
RESEARCH ARTICLE

Integrated Analyses of Gene Expression
Profiles Digs out Common Markers for
Rheumatic Diseases
LanWang1,2, Long-Fei Wu1,2, Xin Lu1,2, Xing-Bo Mo1,2, Zai-Xiang Tang1,2, Shu-Feng Lei1,2,
Fei-Yan Deng1,2*

1 Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou,
Jiangsu 215123, P. R. China, 2 Jiangsu Key Laboratory of Preventive and Translational Medicine for
Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China

* fdeng@suda.edu.cn

Abstract

Objective

Rheumatic diseases have some common symptoms. Extensive gene expression studies,

accumulated thus far, have successfully identified signature molecules for each rheumatic

disease, individually. However, whether there exist shared factors across rheumatic dis-

eases has yet to be tested.

Methods

We collected and utilized 6 public microarray datasets covering 4 types of representative

rheumatic diseases including rheumatoid arthritis, systemic lupus erythematosus, ankylosing

spondylitis, and osteoarthritis. Then we detected overlaps of differentially expressed genes

across datasets and performed a meta-analysis aiming at identifying common differentially

expressed genes that discriminate between pathological cases and normal controls. To fur-

ther gain insights into the functions of the identified common differentially expressed genes,

we conducted gene ontology enrichment analysis and protein-protein interaction analysis.

Results

We identified a total of eight differentially expressed genes (TNFSF10, CX3CR1, LY96,

TLR5, TXN, TIA1, PRKCH, PRF1), each associated with at least 3 of the 4 studied rheu-

matic diseases. Meta-analysis warranted the significance of the eight genes and highlighted

the general significance of four genes (CX3CR1, LY96, TLR5, and PRF1). Protein-protein

interaction and gene ontology enrichment analyses indicated that the eight genes interact

with each other to exert functions related to immune response and immune regulation.

Conclusion

The findings support that there exist common factors underlying rheumatic diseases. For

rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis and
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osteoarthritis diseases, those common factors include TNFSF10, CX3CR1, LY96, TLR5,

TXN, TIA1, PRKCH, and PRF1. In-depth studies on these common factors may provide

keys to understanding the pathogenesis and developing intervention strategies for rheu-

matic diseases.

Introduction
Rheumatic diseases are painful conditions usually characterized by inflammation, swelling,
and pain in joints or muscles. More than 100 types of diseases are classified as rheumatic dis-
eases, including many types of arthritis. The pathologic mechanisms of rheumatic diseases are
complex, under the influence of both genetic and environmental factors. Although the rheu-
matic diseases have been studied for decades, the underlying mechanisms are still poorly
understood.

Rheumatic diseases share some common symptoms, which imply that they may share com-
mon pathologic factors. Though each rheumatic disease has specific genetic causes, previous
studies identified common factors associated with different rheumatic diseases. For instance,
the HLA region is known to be associated with several rheumatic diseases including rheuma-
toid arthritis (RA)[1], systemic lupus erythematosus (SLE)[2], ankylosing spondylitis (AS) [3],
Sjögren's syndrome, as well as many others [4]. Tumour necrosis factor has been shown to play
a dominant role in the pathogenesis of various immune-mediated inflammatory diseases such
as RA, AS, osteoarthritis (OA) [5], and psoriatic arthritis [6]. In addition, hypovitaminosis D is
commonly observed in rheumatic patients with and without autoimmune features [7]. Despite
the above sporadic evidence, common factors shared by various rheumatic diseases have yet to
be examined systematically.

Gene expression profiling with microarray is a powerful tool for the discovery of genes and
biological pathways that are associated with various complex diseases [8, 9]. Gene expression
datasets, collected in rheumatic patients and normal controls, have been accumulated for a
decade, leading to successful identification of gene expression signatures for each rheumatic
disease, respectively. However, to the best of our knowledge, no study has been conducted to
systematically identify factors in common for various rheumatic diseases.

In this study, based on the archived public high-throughput microarray gene expression
datasets for rheumatic cohorts, we performed comprehensive statistical analyses to identify
genetic factors commonly significant for different rheumatic diseases.

Materials and Methods

Ethics statement
The study did not made use of human or vertebrate animal subjects and tissue. The data were
collected from an international publicly available database and analyzed anonymously. There-
fore, no additional informed consent was required.

Collection and selection of data
We searched the NCBI PubMed and Gene Expression Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo/)[10]with key words “Rheumatic diseases”, “Rheumatoid arthritis”,
“Adult onset still’s disease”, “Osteoarthritis”, “Ankylosing spondylitis”, “Sjogren’s syndrome”,
“Systemic lupus erythematosus”, “Microarray”, and “Gene expression profile”. By August 31,
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2014, a total of 23 types of common rheumatic diseases were considered. A study was included
in our analysis if: (1) it included patients diagnosed with rheumatic diseases and normal con-
trols, (2) it contained gene expression profiling of blood, and (3) it provided data sufficient to
our analysis. Finally, 6 datasets covering 4 types of rheumatic diseases(RA, SLE, OA, and AS)
were retained for subsequent analysis (Table 1). The process of data collection and selection
was provided in Fig 1A.

Data preprocessing
We downloaded the 6 microarray gene expression datasets from GEO. The datasets were gen-
erated using four different platforms. The numbers of profiled genes in each dataset are differ-
ent, and the probe IDs are different across platforms. To perform integrative analysis of
datasets from different studies, we processed the datasets by using functionsMetaDE.match,
MetaDE.merge,MetaDE.filtering inan R package: MetaDE [11]. At the first step, when multiple
probes matched to the same gene, we adopted the “IQR”method to select a probe with the larg-
est interquartile range of gene expression values among all matched probes to represent the
gene. At the second step, we extracted the commonly profiled genes across the six datasets. In
the identification of differential expressed genes (DEGs), either un-expressed or un-informa-
tive genes contribute to false discoveries. Thus, at the third step, we performed gene filtering to
sequentially remove un-expressed genes and un-informative genes. In each datasets, mean
intensities and standard deviations of expression valuesfor each gene were ranked. The sum of
ranks across all datasets was used to evaluate level of gene expression/information. To get the
best balance between the false discovery rate (FDR)and the number of genes retained, we con-
sidered 30% genes with the smallest rank sum of mean intensity as un-expressed genes, and

Table 1. Characteristics of the Datasets Included in the Analysis.

Disease Type GEO Accession Platform Case Control Tissue

Rheumatoid arthritis (RA1) GSE15573 GPL6102 18 15 PBMCs

Rheumatoid arthritis (RA2) GSE1402 GPL8300 20 11 PBMCs

Systemic lupus erythematosus (SLE1) GSE12374 GPL1291 11 6 PBMCs

Systemic lupus erythematosus (SLE2) GSE20864 GPL1291 21 45 PBMCs

Osteoarthritis (OA) GSE48556 GPL6947 106 33 PBMCs

Ankylosing spondylitis (AS) GSE25101 GPL6947 16 16 Whole blood

PBMCs: peripheral blood mononuclear cells.

doi:10.1371/journal.pone.0137522.t001

Fig 1. Flowcharts of Data Preparation and Data Analyses. (A) The selection process of microarray
datasets. (B) The analysis process of the microarray datasets.

doi:10.1371/journal.pone.0137522.g001
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considered 30% genes with the smallest rank sum of standard deviations as un-informative
genes [11]. Finally, a total of 2600 genes were retained for further analysis.

Statistical analysis
We analyzed each dataset individually by ind.analysis function in MetaDE package to identify
DEGs between rheumatic patients and normal controls. The moderatedt-statistic [12] was
selected for significance analysis. The Benjamini & Hochberg FDR method was used to apply
p-value adjustment for multiple-testing correction [13].

To get an overview of similarities of the gene expression profiles among different rheumatic
diseases, we considered an approach introduced by Marina Sirota [14]. In a specific dataset,
expression variation score for each gene is calculated as sign(tj) log(pj), where j is a gene number
in a specific dataset and tj is the moderated-t statistic of gene j, pj is the moderatep-value of
gene j. Thus it combines both the strength and the ‘direction’ of association. The gene expres-
sion variation profile of each dataset is a set of expression variation scores of all genes in the
dataset. Correlations between the gene expression variation profiles can quantify the similarity
of gene expression and regulation effects [14]. Herein, we considered the Kendall and Spear-
man correlation methods, as these two correlations are well-known methods for quantifying
the degree of correlations between lists of ordinal data. The above correlation coefficients were
computed by using the cor.test function in R. Based on the correlation coefficients, the hierar-
chical clustering of datasets was conducted by using the gplots package in R.

To investigate the common DEGs across the four types of rheumatic diseases, we firstly
ranked the moderate p-values from the smallest to the largest for each dataset. Then, we exam-
ined the overlaps of the top 100 ranked genes across the six datasets. Genes with significantly
differential expression in at least 3 types of rheumatic diseases were selected as common genes.
Under the same criterion, we also detected common genes from DEGs with FDR adjusted p-
value less than 0.01.

To evaluate the reliability of the above detected common markers, we performed a meta-
analysis of the 6 gene expression microarray datasets. We used MetaDE package for identifica-
tion of DEGs by the Fisher method and the maximum P-value method. The moderated t-statis-
tic was used to calculate p-values in each datasets, and the Benjamini & Hochberg FDR
method was used to apply meta-p-value adjustment. In the Fisher method, strong statistical
significance of a gene could result from an extremely small p-value of one study, thus it detects
genes that are differentially expressed in one or more datasets. In contrast, the maximum P-
value method detects genes with small p-values of all studies [15].

Functional annotation analysis
To understand the functions of the identified genes, we performed Gene Ontology (GO)
enrichment analysis (http://www.geneontology.org/). Herein, we only considered the biological
process. To explore the functional associations between identified genes, the proteins encoded
by the identified genes were analyzed according to the Search Tool for the Retrieval of Interact-
ing Genes/Proteins (STRING) 9.1 Server (http://www.string-db.org/) [16].

The above data processing and analyses workflow was presented in Fig 1B.

Results

Study characteristics
A total of 6 GEO datasets (accession number: GSE15573, GSE1402, GSE12374, GSE20864,
GSE48556, and GSE25101) were included in our analysis, covering 4 types of rheumatic
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diseases (2, 2, 1, 1, datasets on RA, SLE, OA, and AS, respectively). These datasets were gener-
ated with total RNA extracted from peripheral blood of rheumatic patients and normal con-
trols [17–22]. Detailed information of each dataset was described in Table 1. To be noted, four
different microarray platforms were used in generating the six datasets (GPL6102 for
GSE15573, GPL8300 for GSE1402, GPL1291 for GSE12374 and GSE20864, GPL6947 for
GSE48556 and GSE25101). After preprocessing the datasets, a total of 2600 genes, profiled in
all the 6 datasets, were extracted for analysis in the present study.

Correlation of gene expression variation profiles between rheumatic
diseases
The Kendall and Spearman correlation analyses, in Fig 2A and 2B respectively, presented simi-
lar results. Correlation matrices between the gene expression variation profilesof datasets were
shown in the heat maps. Positive correlations between pairs of diseases were shown in blue,
and negative correlations were shown in pink. The first level of clustering put RA1 and AS in
the same cluster; SLE1 and SLE2 were put in the same cluster in the second level of clustering.
The two clusters then converged and clustered together with RA2. However, OA was negatively
correlated with the other five datasets, and did not cluster with others until at the last level of
clustering. These results were consistent with previous studies [14, 23]that suggest similarities
and differences between rheumatic diseases.

Identification of common DEGs in rheumatic diseases
Based on the moderate p-values, top100 ranked genes in each datasets were listed in S1 Table.
Genes with adjusted-p<0.01 in each dataset were listed in S2 Table. Throughout S1 and S2

Fig 2. Disease Heatmap Based on Gene Expression Variation Profiles. This diagram shows correlations
between gene expression variation profiles of various rheumatic diseases. (A) Hierarchical cluster with
Kendall correlation based on the whole gene expression variation profile; (B) Hierarchical cluster with
Spearman correlation based on the whole gene expression variation profile; (C) Hierarchical cluster with
Kendall correlation based on the eight common genes; (D) Hierarchical cluster with Spearman correlation
based on the eight common genes. Positive and negative correlations between pairs of diseases are shown
in blue and pink, respectively.

doi:10.1371/journal.pone.0137522.g002
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Tables, none of the genes was identified in all the four studied rheumatic diseases. Correspond-
ing to S1 and S2 Tables, genes identified in three of the four diseases were presented in Table 2.
Each ranking method identified five genes. Notably, TXN and CX3CR1 were identified by both
ranking methods. Together, a total of eight genes were identified, includingTNFSF10,
CX3CR1, LY96, TLR5, TXN, TIA1, PRKCH, and PRF1. Significance of the above eight genes
for rheumatic diseases was further evidenced by meta-analyses with the Fisher’s method
(Table 2). Four of the DEGs were further validated by meta-analyses using the max-P method
(Table 2).

To ascertain the importance of the above eight genes for rheumatic diseases, we conducted a
clustering analysis based on the eight detected genes. Consistent with the clustering analysis
based on whole gene expression variation profiles, clustering analysis based on the above eight
genes (Fig 2C and 2D) successfully separated OA from the other three autoimmune rheumatic
diseases. Although clusters within autoimmune rheumatic diseases changed slightly, the global
trend was similar and the correlations within the autoimmune rheumatic diseases were
enhanced. This finding indicates that the identified genes may play a principle role in the
molecular pathological mechanism of these diseases.

Functional annotation
PPI analysis of the eight identified genes provided reference information for their potential
association (Fig 3). Each gene had text mining associations with others. In addition, there were
co-expression relations between three pairs of genes: CX3CR1/PRF1, TLR5/TNFSF10, and
TNFSF10/PRKCH. Four genes, i.e., CX3CR1, PRF1, TNFSF10, and TLR5, were the nodes of
the network.

The top 20 enriched GO terms of biological process related to the above eight identified
genes were shown in Table 3. The most significantly enriched function was “immune response”
(GO:0006955, p = 6.70E-06). Related with immune regulation are GO terms “immune system

Table 2. Differentially Expressed Genes Identified in Three Types of Studied Rheumatic Diseases.

Gene Symbol P-value Meta P-value

RA1 RA2 SLE1 SLE2 OA AS Fisher Max-P

TNFSF10 a 1.80E-04 6.00E-04 9.00E-04 1.00E-20 5.66E-01 1.50E-03 1.07E-19 1.65E-01

LY96 a 1.20E-04 2.44E-02 4.49E-02 1.00E-20 1.90E-02 7.95E-05 1.07E-19 2.74E-18

PRKCH a 5.13E-06 7.25E-02 2.52E-01 5.86E-02 3.21E-05 5.10E-04 1.07E-19 1.01E-02

TXN a 1.00E-20 1.80E-02 1.79E-01 1.00E-20 6.51E-01 1.28E-05 1.07E-19 2.71E-01

CX3CR1 a 7.07E-02 2.00E-04 3.90E-02 1.52E-02 1.00E-20 3.46E-05 1.07E-19 2.74E-18

TXN b 1.63E-18 5.83E-02 7.20E-01 1.61E-19 7.79E-01 7.33E-03 1.07E-19 2.71E-01

CX3CR1 b 2.58E-01 6.76E-03 5.83E-01 4.68E-02 2.00E-18 8.18E-03 1.07E-19 2.74E-18

TLR5 b 4.34E-02 6.76E-03 3.77E-01 6.94E-05 5.49E-03 4.05E-01 1.07E-19 2.28E-03

TIA1 b 3.49E-01 6.76E-03 7.36E-01 1.09E-03 6.66E-03 5.33E-01 1.07E-19 1.58E-02

PRF1 b 6.26E-02 8.82E-03 7.08E-01 6.60E-04 1.88E-03 6.43E-02 1.07E-19 4.76E-04

Presented are p values from tests of differential expression between rheumatic patients and normal controls.
a Genes identified from the top 100 ranked genes across the six datasets. The corresponding p-values are moderate p-values from the moderated-t

statistic.
b Genes identified based on p-values adjusted by the Benjamini-Hochberg method. The corresponding p-values are adjusted p-values.

Each of the genes was identified from three of the four diseases, and the p values of the corresponding datasets are in bold.

Significant p values in the meta-analysis are in bold.

doi:10.1371/journal.pone.0137522.t002
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process” (GO:0002376, p = 0.0001166) and “MyD88-dependent toll-like receptor signaling
pathway” (GO:0002755, p = 0.004402). Notably, twelve of the 20 enriched GO terms (GO:
0006968, GO: 0071222, GO: 0071219, GO: 0071216, GO: 0006952, GO: 0051707, GO:
0043207, GO: 0009607, GO: 0032496, GO: 0002237, GO: 0071396, GO: 0009617) were related
with biotic stimulus. The remaining GO terms were related with response to stress, signaling
regulation, and cell communication.

Fig 3. The Evidence View of Protein-Protein Interaction. The proteins were analyzed using the STRING
database 9.1. The predicted functional interaction network is shown in the evidence view where the different
line colors represent the types of evidence for the association.

doi:10.1371/journal.pone.0137522.g003

Table 3. The Top 20 Significantly Enriched GO Terms of Biological Processes Involving the Eight Identified DEGs.

GO ID Term p-value Genes

GO:0006955 immune response 6.70E-06 TNFSF10 LY96 TXN CX3CR1 TLR5 PRF1

GO:0006968 cellular defense response 1.39E-05 LY96 CX3CR1 PRF1

GO:0071222 cellular response to lipopolysaccharide 6.76E-05 LY96 CX3CR1 TLR5

GO:0071219 cellular response to molecule of bacterial origin 8.02E-05 LY96 CX3CR1 TLR5

GO:0002376 immune system process 1.17E-04 TNFSF10 LY96 TXN CX3CR1 TLR5 PRF1

GO:0071216 cellular response to biotic stimulus 1.24E-04 LY96 CX3CR1 TLR5

GO:0006952 defense response 3.68E-04 LY96 TXN CX3CR1 TLR5 PRF1

GO:0051707 response to other organism 5.11E-04 LY96 CX3CR1 TLR5 PRF1

GO:0043207 response to external biotic stimulus 5.11E-04 LY96 CX3CR1 TLR5 PRF1

GO:0009607 response to biotic stimulus 6.10E-04 LY96 CX3CR1 TLR5 PRF1

GO:0032496 response to lipopolysaccharide 6.47E-04 LY96 CX3CR1 TLR5

GO:0002237 response to molecule of bacterial origin 7.78E-04 LY96 CX3CR1 TLR5

GO:0071396 cellular response to lipid 1.44E-03 LY96 CX3CR1 TLR5

GO:0006950 response to stress 1.95E-03 LY96 TXN CX3CR1 TLR5 PRF1 PRKCH

GO:2001239 regulation of extrinsic apoptotic signaling pathway in absence of ligand 2.27E-03 TNFSF10 CX3CR1

GO:0009617 response to bacterium 3.44E-03 LY96 CX3CR1 TLR5

GO:0009967 positive regulation of signal transduction 3.47E-03 TNFSF10 LY96 TXN TLR5

GO:0023056 positive regulation of signal 4.14E-03 TNFSF10 LY96 TXN TLR5

GO:0010647 positive regulation of cell communication 4.23E-03 TNFSF10 LY96 TXN CX3CR1 TLR5

GO:0002755 MyD88-dependent toll-like receptor signaling pathway 4.40E-03 LY96 TLR5

doi:10.1371/journal.pone.0137522.t003
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Discussion
The inflammation and abnormal immune process are two important pathologic characteristics
for rheumatic diseases. Joint pain is the main symptom in common. We speculate that these
diseases may share similar pathological factors and mechanisms. In the last decade, microarray
analysis of gene expression profiles has been widely used to identify genes and biological path-
ways associated with various complex diseases [8, 9, 16, 18]. However, previous such studies on
rheumatic diseases usually focused on identifying factors specific to one disease and paid little
attention to identifying genes important to various diseases. Therefore, in this study, we are
attempted to identify common genes underlying multiple rheumatic diseases, with RA, SLE,
OA, and AS as representatives. To the best of our knowledge, this is the first such endeavor in
the research community of rheumatic diseases.

By jointly analyzing 6 published microarray gene expression datasets about RA, SLE, OA
and AS, we identified eight genes (TNFSF10, CX3CR1, LY96, TLR5, TXN, TIA1, PRKCH,
PRF1) presenting general importance to rheumatic diseases. As evidenced by PPI and GO anal-
yses, these eight genes interact with each other to exert functions related to immune response
and immune regulation.

Consistent with our findings, evidences from previous studies support that four of the above
eight identified genes, i.e., TNFSF10, CX3CR1, TLR5, and PRF1, are relevant to multiple rheu-
matic diseases. For example, it was reported that TNFSF10 is involved in pathogenesis of RA
[24], SLE [25], AS [26], OA [27], and multiple sclerosis [28]. CX3CR1 was reported to involve
in inflammation and autoimmune progresses in RA [29], MS [30] and SS [31]. In vivo experi-
ments confirmed that the de novo CX3CL1-CX3CR1 axis plays a pivotal role in osteoclast
recruitment and subsequent bone resorption [32], which provides a clue of molecular mecha-
nism responsible for bone damage in rheumatic diseases. It is known that toll-like receptors
(TLRs) are membrane receptors recognizing biotic inflammatory stimulus. Previous study
showed that TLR5 was over-expressed in patients affected with AS [33], RA and OA [34].
Besides, TLR5 gene mutations are associated with resistance and susceptibility to SLE [35]. In
addition, PRF1 was reported to be associated with SLE [36], RA [37] and AS Patients [38].

Besides the above four genes previously recognized to be involved in multiple rheumatic dis-
eases, this study firstly point out that TXN, PRKCH, TIA1, and LY96 genes are significant for
multiple rheumatic diseases, as well. Previous studies showed that TXN, PRKCH, and TIA1
genes are related to RA [39–41]. LY96 gene encodes a protein which associated with TLR4 on
cell surface, and plays important roles in TLR signaling pathway, inflammatory response and
innate immune response [42]. However, molecular function mechanisms of the above four genes
in relation to other three types of rheumatic diseases are unclear, and have yet to be studied.

It iswell known that immune response is involved in the development of most rheumatic
diseases. In this study, GO analyses showed that the eight identified genes are significantly
enriched in biological processes of “immune response” and “defense response”. Specifically,
those genes are involved in “responses to lipoplysaccharide, molecule of bacterial origin, biotic
stimulus, and bacterium”, and are involved in “MyD88-dependent toll-like receptor signaling
pathway”. The findings point out that gene-environment interaction plays an important role in
the development of rheumatic diseases. Understanding the molecular functions of these genes
in biotic induced inflammation and cellular defense responses may shed new light on the path-
ogenesis of rheumatic diseases.

The purpose of this study is to identify common genes for various rheumatic diseases. Due
to the following reasons, this study has some limitations. Firstly, for limited availability of gene
expression datasets, this study only focused on four kinds of rheumatic diseases. Datasets to be
generated in the future for more kinds of rheumatic diseases may contribute to validating and
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identifying novel genes with rheumatic-diseases-general effects. Secondly, the gene expression
datasets utilized in the present study were generated from four different microarray platforms.
Only 2600 genes profiled in all the 6 datasets were analyzed in this study, leaving a majority of
the protein-coding genes across the human genome unexplored yet. Thirdly, since the 6 uti-
lized datasets were generated from blood samples, we are unable to identify the specific dis-
ease-related functional cells.

To understand which immune cell subsets are contributing to the whole blood expression of
the identified genes, we searched the Immunological Genome (ImmGen) [43], a 'road map' of
gene-expression in all immunecells. According to the ImmGen, PRF1, TNFSF10 and LY96
show relatively higher expression level in innate lymphocytes than other cell subsets. Besides,
TNFSF10 is also highly expressed in stromal cells and gd T cells; LY96 is also highly expressed
in stromal cells and macrophages. CX3CR1 is relatively highly expressed in macrophages,
monocytes, and ab T cells. TIAL shows a moderately high expression level in stem cells, B cells,
and T cells. PRKCH is relatively highly expressed in T cells. Other two genes, TLR5 and TXN,
are not in the database. For our identified genes, the above expression patterns across various
immune cell subsets provide us interesting clues to better understand and explore their func-
tions in particular immunological cell subsets.

In conclusion, the present study identified eight common genes underlying different types
of rheumatic diseases. In-depth functional studies on these common genes may improve our
understanding of the pathological processes of these diseases, which could have important
implications for the prevention and treatment of rheumatic diseases in general.

Supporting Information
S1 Table. The top 100 ranked genes that show a differential expression between rheumatic
patients and normal controls. Ranking of genes is based on moderated p-values. Genes
appeared in more than 2 types of rheumatic diseases are in red.
(XLSX)

S2 Table. Genes with adjusted p-values<0.01 in each dataset. P-values are adjusted by the
Benjamini-Hochberg method. Genes appeared in more than 2 types of rheumatic diseases are
in red.
(XLSX)
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