighting the importance of purinergic pathways as targets for the treatment of persistent pain.
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1. Introduction

The mammalian nervous system employs various modalities of sensation. One of
these, pain, is a necessary experience in life and is produced from the integration of various
sensations. Pain is unpleasant in nature; therefore, painful experiences are generally not
reinforced and are unlikely to be repeated. Thus, acute pain protects an individual from
further injury. The neural substrates of pain perception have been extensively studied, and
purinergic pathways have been revealed to have key roles in pain transmission.

The purinergic receptor family is divided into two major families—P1 receptors,
which are activated by adenosine, and P2 receptors, which bind purine and pyrimidine
nucleotides. P2 receptors are further subdivided into ionotropic P2X receptors and G
protein-coupled metabotropic P2Y receptors and are widely distributed in the body, and
each subtype has specific roles in the various organs and cell types. Multiple purinergic
receptor subtypes are involved in nociceptive circuitry that is initiated from peripherals,
through a primary afferent nerve to the spinal cord and brain (Figure 1) [1].

Typically, the first responders in pain transmission are nociceptors in afferent nerves.
Specialized sensory nerve fibers are involved in this transmission. Different nerve fibers,
which are grouped into Aδ and C fibers, conduct nociceptive stimuli from the peripheral
terminals. Pain can be caused by thermal, mechanical, and chemical stimuli, and researchers
have discovered effector molecules for each stimulus that trigger or modulate nociceptive
signaling [2]. Among these nociceptors, some are sensitive to a specific stimulus, while
others are sensitive to multiple types of stimuli; thus, there is an integrated and complex
system for nociceptive input [3].

Primary afferent nerves that conduct the nociceptive signals innervate the spinal
cord dorsal horn, and peripheral sensory inputs are integrated and processed by the
local interneuron network in the spinal cord and upstream brain networks form feedback
descending projections into the spinal cord. The central terminals of the nociceptor are
somatotopically organized, following ventrodorsal-oriented laminae structures. Most C-
and Aδ-nociceptive afferents have synaptic contacts in the superficial laminae (I and II).
The signals are relayed to the projection neurons directly and indirectly via complex neural

Molecules 2022, 27, 1919. https://doi.org/10.3390/molecules27061919 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27061919
https://doi.org/10.3390/molecules27061919
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-0423-2143
https://doi.org/10.3390/molecules27061919
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27061919?type=check_update&version=1


Molecules 2022, 27, 1919 2 of 17

circuitry composed of excitatory and inhibitory interneurons, and the projection neurons
convey information to multiple supraspinal sites for pain perception in the brain. The
descending modulation by supraspinal structures also occurs in the spinal dorsal horn. It
is well documented that the rostral ventromedial medulla (RVM) in the brain stem and the
locus coeruleus in the dorsal pons exert both inhibitory and facilitatory effects on spinal
dorsal neuronal responses. This bulbospinal projection to the spinal cord integrates inputs
from multiple brain regions that are involved in the perception of pain. These brain regions
include the mesolimbic reward circuit, and the prefrontal and limbic systems that regulate
the affective aspects of pain and emotional and motivational responses. Therefore, the
emotional and motivational experience can affect the intensity of pain [4–6]. Thus, there are
multiple sites of pain modulation—peripheral terminals of nociceptors, central terminals
of nociceptors, the spinal circuits that target projection neurons, the brain regions that
receive nociceptive input, and the brain regions that project to the spinal cord. Abnormal
signaling in these circuits has been implicated in pathological pain, such as chronic pain.
The mechanisms modulating neuronal excitability and synaptic efficacy in pain have been
extensively studied. Adenosine and purine and pyrimidine nucleotides are biochemical
neuro- and gliotransmitters that participate in the modulation of pain. Adenosine can
induce both analgesia and hyperalgesia through different subtypes expressed in different
parts of the nociceptive pathway. P2X receptors form channels that can contribute to
excitatory postsynaptic currents in neurons and trigger other cellular functions in non-
neuronal cells. P2Y and adenosine receptors can activate second messenger systems,
including calcium, cyclic adenosine monophosphate (cAMP), inositol-1,4,5-trisphosphate,
and other signaling molecules through coupled G proteins to modulate cellular activities.
We now review our current knowledge of the purinergic receptor contribution in the
nociceptive circuit (Figure 1).
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Figure 1. Major nociceptive pathway from peripheral to central nervous system (rodent’s structure).
Main ascending (peripheral–dorsal root ganglia (DRG)–spinal cord–parabrachial area–thalamus
and amygdala) and descending (hypothalamus and amygdala–periaqueductal grey (PAG)–rostral
ventromedial medulla (RVM)–spinal cord) nociceptive pathways are shown on the left. The key
regions for pain modulation are labeled. Purinergic receptors demonstrated to modulate nociceptive
responses are listed in the center. Right indicates detailed expression pattern of the receptor, as
mentioned in this review.
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2. A1 Receptors

There are four members of the P1 adenosine receptor family—A1, A2A, A2B, and A3
receptors. Adenosine receptors are coupled with different G proteins. Both A1 and A3
receptors are coupled with Gi proteins, leading to a suppression of adenylate cyclase with a
subsequent decrease in cAMP levels. In contrast, A2A and A2B are coupled with Gs proteins,
which increase adenylate cyclase activity. Each receptor is also known to activate various
intracellular mediators.

Previous studies suggested that systemic adenosine administration has an analgesic
effect in preclinical pathological pain models through the A1 receptor. However, its broad
expression in the body and its varied physiological actions hindered the clinical study of
A1 receptor-selective ligands for the treatment of pain [7–9].

A1 receptors modulate synaptic activity presynaptically and postsynaptically to elicit
(mainly) inhibitory effects. Presynaptic A1 receptors reduce neurotransmitter release via
activation of Gi-proteins that suppress presynaptic calcium currents, while postsynaptic
A1 receptors do so by causing hyperpolarization through the opening of potassium chan-
nels [10]. Immunohistochemically, A1 receptors are detected in peripheral sensory neurons
and particularly densely in lamina II of the dorsal horn of the spinal cord [11,12]. Antinoci-
ception by A1 receptor activation is considered to involve the inhibition of synaptic trans-
mission through the elevation of K+ conductance in spinal dorsal horn neurons [13] and by
peripheral terminal inhibition and presynaptic inhibition at the central terminals of sensory
nerve fibers to inhibit nociceptive signal transduction via the release of neurotransmitters
in the spinal cord [14]. Activation of A1 receptors may have circuit-specific regulatory
effects because the selective modulation of excitatory synaptic transmission in the interme-
diolateral cell column has been observed [15]. Supraspinally, the intra-periaqueductal grey
(PAG) injection of 2′-Me-CCPA, a selective A1 receptor agonist, reduces pain behavior after
intraplantar formalin injection by modulating RVM neuronal activities [16].

Despite the difficulties in developing A1 receptor ligands as clinical drugs, researchers
have focused on A1 receptor partial agonists and positive allosteric modulators, which are
expected to reduce adverse effects of full agonists and the excessive perturbation of the
intrinsic adenosine system [17]. MIPS521, a positive allosteric modulator, whose binding
site on the A1 receptor has been structurally determined, was demonstrated to function
as an analgesic by stabilizing the complex of the A1 receptor with the G-protein [18].
In addition to its antinociceptive effects, significant anxiolytic-like effects of A1 receptor
positive allosteric modulator TRR469 were reported [19]. The anxiolytic effect of TRR469
is comparable to diazepam but without the sedative effect or locomotor disturbances
typical of benzodiazepines. Therefore, A1 receptor positive allosteric modulators may have
potential in treating the emotional aspect of pain. Structures of A1 receptor agonists listed
above are shown in Figure 2.
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3. A2A Receptors

Adenosine A2A receptors are expressed in specific brain regions at pre- and postsy-
naptic sites on neurons and are also expressed in glia, but there is limited evidence for
its expression in spinal cord neurons [20,21]. Peripherally, A2A receptors are detected on
immune cells that have anti-inflammatory actions and are, therefore, considered as targets
for inflammatory and immune conditions [22].

A2A receptors appear to be expressed on the terminals of primary afferent nerve
fibers. Intraplantar injection of CGS21680, an A2A receptor agonist, induces mechanical
hyperalgesia, which is reduced in A2A knockout mice and by treatment with the A2A
receptor inverse agonist ZM241385 [23]. In another study, SCH58261, a selective A2A
antagonist, was shown to suppress nociceptive behavior in animal tests of acute pain, such
as the writhing test, the tail-flick test, hot plate test, and the tail immersion test [24,25].
Antinociceptive effects of adenosine A2A receptor antagonists have also been reported
when administrated into the cerebral ventricles [26]. The amygdala is one of the key
central regions that affect nociception. A2A receptors have been shown to regulate synaptic
plasticity in the amygdala, and this property may underlie the antinociceptive role of central
A2A receptors. SCH58261 and ZM241385 significantly suppress high frequency stimulation-
induced long-term potentiation in the amygdala, and this action may contribute to the
ability of the A2A receptor antagonists to attenuate contextual fear memory [27].

The accumulating evidence suggests a pronociceptive effect of A2A receptors in periph-
eral nerves. However, in non-neuronal cells, the anti-inflammatory effect of A2A receptor
agonists seems to have antinociceptive effects in some types of chronic pain. Long-term
antinociceptive effects of intrathecal A2A agonists, such as ATL313 and CGS21680, have
been demonstrated in a model of neuropathic pain that involves massive activation of
microglia and astrocytes in the spinal cord after peripheral nerve injury [28]. Nerve injury
induces both the activation and proliferation of microglia and astrocytes responsible for
inflammation in neuropathic pain. The upregulation of glial activation markers is persis-
tently reduced after a single treatment of A2A receptor agonist, and the upregulation of
tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine, is suppressed, while the
anti-inflammatory cytokine interleukin (IL)-10 remains upregulated in the spinal cord [29].
Therefore, the current evidence supports dual, opposing roles of A2A receptors—as pronoci-
ceptive modulators and anti-inflammatory regulators—in the central nervous system (CNS)
glial cells. Some allosteric modulators of A2A receptors have been identified and studied
concerning inflammatory regulation [30,31]. Future studies establishing the physiologic
functions of A2A receptors are awaited. Structures of A2 receptor agonists listed above are
shown in Figure 2.
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4. A3 Receptors

A3 receptors are highly expressed in immune cells, including glial cells [32]. A3 re-
ceptors in microglia participate in chemotaxis toward ATP [33]. Selective A3 receptor
agonists, such as IB-MECA and Cl-IB-MECA, are receiving attention as candidate drugs
for treating inflammatory diseases, such as rheumatoid arthritis [34]. Interestingly, re-
ciprocal regulation of A2AR and A3R carries an inhibitory effect of adenosine against
innate immune response in both activated and homeostatic microglia [35]. A3 receptor
agonists have also been studied in neuropathic pain [36]. Intraperitoneal injections of
IB-MECA suppressed neuropathic pain states by reducing spinal microglial activation [37].
IB-MECA, Cl-IB-MECA, and MRS1898 have been shown to alleviate neuropathic pain
induced by chronic constriction injury and chemotherapeutics [38]. A3 receptor activation
by IB-MECA suppresses nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
activity, the production of pro-inflammatory cytokines (TNF-α, IL-1β), and upregulates
the anti-inflammatory cytokine IL-10 [39]. MRS5698, another agonist, reverses persistent
neuropathic pain without tolerance, as is observed with continuous morphine treatment.
Interestingly, bilateral RVM microinjections of MRS5698 have an analgesic effect on chronic
constriction injury (CCI)-induced neuropathic pain. Thus, supraspinal A3 receptors can
also contribute to the amelioration of neuropathic pain [40]. A recent study demonstrated
that the antiallodynic effect of MRS5980 depends on CD4+ T cells, which interact with
dorsal root ganglion cells in an IL-10-dependent manner [41]. Another study reported
that MRS5980 prevents cisplatin-induced cognitive impairments, sensorimotor deficits,
and neuropathic pain [42]. A3 receptor agonists (Figure 2) already demonstrate safety
profiles in clinical trials for cancer treatment. Clinical application of A3 receptor agonists
can be expected.

5. P2X2 and P2X3 Receptors

P2X2 and P2X3 are expressed by small sensory neurons of the dorsal root ganglia
(DRG), which has been confirmed by ATP-induced currents in DRG neurons [43]. P2X2
and P2X3 homomeric channels can be discriminated by their rapid and slow desensitiza-
tion to ATP stimulation, respectively, and by the insensitivity of P2X2 to α,β-methylene
ATP [44,45]. P2X2 and P2X3 can form heteromeric P2X2/3 channels, which have mixed
current properties [46,47]. Expression of these receptors has been demonstrated in rodent
DRGs, but primate DRGs appear to only express P2X3 [48]. A recent study using P2X2
reporter mice showed that P2X2 expression is lower in DRGs and trigeminal ganglia than
the level suggested by past studies [49].

P2X3 knockout mice have normal noxious mechanosensation and acute pain responses,
but extracellular recordings in the dorsal horn indicate loss of electrical responses to a
temperature change of around 40 ◦C [50]. As formalin-induced pain behavior is significantly
reduced in P2X3 knockout mice, a number of studies have examined the potential of P2X3
receptor antagonists for the treatment of chronic pain [50,51]. Various mechanisms of P2X3
receptor modulation have been reported in the hyperalgesic state in chronic pain [52].

A-317491 is a non-nucleotide antagonist that blocks P2X3 and P2X2/3 channels. A-
317491 suppresses mechanical allodynia in a model of neuropathic pain and reduces
formalin-induced pain in knockout mice [53]. Gefapixant (MK-7264), an orally bioavail-
able P2X3 and P2X2/3 receptor antagonist, which has been approved for the treatment of
refractory or unexplained chronic cough, was also demonstrated to relieve inflammatory,
osteoarthritic and neuropathic pain [54]. Eliapixant (BAY-181780), another potent and
relatively selective P2X3 homomer antagonist undergoing clinical trial, also reduces inflam-
matory pain in preclinical models [55]. Two other non-competitive P2X3 homotrimeric
receptor antagonists, BLU-5937 and sivopixant (Figure 3), have a higher selectivity for the
P2X3 versus P2X2/3 and are under clinical trial for the treatment of refractory chronic
cough [56,57]. Sivopixant showed a strong analgesic effect in the rat partial sciatic nerve
ligation model [58]. A benzimidazole-4,7-dione analog, KCB-77033, was newly identified
and showed pain relief in a cisplatin-induced neuropathic pain model [59].
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6. P2X4 Receptors

The central role of the P2X4 receptor in pain was first reported by Tsuda et al. [60], who
demonstrated that intrathecal P2X4 receptor antagonist injection alleviated allodynia in a rat
model of neuropathic pain. This study suggested that the activation of the P2X4 receptor on
spinal microglia is both necessary and sufficient to induce tactile allodynia after peripheral
nerve injury. The activated spinal microglia strongly expressed P2X4 receptors in their
neuropathic pain model. Furthermore, intraspinal transplantation of microglia following
P2X4 receptor stimulation induced hyperalgesia. Together, these findings demonstrate a
critical role of spinal microglia in the modulation of pain.

The current consensus is that microglial surface P2X4 receptors are upregulated follow-
ing inflammatory activation. Two independent research groups generated reporter mice
showing P2X4 receptor expression in the brain, and both reported similar observations.
Under physiological conditions, P2X4 receptors are expressed in various neurons in the
brain but not in microglia, and expression in microglia is seen only after lipopolysaccha-
ride (LPS) treatment [61,62]. Notably, in one of the studies, a small group of reporter
gene-positive neurons in the hypothalamus did not show an electrophysiological response
to ATP. This suggests the absence of functional surface P2X4 receptors in neurons, de-
spite the presence of transcriptional activity. The other study showed the upregulation of
surface P2X4 receptors on microglial cells by inflammatory stimuli through lysosomal secre-
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tion [63,64]. These findings suggest the possibility of targeting pathogenic P2X4 receptors
in activated microglia.

If we consider microglial P2X4 upregulation as a form of microglial activation, many
factors can regulate pain-related P2X4-positive microglial activation. Interferon regulatory
factor (IRF) 5 is a direct transcriptional regulator of P2X4 receptors and is in turn under IRF8
transcriptional control [65]. MafB, whose expression is regulated by miro RNA, mir-152-3p,
-mediated translational regulation is also involved in P2X4 receptor upregulation [66]. These
pain-related microglial P2X4 receptors are known to induce brain-derived neurotrophic
factor (BDNF) production and release from microglia to modulate pain-transducing spinal
circuits [67,68].

Developed as a negative allosteric modulator of P2X4 receptors, 5-BDBD, a benzo-
diazepine derivative, has been demonstrated to reduce pain behavior caused by chronic
constriction injury in animal studies [69,70]. NP-1815-PX, which is more water-soluble and
has high potency for human P2X4 receptors, was shown to inhibit mechanical allodynia in
HSV-1-inoculated mice without affecting normal pain sensitivity or motor function [71].
NC-2600 has completed phase I clinical trials for neuropathic pain and is awaiting further
study [72]. PSB-15417 is a potent, blood–brain barrier (BBB)-permeable, allosteric modula-
tor of P2X4 receptors that has an analgesic effect in animal models of neuropathic pain [73].
BAY-1797 is an orally active and selective P2X4 antagonist with antinociceptive and anti-
inflammatory effects in the mouse complete Freund’s adjuvant (CFA) inflammatory pain
model [74]. Interestingly, some antidepressants antagonize recombinant human and rat
P2X4 receptors [75], and duloxetine, which is recommended for some types of chronic pain,
might alleviate chronic pain through P2X4 receptor inhibition [76]. These findings suggest
that the P2X4 receptor may be a potential target for psychiatric therapy. Structures of P2X4
receptor antagonists listed above are shown in Figure 3.

Neuronal P2X4 receptors can modulate activity-dependent plasticity at central synapses,
such as long-term potentiation (LTP) and long-term depression (LTD), without altering
basal activity [61,77]. The ethanol sensitivity of P2X4 receptors (reviewed in [78]) suggests
that alcohol may impact brain function in part by affecting these receptors. P2X4-deficient
pups, which have altered hippocampal glutamate receptor composition, show significant
reductions in social interaction and ultrasonic vocalizations [79]. Mice in which the P2X4
receptor is genetically replaced with a recombinant P2X4 receptor that shows elevated
surface expression on excitatory neurons exhibit increased time in the open arm in the
elevated plus maze and increased time in the center zone of the open-field test. This
anxiolytic phenotype is abolished when the recombinant receptors are introduced into
native P2X4-expressing cells (microglia) by Cre-mediated recombination driven by a ubiq-
uitous promoter, CMV [61]. Therefore, the P2X4 receptor has a cell-type-specific role in
the emotional activity, and depression as a comorbid disorder after chronic pain could be
associated with the P2X4 receptor.

7. P2X7 Receptors

It has been proposed that the P2X7 receptor is absent in neurons but expressed in glial
cells [80]. The recent development of genetic modulation techniques has clearly revealed
the pattern of P2X7 receptor expression in the CNS. Bacterial artificial chromosome (BAC)
transgenic mice harboring an enhanced green fluorescent protein (EGFP)-tagged P2X7
receptor gene instead of the native P2rx7 gene demonstrate dominant P2X7-EGFP protein
expression in microglia, satellite glia ensheathing DRG neurons, oligodendrocytes, and a
limited population of astrocytes but not in neurons [81,82]. In addition, the reliability of a
newly developed highly specific anti-P2X7 receptor nanobody and inadequate binding of
commercially available anti-P2X7 antibodies has been shown [83].

As mentioned before, microglia critically contribute to neuropathic pain. P2X7 re-
ceptors in microglia might be involved in the production and release of cytokines and
chemokines, such as IL-1β, IL-6, TNF-α, chemokine (C-C motif) ligand 3 (CCL3), and
chemokines (C-X-C motif) ligand 2 (CXCL2) [84–88]. Thus, the activation of microglial P2X7
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triggers the formation of a proinflammatory environment in the CNS. Antagonists selective
for P2X7 receptors are accordingly expected to suppress neuroinflammatory processes.

P2X7 receptor knockout mice exhibit reduced pain hypersensitivity in a model of neu-
ropathic pain [89]. Blockade of P2X7 receptors significantly reduces nociception in animal
models of chronic neuropathic and inflammatory pain [90,91]. Rodent models of chronic
inflammatory pain show alleviation of pain by P2X7 receptor antagonists, such as oxidized
ATP, A-740003, and A-438079 [92–94]. A438079 also suppresses paclitaxel-induced mechan-
ical hypersensitivity, which can also be alleviated by a CCL3-neutralizing antibody [95].
It was reported that intra-amygdala infusion of A-438079 in a neuropathic pain model
reduces depression- and anxiety-like behaviors, along with an antinociceptive effect [96].
JNJ-47965567, a CNS-permeable P2X7 antagonist, has the ability to prevent mechanical
hypersensitivity in a rat model of neuropathic pain [97]. Notably, CNS-permeable P2X7
antagonists, such as JNJ-55308942 and JNJ-54175446, were chosen as clinical candidates
for major depression because of their anti-neuroinflammatory effects [98,99]. Structures of
P2X7 receptor antagonists listed above are shown in Figure 3.

Restraint stress increases ATP, IL-1β, and TNFα in the hippocampus. Furthermore,
A-804598, a P2X7 receptor antagonist, blocks the induction of IL-1β and TNFα [100]. ATP
and glutamate release in hippocampal slices from stressed mice is mediated by Cx43
and Panx1 hemichannel activation via N-methyl-D-aspartic acid/P2X7 receptor signaling.
Chronic, but not acute, restraint stress upregulates Panx1 in astrocytes and neurons in the
hippocampus [101,102]. Whether pain experience evokes gliotransmitter release in the
brain is still unknown; however, targeting the P2X7 receptor to treat chronic pain-associated
depression may be worth investigating in future studies.

8. P2Y1 Receptors

P2Y receptors are G-protein-coupled receptors that are stimulated by purine and
pyrimidine nucleotides. The P2Y1 receptor is widely distributed in the CNS. In the noci-
ceptive circuitry, P2Y1 receptors can be detected in small-diameter sensory neurons in the
DRG, in a subset of transient receptor potential V1 (TRPV1) receptor-positive cells [103,104].
It has been suggested that P2Y1 and/or P2Y2 receptor activation modulates TRPV1 re-
sponses by lowering the activation threshold for capsaicin, protons, and heat stimulation,
contributing to ATP-induced hypersensitivity [105]. In the RVM, ATP activates off-cells,
whose activation is associated with antinociception. This activation is antagonized by the
selective P2Y1 receptor antagonist MRS2179 [106]. In the spinal cord, expression of the
P2Y1 receptor can be detected [107,108]. MRS2179, a P2Y1 receptor-specific inhibitor, was
demonstrated to reverse mechanical hypersensitivity and spontaneous pain in the rodent
model of cancer-induced bone pain when intrathecally administered [109]. MRS2365 and
MRS2500, another P2Y1 receptor-selective antagonists (Figure 4), were shown to have an
analgesic effect on inflammatory pain [110–112].
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9. P2Y2 Receptors

P2Y2 is expressed in DRG and trigeminal neurons. Activation of the P2Y2 receptor
by uridine triphosphate (UTP) triggers action potential firing in dissociated DRG neurons
and induces cAMP response element-binding protein (CREB) phosphorylation [113]. UTP
activates the terminals of the majority of C fibers and a small population of Aβ fibers,
which are also activated by capsaicin in mouse skin nerve preparations [114]. In another
report, P2Y2 receptor expression, by immunolabeling, was observed in satellite glia of
the trigeminal ganglion, and AR-C118925 (Figure 4), a P2Y2 receptor-selective antagonist,
reversed facial allodynia in the complete Freund’s adjuvant (CFA)-induced chronic pain
model [115]. In the ophthalmic field, a P2Y2 receptor agonist, diquafosol, has been approved
to treat dry eye disease.

10. P2Y12 Receptors

P2Y12 receptors are coupled with Gi proteins and respond to adenosine diphosphate
(ADP), and play key roles in platelet activation. Four specific antagonists of P2Y12 receptors
have been approved as antithrombotic agents—clopidogrel, prasugrel, cangrelor, and
ticagrelor [116]. Selatogrel, a novel reversible P2Y12 receptor antagonist, is under clinical
trial [117]. The P2Y12 receptor in the CNS is a marker of homeostatic microglia and is
considered to be a critical receptor in the surveillance of the local incidents in the CNS by
regulating the motility of ramified processes [118].

It was demonstrated that intrathecally administered P2Y12 receptor antagonists, such
as MRS2395, AR-C69931MX, and PSB-0739 (Figure 4), significantly suppress mechanical
hypersensitization in models of neuropathic pain and inflammatory pain [119–121]. P2Y12
knockout mice have provided valuable insight into the role of these receptors. Genetic
ablation of P2Y12 receptors mitigates inflammatory and neuropathic pain [119,122,123].

Microglial P2Y12 expression is reduced in neuroinflammatory CNS diseases, such
as multiple sclerosis and Alzheimer’s disease [124–126]. However, some reports indicate
spinal P2Y12 receptor upregulation in models of chronic pain [127]. Therefore, reactive
spinal microglia in models of chronic pain might undergo a specific mode of activation
in the development of hypersensitivity. Several studies have shown that the P2Y12 recep-
tor activates p38 MAPK, via RhoA/ Rho-associated coiled-coil containing protein kinase
2 (ROCK2) signaling [128,129]. Both ROCK2 inhibitor and P2Y12 receptor antagonists
suppress p38 phosphorylation and show analgesic effects on the neuropathic pain model.
MRS2395 also reduces the GTP-bound form of RhoA and suppresses ROCK2 upregulation
in the spinal cord. Signaling under the P2Y12 receptor includes RhoA/ROCK2-mediated
p38 phosphorylation to induce neuropathic pain. It must be noted that P2Y12 receptors are
predominantly expressed in platelets in the periphery and that antagonists have antithrom-
botic effects. Microglia-specific analysis of P2Y12 receptor signaling is important for the
further development of P2Y12-related analgesic agents.

11. Other Purinergic Molecules

Extracellular adenosine can be produced extracellularly as a metabolite of the ATP re-
leased by cells under stressful conditions. Dephosphorylation by two hydrolyzing enzymes,
CD39 and CD73, is primarily involved in this process [130,131]. Prostatic acid phosphatase
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(PAP) and tissue-nonspecific alkaline phosphatase (TNAP) are also known to hydrolyze
extracellular adenosine monophosphate (AMP) to adenosine (Figure 5) [132]. As adenosine
is involved in nociceptive regulation, the effect of modulating adenosine metabolism on
pain has been examined. Intrathecal administration of recombinant enzymes, such as CD73
and PAP, revealed an increase in adenosine concentration in the spinal cord subsequent
analgesic effect in inflammatory pain that was lost with A1 receptor deficiency [132–134].
Therefore, A1 receptor-mediated inhibitory effect on the spinal nociceptive circuit (shown
in Section 2) can be enhanced by exogenous ectonucleotidases introduction. Other studies
demonstrate that adenosine kinase (AK) inhibition increases extracellular concentrations of
adenosine, leading to adenosine receptor-mediated analgesia in pathological pain [135,136].
Microglia may be important players in the CD39–CD73–adenosine receptor signaling axis
because microglia express functional levels of CD39 and CD73 in vivo and have major roles
in regulating neuronal activity in the brain [137,138].
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Vesicular nucleotide transporter (VNUT; also known as Slc17a9), which is involved in
ATP storage and release, is an important regulator of pathological sensory hypersensitivity.
VNUT knockout mice exhibit suppressed mechanical hyperalgesia, and cell-type-selective
gene knockdown using the Cre–loxP recombination system showed that neuronal VNUT
in the spinal dorsal horn is responsible for mechanical hypersensitivity in a neuropathic
pain model [139]. Clodronate is identified as a potent and selective VNUT inhibitor and
has been shown to suppress inflammatory pain and neuropathic pain [140].

ATP can be released into the extracellular space through vesicular exocytosis at the
synapse. A vesicular nucleotide transporter (VNUT) is critical transporter for ATP storage.
Endogenous ecto-ATPases on cell membrane hydrolyze ATP to adenosine diphosphate
(ADP) and adenosine monophosphate (AMP), and the hydrolysis of AMP by CD73, tissue-
non-specific alkaline phosphatase (TNAP), and prostatic acid phosphatase (PAP) produce
extracellular adenosine.

12. Conclusions and Prospects

In this paper, we reviewed purinergic receptors ligands, their effects on the nociceptive
system, and their sites of action in the nociceptive pathway (Figure 1). Purinergic ligands,
purine and pyrimidine nucleotides, and adenosine have very unique and elaborately
created metabolic systems in the body. The receptor family is widely distributed in the
body, and each subtype has specific roles in the various organs and cell types. At peripheral
sites, neuronal P2X3 receptors may contribute to the initiation of acute nociception and
acute inflammatory pain. P2Y1 and P2Y2 receptor activation in DRGs can modulate the
activity of TRPV1+ nociceptive neurons. Several purinergic receptors, such as P2X7 and
P2Y2 receptors, are expressed in satellite glial cells surrounding the cell bodies of sensory
neurons that modulate the activity of nociceptors. Adenosine, an ATP metabolite, can
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induce hyperalgesia through peripheral A2A receptor activation. In the spinal cord, P2X4,
P2X7 and P2Y12 receptors on microglia contribute to the development of neuropathic
pain through complex neuronal–glial interactions, and anti-inflammatory effect of A2A
and A3 receptors may counteract the painful activation of spinal microglia. A1 receptor
activation can block excitatory nociceptive transmission in the dorsal spinal cord circuit.
Supraspinally, A3 receptors in the RVM may contribute to mechanical hypersensitivity in
neuropathic pain. Multiple purinergic receptors can affect the activity of the nociceptive
neural network at multiple sites, and the effect manifested may differ in physiological and
pathophysiological conditions.

We may be far from a complete understanding of this complex system in nociceptive
circuitry, but there has steady accumulation of scientific knowledge and materialization.
Purinergic signaling is an important therapeutic target for the treatment of pathological pain.
Novel agonists, antagonists, and allosteric modulators of purinergic signaling only await
discovery. For effective analgesic agents, however, a systematic and deeper understanding
of the role of purinergic signaling in the sensory and emotional aspects of pain is required.
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123. Bekő, K.; Koványi, B.; Gölöncsér, F.; Horváth, G.; Környei, D.Z.; Botz, B.; Helyes, Z.; Müller, C.E.; Sperlágh, B. Contribution
of platelet P2Y12 receptors to chronic Complete Freund’s adjuvant-induced inflammatory pain. J. Thromb. Haemost. 2017, 15,
1223–1235. [CrossRef] [PubMed]

124. Van Wageningen, T.A.; Vlaar, E.; Kooij, G.; Jongenelen, C.A.M.; Geurts, J.J.G.; Van Dam, A.M. Regulation of microglial TMEM119
and P2RY12 immunoreactivity in multiple sclerosis white and grey matter lesions is dependent on their inflammatory environment.
Acta Neuropathol. Commun. 2019, 7, 206. [CrossRef] [PubMed]

125. Maeda, J.; Minamihisamatsu, T.; Shimojo, M.; Zhou, X.; Ono, M.; Matsuba, Y.; Ji, B.; Ishii, H.; Ogawa, M.; Akatsu, H.; et al. Distinct
microglial response against Alzheimer’s amyloid and tau pathologies characterized by P2Y12 receptor. Brain Commun. 2021, 3,
fcab011. [CrossRef] [PubMed]

126. Zrzavy, T.; Hametner, S.; Wimmer, I.; Butovsky, O.; Weiner, H.L.; Lassmann, H. Loss of ‘homeostatic’ microglia and patterns of
their activation in active multiple sclerosis. Brain 2017, 140, 1900. [CrossRef]

127. Mildner, A.; Huang, H.; Radke, J.; Stenzel, W.; Priller, J. P2Y12 receptor is expressed on human microglia under physiological
conditions throughout development and is sensitive to neuroinflammatory diseases. Glia 2017, 65, 375–387. [CrossRef] [PubMed]

128. Tatsumi, E.; Yamanaka, H.; Kobayashi, K.; Yagi, H.; Sakagami, M.; Noguchi, K. RhoA/ROCK pathway mediates p38 MAPK
activation and morphological changes downstream of P2Y12/13 receptors in spinal microglia in neuropathic pain. Glia 2015, 63,
216–228. [CrossRef] [PubMed]

129. Yu, T.; Zhang, X.; Shi, H.; Tian, J.; Sun, L.; Hu, X.; Cui, W.; Du, D. P2Y12 regulates microglia activation and excitatory synaptic
transmission in spinal lamina II neurons during neuropathic pain in rodents. Cell Death Dis. 2019, 10, 165. [CrossRef] [PubMed]

130. Yegutkin, G.G. Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade.
Biochim. Biophys. Acta Mol. Cell Res. 2008, 1783, 673–694. [CrossRef]

131. Street, S.E.; Kramer, N.J.; Walsh, P.L.; Taylor-Blake, B.; Yadav, M.C.; King, I.F.; Vihko, P.; Mark Wightman, R.; Millán, J.L.; Zylka,
M.J. Tissue-Nonspecific Alkaline Phosphatase Acts Redundantly with PAP and NT5E to Generate Adenosine in the Dorsal Spinal
Cord. J. Neurosci. 2013, 33, 11314–11322. [CrossRef] [PubMed]

132. Zylka, M.J.; Sowa, N.A.; Taylor-Blake, B.; Twomey, M.A.; Herrala, A.; Voikar, V.; Vihko, P. Prostatic Acid Phosphatase Is an
Ectonucleotidase and Suppresses Pain by Generating Adenosine. Neuron 2008, 60, 111–122. [CrossRef] [PubMed]

133. Sowa, N.A.; Voss, M.K.; Zylka, M.J. Recombinant ecto-5’-nucleotidase (CD73) has long lasting antinociceptive effects that are
dependent on adenosine A1receptor activation. Mol. Pain 2010, 6, 20. [CrossRef] [PubMed]

134. Sowa, N.A.; Taylor-Blake, B.; Zylka, M.J. Ecto-5′-nucleotidase (CD73) inhibits nociception by hydrolyzing AMP to adenosine in
nociceptive circuits. J. Neurosci. 2010, 30, 2235–2244. [CrossRef] [PubMed]

http://doi.org/10.1093/abbs/gms007
http://www.ncbi.nlm.nih.gov/pubmed/22349022
http://doi.org/10.1111/j.1476-5381.2009.00596.x
http://doi.org/10.1186/1744-8069-6-21
http://www.ncbi.nlm.nih.gov/pubmed/20398327
http://doi.org/10.1016/j.brainresbull.2017.01.019
http://www.ncbi.nlm.nih.gov/pubmed/28153540
http://doi.org/10.1046/j.1460-9568.2002.02253.x
http://www.ncbi.nlm.nih.gov/pubmed/12453048
http://doi.org/10.1016/j.pain.2004.01.007
http://www.ncbi.nlm.nih.gov/pubmed/15082124
http://doi.org/10.1002/glia.22819
http://www.ncbi.nlm.nih.gov/pubmed/25779655
http://doi.org/10.1007/s11739-010-0363-z
http://www.ncbi.nlm.nih.gov/pubmed/20177818
http://doi.org/10.1080/13543784.2020.1764533
http://www.ncbi.nlm.nih.gov/pubmed/32396484
http://doi.org/10.1038/nn1472
http://doi.org/10.1523/JNEUROSCI.0323-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18463248
http://doi.org/10.1523/JNEUROSCI.5589-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18337420
http://doi.org/10.1016/j.nbd.2014.06.011
http://www.ncbi.nlm.nih.gov/pubmed/24971933
http://doi.org/10.1016/j.bbi.2015.11.007
http://www.ncbi.nlm.nih.gov/pubmed/26576724
http://doi.org/10.1111/jth.13684
http://www.ncbi.nlm.nih.gov/pubmed/28345287
http://doi.org/10.1186/s40478-019-0850-z
http://www.ncbi.nlm.nih.gov/pubmed/31829283
http://doi.org/10.1093/braincomms/fcab011
http://www.ncbi.nlm.nih.gov/pubmed/33644757
http://doi.org/10.1093/brain/awx113
http://doi.org/10.1002/glia.23097
http://www.ncbi.nlm.nih.gov/pubmed/27862351
http://doi.org/10.1002/glia.22745
http://www.ncbi.nlm.nih.gov/pubmed/25130721
http://doi.org/10.1038/s41419-019-1425-4
http://www.ncbi.nlm.nih.gov/pubmed/30778044
http://doi.org/10.1016/j.bbamcr.2008.01.024
http://doi.org/10.1523/JNEUROSCI.0133-13.2013
http://www.ncbi.nlm.nih.gov/pubmed/23825434
http://doi.org/10.1016/j.neuron.2008.08.024
http://www.ncbi.nlm.nih.gov/pubmed/18940592
http://doi.org/10.1186/1744-8069-6-20
http://www.ncbi.nlm.nih.gov/pubmed/20398264
http://doi.org/10.1523/JNEUROSCI.5324-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20147550


Molecules 2022, 27, 1919 17 of 17

135. Lynch, J.J.; Jarvis, M.F.; Kowaluk, E.A. An adenosine kinase inhibitor attenuates tactile allodynia in a rat model of diabetic
neuropathic pain. Eur. J. Pharmacol. 1999, 364, 141–146. [CrossRef]

136. Jarvis, M.F.; Mikusa, J.; Chu, K.L.; Wismer, C.T.; Honore, P.; Kowaluk, E.A.; McGaraughty, S. Comparison of the ability of
adenosine kinase inhibitors and adenosine receptor agonists to attenuate thermal hyperalgesia and reduce motor performance in
rats. Pharmacol. Biochem. Behav. 2002, 73, 573–581. [CrossRef]

137. Langer, D.; Hammer, K.; Koszalka, P.; Schrader, J.; Robson, S.; Zimmermann, H. Distribution of ectonucleotidases in the rodent
brain revisited. Cell Tissue Res. 2008, 334, 199–217. [CrossRef]

138. Badimon, A.; Strasburger, H.J.; Ayata, P.; Chen, X.; Nair, A.; Ikegami, A.; Hwang, P.; Chan, A.T.; Graves, S.M.; Uweru, J.O.; et al.
Negative feedback control of neuronal activity by microglia. Nature 2020, 586, 417–423. [CrossRef]

139. Masuda, T.; Ozono, Y.; Mikuriya, S.; Kohro, Y.; Tozaki-Saitoh, H.; Iwatsuki, K.; Uneyama, H.; Ichikawa, R.; Salter, M.W.; Tsuda,
M.; et al. Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain. Nat.
Commun. 2016, 7, 12529. [CrossRef]

140. Kato, Y.; Hiasa, M.; Ichikawa, R.; Hasuzawa, N.; Kadowaki, A.; Iwatsuki, K.; Shima, K.; Endo, Y.; Kitahara, Y.; Inoue, T.; et al.
Identification of a vesicular ATP release inhibitor for the treatment of neuropathic and inflammatory pain. Proc. Natl. Acad. Sci.
USA 2017, 114, E6297–E6305. [CrossRef]

http://doi.org/10.1016/S0014-2999(98)00840-1
http://doi.org/10.1016/S0091-3057(02)00840-7
http://doi.org/10.1007/s00441-008-0681-x
http://doi.org/10.1038/s41586-020-2777-8
http://doi.org/10.1038/ncomms12529
http://doi.org/10.1073/pnas.1704847114

	Introduction 
	A1 Receptors 
	A2A Receptors 
	A3 Receptors 
	P2X2 and P2X3 Receptors 
	P2X4 Receptors 
	P2X7 Receptors 
	P2Y1 Receptors 
	P2Y2 Receptors 
	P2Y12 Receptors 
	Other Purinergic Molecules 
	Conclusions and Prospects 
	References

