
sensors

Communication

Noninvasive Blood Glucose Concentration Measurement Based
on Conservation of Energy Metabolism and Machine Learning

Jianming Zhu 1 , Yu Zhou 1 , Junxiang Huang 2, Aojie Zhou 1 and Zhencheng Chen 2,*

����������
�������

Citation: Zhu, J.; Zhou, Y.; Huang, J.;

Zhou, A.; Chen, Z. Noninvasive

Blood Glucose Concentration

Measurement Based on Conservation

of Energy Metabolism and Machine

Learning. Sensors 2021, 21, 6989.

https://doi.org/10.3390/

s21216989

Academic Editors: Werner Mäntele

and Andrea Facchinetti

Received: 28 August 2021

Accepted: 18 October 2021

Published: 21 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China;
zhujianming@guet.edu.cn (J.Z.); zhouyu5859@163.com (Y.Z.); 19122202015@mails.guet.edu.cn (A.Z.)

2 School of Electronic Engineering and Automation, Guilin University of Electronic Technology,
Guilin 541004, China; 19082304011@mails.guet.edu.cn

* Correspondence: chenzhcheng@guet.edu.cn

Abstract: Blood glucose (BG) concentration monitoring is essential for controlling complications
arising from diabetes, as well as digital management of the disease. At present, finger-prick glu-
cometers are widely used to measure BG concentrations. In consideration of the challenges of
invasive BG concentration measurements involving pain, risk of infection, expense, and inconve-
nience, we propose a noninvasive BG concentration detection method based on the conservation
of energy metabolism. In this study, a multisensor integrated detection probe was designed and
manufactured by 3D-printing technology to be worn on the wrist. Two machine-learning algorithms
were also applied to establish the regression model for predicting BG concentrations. The results
showed that the back-propagation neural network model produced better performance than the
multivariate polynomial regression model, with a mean absolute relative difference and correlation
coefficient of 5.453% and 0.936, respectively. Here, about 98.413% of the predicted values were within
zone A of the Clarke error grid. The above results proved the potential of our method and device for
noninvasive glucose concentration detection from the human wrist.

Keywords: multisensor fusion; diabetes; metabolic heat production; regression model;
noninvasive glucose concentration detection; wrist

1. Introduction

As a lifelong metabolic disorder, diabetes mellitus, or diabetes, not only poses se-
rious threats to human life and health, but also places an economic burden on soci-
ety [1,2]. The number of people diagnosed with diabetes is increasing rapidly every year.
According to the reports of the International Diabetes Federation, as of 2019, the global
number of patients with diabetes had increased from 151 million to 463 million over
20 years [3]. Almost half of the possible candidates for diabetes are not yet clinically
diagnosed. In addition, diabetes is predicted to affect an additional 237 million people
worldwide over the next 26 years [3]. Thus, diabetes is recognized as one of the global
top-10 chronic diseases of the 21st century. Long-term diabetes can lead to changes in the
dental, cardiovascular, and renal systems, as well as lower limbs and other tissues and
organs [4]; these complications may cause pain in the diabetic population. Blood glucose
(BG) concentration monitoring is one of the main methods of controlling diabetes [5].
At present, the most commonly used method for BG detection is via finger-prick testing [6],
in which the BG concentration is measured by collecting blood from the capillaries in the
fingertip and placing it on an enzymatic test strip attached to a glucometer. However,
this technique carries the risk of wound infection and loss of fingertip sensitivity over time.
Owing to the negative impacts of long-term invasive BG detection on the quality of life,
the diabetic population is unable to monitor BG concentrations as required by doctors.
Thus, noninvasive BG measurements have been recognized as ideal means to manage BG
levels in patients with diabetes.
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Over the past few years, noninvasive BG detection techniques have developed rapidly,
with innovations concerning the principle of BG detection, measurement site, and detection
equipment. Yu [7], Sim [8], Li [9], Tanaka [10], Burmeister [11], and others proposed a
noninvasive BG measurement method using near-infrared spectroscopy, which has been
applied to various measurement sites such as the finger, earlobe, tongue, nasal septum,
and lip. However, this technique is not only affected by the contact pressure and temper-
ature, but also is prone to interference from humidity, skin hydration, and atmospheric
pressure. Tran [12] and Mohammadifar [13] et al. proposed the electrochemical and optical
monitoring of BG concentration in urine. The drawbacks of this method included the
inability to track BG concentrations and its inability to be used for clinical measurements.
Gao [14], Park [15], Singh [16], and others proposed extracting the BG values from biofluids,
such as sweat, tears, and saliva. However, the relationship between glucose levels in bioflu-
ids and that in the blood needs further investigation, and there is a lag in the glucose values
measured using such techniques. In recent years, big data and artificial intelligence have
developed rapidly and have been applied in the field of biomedicine. Monte-Morene [17],
Habbu [18], Zhang [19] and others extracted large numbers of time- and frequency-domain
characteristic parameters from photoplethysmography (PPG), and used machine-learning
and deep-learning algorithms to predict BG concentrations with good accuracy. However,
this method can only be used to classify BG levels, and the physiological relationships be-
tween the characteristic parameters and BG concentration are still unknown. Cho et al. [20]
proposed noninvasive BG concentration measurements using metabolic heat conformation;
however, this method is imperfect. On the one hand, the evaporative heat dissipation is
ignored, which seriously affects the metabolic heat production calculations; on the other
hand, the pulse rate derived from arterial flow, which is equal to the heart rate (HR), is ne-
glected, and the pulse rate changes directly affect the blood supply to the body, which will
inevitably affect the blood concentration and metabolic heat production in the human body.

This paper presents the theory behind BG concentration detection by the metabolic
heat conformation method, and establishes a mathematical model for BG concentration
detection based on the conservation of energy metabolism. In addition, a method for
calculating the metabolic heat production of the body is proposed, and a multisensor
integrated detection probe worn on the wrist was designed to facilitate acquisition of
multiple physiological parameters. Two machine-learning algorithms, multivariate poly-
nomial regression, and back-propagation neural network (BPNN), were used to establish
the regression model to predict BG concentrations in this work. Experiments were per-
formed to demonstrate the feasibility of noninvasive BG concentration detection based on
conservation of energy metabolism.

2. Principles and Methods

2.1. Conservation of Energy Metabolism

Most of the energy required for human activities in daily life are derived from sug-
ars [21]. The BG in the body is involved in oxidation reactions to produce adenosine
triphosphate (ATP); when sufficient oxygen is available, the BG is linearly related to the
energy produced by metabolism [22,23]. In addition to the external work done by the
body, the energy is specifically converted to heat energy, which is transmitted outwards
in different forms, such as heat radiation, evaporation, and convection [24]. The overall
process of human metabolism is shown in Figure 1. As the main source of energy, changes
in the BG concentration will inevitably cause changes in the human metabolism, which will
affect the changes to the physiological parameters, such as body temperature. Hence,
BG concentrations can be indirectly detected by measuring the relevant physiological
parameters of the human body and establishing a related mathematical model. However,
it is important to note that the body must remain at rest when using this method to measure
BG concentrations.
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We modified and optimized the metabolic heat conformation technique to establish
the law of conservation of energy metabolism using the following assumptions:

(a) The human body is a thermal balance system, and the amount of heat generated is
equal to the amount of heat dissipated.

(b) The main modes of heat dissipation from the body are thermal radiation, thermal con-
vection, and thermal evaporation.

(c) The external work done by the human body at rest is 0.
(d) The oxygen content in human blood is related to the HR and blood flow rate (BF).
(e) The metabolic heat production of the human body is related to the BG concentration,

oxygen saturation (SpO2), and HR.

Based on the above assumptions, we proposed a mathematical model for noninvasive
BG detection based on the conservation of energy metabolism, as shown in Equation (1):

BG = F(H, HR, SpO2, BF) (1)

where F represents a nonlinear function. The variables in this model are metabolic heat pro-
duction (H), HR, SpO2, and BF. All these variables can be measured from the human wrist.

2.2. Calculation of Metabolic Heat Production

We proposed a new approach to calculate heat production from metabolism. When the
human body is at rest, according to the law of conservation of energy metabolism:

H = M (2)

M = R + C + E (3)

where M represents the metabolic heat dissipation, R represents the heat transferred
through radiation, C represents the heat dissipated through convection, and E represents
the quantity of heat lost through evaporation. R can be obtained according to the modified
Planck’s law, as shown in Equation (4):

R = εσT4
r (4)

where ε represents the black body coefficient, which is equal to 1. The relative radiation
capacity of the human skin is close to the black body coefficient, so ε was set to an empirical
value of 0.96 in this work. σ is the Stephen–Boltzmann constant, equal to 5.67 × 10−8;
and Tr is the absolute radiation temperature value of the wrist.
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According to Newton’s law of cooling, C can be obtained from Equations (5) and (6):

C = hc(tw − ts) (5)

hc = 2.38(tw − ts)
0.25 (6)

where hc is the convective heat transfer coefficient of the wrist surface, tw is the temperature
of the human wrist, and ts is the ambient temperature around the body.

Water transforms from a liquid to vapor on the surface of the skin and in mucous
membranes, which consumes a large quantity of heat. Thus, E can be calculated from the
following formulas:

E = rm(P∗sk − Pa) (7)

P∗sk = 0.256tw − 3.37 (8)

Pa = He × P∗sk (9)

where r is the latent heat of vaporization of water, m is the permeability coefficient of
the skin on the wrist, P∗sk is the saturation and partial pressure of water vapor in air at
the wrist-skin temperature, Pa is the partial pressure of water vapor in air at the ambient
temperature and humidity, and He is the environmental humidity around the body.

According to Equations (2)–(9), the equation for calculating H is as follows:

H = εσT4
r + 2.38(tw − ts)

1.25 + 3.054(0.256tw − 3.37)(1− He) (10)

where the parameters in Equation (10) are the same as those in Equations (2)–(9).

2.3. Calculation of SpO2 and HR

Blood oxygen saturation is generally measured by the optical method [25], and the
difference in the absorption of near-infrared light of a specific wavelength band (usually be-
tween 660 and 940 nm) by the oxyhemoglobin and deoxyhemoglobin in blood is used
for detection. Since the wrist contains bones and other dense tissues, the commonly used
transmissive PPG sensor is not applicable, and only the reflective PPG sensor can be used.
According to the modified Lambert Beer’s law, SpO2 can be calculated as follows:

SpO2 =
CHbO2

CHbO2 + CHb
× 100% (11)

where CHbO2 and CHb respectively represent the concentrations of oxygenated and deoxy-
genated hemoglobin in the blood. Then:

r =
Kλred

1 CHbO2 + Kλred
2 CHb

Kλir
1 CHbO2 + Kλir

2 CHb
(12)

where Kλred
1 and Kλir

1 are the absorption coefficients of oxyhemoglobin; Kλred
1 and Kλir

1 are
the absorption coefficients of deoxyhemoglobin under red light and near-infrared light,
respectively; and r is the light intensity absorption ratio of the wrist for two different
wavelengths (660 and 880 nm).

Combining Equations (11) and (12), the SpO2 can be calculated as follows:

SpO2 =
Kλir

2 r− Kλred
2(

Kλir
2 − Kλir

1

)
r +

(
Kλred

1 − Kλred
2

) × 100% (13)
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According to Equation (13), as long as r can be calculated, the value of blood oxygen
saturation can be acquired. The calculation of HR is as shown in Equation (14):

HR =
Fs

(
Npeak − 1

)
xend − xstart

× 60 (14)

where Fs the sampling frequency, Npeak is the number of peaks of the PPG signal in a given
period of time, and xstart and xend are the coordinate positions of the first and last wave
crests, respectively.

3. System Composition

The proposed measurement system was mainly composed of three parts, namely the
multisensor integrated detection probe, a laser Doppler blood-flow meter, and a computer
for establishing the noninvasive BG detection algorithm. The working process of the
system is shown in Figure 2.
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Design of Multisensor Integrated Detection Probe

Herein, a multisensor integrated detection probe based on the conservation of energy
metabolism was designed to measure multiple physiological parameters. The probe in-
cluded a thermal radiation sensor, two temperature and humidity sensors, and a reflective
PPG sensor. The reflective PPG sensor could obtain two different PPG signals, which could
be decomposed into those from 660 nm red light and 880 nm near-infrared light. From the
sensing principle described above, Tr, tw, ts, He, and PPG could be measured; further, H,
SpO2, and HR could be calculated using these parameters. The detailed calculation meth-
ods are as noted in Section 2. The radiation sensor needed to be placed at a certain distance
from the wrist surface, and the temperature sensor had to be in contact with the skin surface.
The reflective PPG sensor was enclosed in a light-avoiding sponge to reduce interference
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from ambient light. The size of the detection probe was 70 mm × 40 mm × 18 mm. The 3D
structure of the probe is shown in Figure 3.
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Figure 4 shows the physical views of the multisensor integrated detection probe and
its 3D-printed equivalent device.
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4. Machine-Learning Models for BG Level Prediction

4.1. Multiple Polynomial Regression

A multiple polynomial regression of the fourth degree (MPR4) was used to predict
the BG concentration. To reduce collinearity, only the interaction terms were generated.
The kernel function of the polynomial regression is as follows:

y = a0 + a1x1 + a2x3 + a3x3 + a4x4 + a5x1x2 + a6x1x3 + a7x1x4
+ a8x2x3 + a9x2x4 + a10x3x4 + a11x1x2x3
+ a12x1x2x4 + a13x1x3x4 + a14x2x3x4
+ a15x1x2x3x4

(15)

In the above expression, H, SpO2, HR, and BF were defined as x1, x2, x3, and x4
predictors, respectively, whereas y was the predicted BG concentration. The overall diagram
of the MPR4 model is presented in Figure 5. Here, a1–a15 were the regression coefficients,
and a0 was a compensation parameter. The proposed MPR4 was a multivariate nonlinear
regression model, and a total of 15 customized interaction variables were defined based on
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the predictors. The MPR4 model is justifiable when the sample size is greater than three
times the number of variables.
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4.2. BPNN

Artificial neural networks are effective regression models that not only fit linear rela-
tionships, but also have good ability to describe nonlinear relationships [26,27]. The BPNN
is a type of feedforward neural network that is widely applied to modeling problems in
engineering. Thus, the BPNN was examined here for BG level prediction. The network
consisted of three layers; namely, the input, output, and hidden layers [28]. Tansig sigmoid
functions were used for the hidden layer, and the Levenberg–Marquardt back-propagation
algorithm was used to train the model. For artificial neural networks with only three layers,
Kolmogorov provided the equivalence between the numbers of neurons in the input and
hidden layers [29], as follows:

Nhid = 2Nin + 1 (16)

The overall representation of BPNN model is shown in Figure 6.
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4.3. Model Evaluation Indexes

The mean absolute relative difference (mARD), correlation coefficient (CORR), mean
absolute deviation (MAD), and root mean square error (RMSE) were calculated to evaluate
the performance of MPR4 and BPNN models. The formulas for computing the above
estimation indexes are as follows:

mARD =
1
n

n

∑
i=1

|Yi − Xi|
Xi

× 100% (17)
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CORR =
∑n

i=1
(
Xi − Xi

)(
Yi −Yi

)√
∑n

1
(
Xi − Xi

)2(Yi −Yi
)2

(18)

MAD =
1
n

n

∑
i=1

∣∣Yi −Yi
∣∣ (19)

RMSE =

√
∑n

i=1|(Xi −Yi)|2

n
(20)

where Xi and Yi are the reference BG value and the predicted BG value, respectively;
Xi and Yi are the means of measured and predicted BG concentrations, respectively; and n
is the number of samples.

5. Experiments and Results

5.1. Experimental

H, SpO2, and HR values were determined using the developed multisensor detection
probe. The extraction equipment for BF was obtained from a laser Doppler blood-flow
meter (type: PeriFlux System 5000), and the test equipment used to measure the reference
BG concentration was a finger-prick glucometer (type: Accu-Chek® Performa) along with
its electrochemical test strips.

The experimental procedure was as follows. Prior to obtaining the experimental
data, each volunteer was asked to clean their hands with warm water and soap to avoid
contamination. The site to be measured was then disinfected with 75% alcohol solution and
allowed to dry. At the same time, the multisensor detection probe and laser Doppler blood-
flow meter were switched on, and the glucometer test strips were set up. Every volunteer
was instructed to sit comfortably in a chair and wait for steady breathing while wearing
the multisensor integrated detection probe on their wrist. During data collection, the vol-
unteers remained quiet and maintained a fist with their left hand. To reduce individual
variability, the measurement position and contact pressure were kept as constant as possi-
ble. In addition, the entire experiment was conducted in an environment with comfortable
temperature and humidity. Subsequently, multiple physiological parameters were acquired
with the multisensor detection probe, and the corresponding BG concentration and BF
were obtained with the finger-prick glucometer and laser Doppler blood-flow meter.

In this study, 12 healthy volunteers were recruited for the experiments. The volunteers
were notified of the detailed experimental procedures and potential risks. The experiments
were conducted after the volunteers signed informed consent forms, and complied with
the ethical standards. The experimental time points were 30 min before and 30 min, 60 min,
90 min, and 120 min after meals. The entire experiment was conducted at three time periods:
breakfast, lunch, and dinner. The amount of data acquired and end of data measurement
varied depending on the individual conditions of each volunteer; some individuals were
involved in only one day of data collection. Ultimately, a total of 211 samples were collected.
The maximum and minimum values of the reference BG concentrations were 10 mmol/L
and 4.1 mmol/L, respectively.

5.2. Performance Comparisons of the Machine-Learning Models

The 211 samples were divided into two groups by the hold-out method, and 118 sam-
ples were randomly selected as the training set for model calibration, while the remaining
63 samples were used as the test set for model verification and performance evaluation.
The statistical analysis values of the proposed models are shown in Table 1. Compared with
the proposed MPR4 model, the proposed BPNN model had a better prediction performance.
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Table 1. The performance of the two models for statistical analysis.

Model mARD (%) CORR MAD (mmol/L)

MPR4 6.703 0.893 1.198

BPNN 5.453 0.936 1.084

5.3. Results

The Clarke error grid analysis is considered the clinical gold standard for evaluating
the accuracy of measured BG concentration, and was applied to assess the agreement
between the predicted and reference BG values [30]. The Clarke error grid analysis was
divided into five areas, in which the predicted BG values within area A indicated a deviation
of no more than 20% from the reference BG values; values in area B indicated those that
were clinically acceptable; and values in areas C, D, and E indicated possible results of
inappropriate processing. The Clarke error grid analysis was performed on the predicted
BG concentration results from the MPR4 and BPNN models, as shown in Figure 7 and
Table 2. In addition, the standard errors of the predicted (SEP) BG values based on the two
models are shown in Table 2. The above results showed that the BPNN model had a better
predictive performance than the MPR4 model.
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Table 2. Performance comparison of the MPR4 and BPNN models.

Regression
Model

RMSE
mmol/L

SEP
mmol/L

Clarke Error Grid Analysis (%)

A B C D E

MPR4 0.676 0.186 95.238 4.762 0.000 0.000 0.000
BPNN 0.505 0.159 98.413 1.587 0.000 0.000 0.000

6. Conclusions

This paper described the feasibility of noninvasive acquisition of BG concentration
from the human wrist based on conservation of energy metabolism. In addition, a method
to calculate the metabolic heat production in the human wrist was proposed. To facilitate
measurement of multiple physiological parameters from the human body, a multisensor
integrated detection probe was designed to be worn on the wrist. An efficient regression
model was established to measure BG concentration, and a group of 12 healthy volunteers
was recruited for the clinical trial. It was calculated that mARD and SEP were 5.453% and
0.159 mmol/L, respectively. The CORR between the referenced and predicted BG values
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was 0.936. Furthermore, about 98.413% of the predicted BG values were within area A of
the Clarke error grid. The proposed device and method have great potential for monitoring
BG concentration from the human wrist.

In the future, additional physiological data must be collected from the diabetic pop-
ulation to expand the detection range of BG concentrations using the proposed method,
and serum glucose should be used as the reference value to improve the accuracy of the
measurement. In addition, a device for detecting blood-flow velocity could be integrated
with the probe to realize a wearable noninvasive glucometer for real-time monitoring of
human BG concentrations.
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