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Abstract

The lack of understanding of stem cell differentiation and proliferation is a fundamental problem in developmental biology.
Although gene regulatory networks (GRNs) for stem cell differentiation have been partially identified, the nature of
differentiation dynamics and their regulation leading to robust development remain unclear. Herein, using a dynamical
system modeling cell approach, we performed simulations of the developmental process using all possible GRNs with a few
genes, and screened GRNs that could generate cell type diversity through cell-cell interactions. We found that model stem
cells that both proliferated and differentiated always exhibited oscillatory expression dynamics, and the differentiation
frequency of such stem cells was regulated, resulting in a robust number distribution. Moreover, we uncovered the
common regulatory motifs for stem cell differentiation, in which a combination of regulatory motifs that generated
oscillatory expression dynamics and stabilized distinct cellular states played an essential role. These findings may explain the
recently observed heterogeneity and dynamic equilibrium in cellular states of stem cells, and can be used to predict
regulatory networks responsible for differentiation in stem cell systems.
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Introduction

Differentiation of multipotent stem cells to lineage-specific cells

is one of the remarkable phenomena in developmental biology.

Stem cells are defined as cells with the potential to both proliferate

and differentiate into other cell types [1–4]. This ability of cells (or

their ‘‘stemness’’) is remarkable, since the cellular state must satisfy

2 conflicting properties: stability for proliferation and plasticity for

differentiation. Such stemness is successively lost as the process of

cell differentiation progresses during development. During this

process, each cell type is robust to noise and maintains a certain

protein expression pattern. In addition to this type of robustness,

the course of differentiation, i.e., the timing at which cell

differentiation progresses, is also rather robust while the

proportion regulation in the number of cell types is achieved,

i.e., the number ratio of each cell type falls within a certain range

after development [5–7].

More than a half century ago, Waddington proposed the

epigenetic landscape metaphor, in which the robustness of

differentiated cell types is represented as attraction to each valley

branched from the upstream [8]. In other words, cells are initially

located at a shallow valley in the upstream area of a landscape,

and throughout development, they fall onto one of the branched

valleys in the downstream area. This proposal provided an

eloquent metaphorical picture of differentiating cell robustness,

and was later mathematically expressed as dynamical systems of

gene/protein expression levels. In the mathematical model, each

cellular state is given by a set of gene/protein expressions, which is

influenced mutually through activation and repression processes.

Thus, the temporal evolution of each state is represented by a set

of rate equations on the various gene/protein expressions. With

time, the set of expressions reaches and stays within a certain

range, and this state is an attractor in the term of the dynamical

systems theory [9]. If there are several attractors in the expression

dynamics, each of them is set to correspond to a different cell type.

From this viewpoint, the differentiation process can be described

as the transition between the attractors. Indeed, this dynamical

systems representation for cell differentiation was previously put

forward by Goodwin [10], Kauffman [11,12], and others. More

recently, the existence of attractors has been examined experi-

mentally using specific gene expression dynamics governed by a

GRN [13–14].

Although the attractor picture of distinct cell types is important,

it is still insufficient to understand such robustness and loss of

differentiation potential. We summarize the remaining questions

that should be addressed here: (1) How are the 2 conflicting

functions in stem cells, i.e., proliferation and differentiation,

supported by gene/protein expression dynamics and characterized

by dynamical systems theory? Which characteristics of attractors

distinguish between multipotent and differentiated cellular states?
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(2) How is the irreversible loss of differentiation potential through

the course of development characterized by expression dynamics

and described in terms of high-dimensional phase-space dynam-

ics? (3) How are the course of development (timing of cell

differentiation) and the number distribution of each cell type

robust, regulated by cell-cell interactions? (4) What characteristics

of gene regulatory networks (GRNs) are necessary for maintaining

cell stemness? To address these questions, the relationship between

intracellular expression dynamics and the differentiation behavior

of stem cells should be further investigated.

We previously studied a class of models with intracellular

reaction dynamics and cell-cell interaction [15–17]. Although the

studies provided thought-provoking examples of the interaction-

based cell differentiation process, and possible dynamical-systems

concept for stemness was proposed [18], it remains still open if

simpler expression dynamics consisting of just a few genes provides

a model for stem-cell differentiation, and whether one can answer

the above four questions from the analysis of the model. In

particular, the relationship between the mechanisms of dynamic

differentiation and the topologies of the intracellular reaction

networks remained largely unknown.

In this study, we considered a model cell whose protein

expressions are regulated by GRN with 5 genes. We report the

results of extensive simulations of such cells under cell-cell

interaction. We examined the dynamics of more than a hundred

million GRNs by also including cell-cell interactions mediated by

diffusion of proteins. We selected those GRNs that revealed

differentiation through successive cell divisions. From the selected

networks, we found that modeled stem cells that can undergo both

proliferation and differentiation always exhibited oscillatory

expression dynamics whose synchrony among cells was lost.

Differentiation of the cells progressed with increasing cell number

under cell-cell interactions, whereas protein expressions in

differentiated cells were fixed either at a high or low level, and

the cells lost potential for further differentiation and only

proliferated. From the analysis of gene/protein expression

dynamics, we elucidated how the cell’s stemness is lost, and how

robustness in the developmental course and the number

distribution of cell types emerges as a natural consequence of this

interaction-based differentiation mechanism. Furthermore, we

unveiled network motifs allowing of stem cells. By combining

these network motifs, we also succeeded in designing GRNs with

hierarchical differentiation to several cell types. Some of our results

are consistent with recent experimental data for embryonic stem

(ES) cells, and we discuss possible candidates of feedback network

structures and transcription factors that may fit our theory, while

our proposed predictions should be further tested experimentally

for validation.

Results

Model setup
We studied protein expression dynamics represented by the

change in the concentration of proteinsp(i,t), for i~1,2, � � � ,k at

time t. The expression of these k genes mutually influenced

activation and inhibition. By starting from a single cell with given

expression dynamics, it was divided into 2 cells having almost the

same protein concentrationsp(i,t) at a certain time. These cells

interacted with each other mediated by diffusion of some protein

through the media, where we assumed only one of the k proteins is

diffusive. Hence, the change in protein concentration consisted of

intracellular gene/protein expression dynamics and intercellular

diffusion (if it is a diffusible one across cells). As the cells further

divided, each cell interacted with all other cells. The Methods

section contains further details of the model. Following the

increase in cell number, and consequently a change in cell-cell

interactions, we computed the time-course of p(i,t) over cells.

Subsequently, to check if the cells differentiated into distinct types,

we computed the average expression p(i,t) (where ( � � � ) indicates

the temporal average) and examined if different cells revealed

distinct values. Of note, when the concentration p(i,t) oscillates

over time, the oscillations sometimes lose synchrony, and the

phases of oscillations are scattered over cells, and thus p(i,t) varies

in cells at each time point. However, this does not indicate

differentiation, because the concentrations averaged over time do

not differ among the cells. Instead, the type of cell differentiation

we were interested in observing had to involve differences in the

average chemical compositions.

Classification of differentiation processes
We first performed preliminary simulations of the model with a

variety of GRNs, and examined if the cells indeed differentiated as

their number increased, by using a certain set of parameter values.

With the preliminary simulations on 5 genes with only one

diffusible protein, we found several examples in which cells indeed

differentiated as the number increased to 32. As for the path

number, we encountered examples that show differentiation if the

number is 10, whereas such examples were rare if the number is

smaller. Following these preliminary studies, we ran simulations of

all GRNs with 5 genes and 10 paths (a total of 145,269,760 GRNs

after removing degeneracy by symmetry while including all the

possibilities on the choice of diffusible protein; see the Methods for

further details). This choice of networks of 5-gene, 10-path, and 1-

diffusible protein is not the necessity, but computationally feasible

to cover the full search, while, as will be demonstrated below, they

include statistically sufficient examples that show differentiation

from a cell having stemness. Here we did not exclude such

networks that some nodes (genes) are disconnected from others.

These include networks in which 3-gene networks are disconnect-

ed or just drove the other two genes. Indeed, the above full search

of all 5-gene 10-path networks covers all possible 3-gene networks.

Hence our search is also useful to obtain simple network structures

that show stemness. We subsequently filtered out those networks in

which cells took multiple distinct states when their number was 32

(see Methods).

In summary, we found a total of 15,145 networks that showed

differentiation. The most frequent behaviors of these networks

belong to the Turing type, which is described below. (See Fig. 1 for

typical examples of the time-series of the differentiation course.)

(1) Turing type (Fig. 1(a) and (b)). The initial cell state that

existed in the presence of a single cell was destabilized upon the

cell-cell interaction that occurred when the cells divided into two.

The cellular state of the single cell was unstable upon cell-cell

interaction, and it never reappeared after the cell number

increased. This differentiation is understood straightforwardly

upon consideration of the classic mechanism for the Turing

pattern [19] (also see [20]). A common network was observed in

these examples, as shown in Fig. 1(a). In these examples, there

existed a pair of proteins that satisfied the following relationship:

one of the proteins (termed as the activator) activated the

expression of itself and the other protein, while the other protein

(termed as the inhibitor) repressed the expression of itself and the

activator. The inhibitor protein was diffusive. Now consider 2

divided cells whose concentrations of these proteins slightly

differed. The cell with a higher (lower) concentration in the

activator further increased (decreased) its concentration, according

to the expression dynamics. This increase (decrease) was

compensated by the increase (decrease) in the inhibitor, if there

Oscillatory Expression Dynamics Endows Stemness
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was no cell-cell interaction (i.e., there was no diffusion of the

inhibitor over cells). However, in the presence of the diffusion, the

inhibitor concentrations of the 2 cells were equalized, which

prevented the compensation from occurring. Subsequently, the

cell with a higher concentration of activator further increased its

concentration, and vice versa. Thus, the difference in the activator

concentrations between the 2 cells was large enough to reach 2

distinct states, and the concentrations were subsequently stabilized.

Figure 1. Examples of the network structure and gene expression dynamics of cells that underwent differentiation. (a1)2(d1) Gene
regulatory networks. The black arrows with flat-heads and the red arrows indicate repression and activation of gene expression, respectively. The
diffusible protein is represented as the green node. In (a1) and (b1), the genes 0,1,2 influence on 3 and 4, but the latter genes do not influence 0,1,2.
The expressions of 0,1,2 give just a constant inputs to 3 and 4. Hence these networks are reduced to just a 2-gene system consisting only of 3 and 4.
Similarly the network in (c1), the gene 0 gives a just constant input, and the network is reduced to a 4-gene system without it. (a2)2(d2) The overlaid
time-series of the expression of a given protein is plotted for all cells (each with a different color). At every 500 time-steps (indicated by vertical lines),
the cells divided. The colors correspond to different cells. In (a2) and (b2), after differentiation, half of cells take one identical value of concentration,
and the other half take another identical value. Since the concentrations of all cells are overlaid, we could see only one color line for each type in this
case. (a1, a2) Case with the Turing mechanism including differentiation from a fixed point to 2 fixed points. The protein concentration pl (3,t) is
plotted for all cells l (each represented with a different color). (b1, b2) Turing mechanism including oscillatory expression of 2 fixed expression levels.
The protein concentration pl (3,t) is plotted. (c1, c2) Multiple differentiations from stem-type cells via desynchronization in oscillation and switching
behavior. After the first division at around t~600, differentiation occurred. Later at around t~2700 (when there were 16 cells), another differentiation
from the stem-type cells occurred. The protein concentration pl(2,t) is plotted for all cells (each represented with a different color). (d1, d2) Multiple
differentiations from stem-type cells with irregular (chaotic) oscillation. After the first divisions of cells, the oscillations were not synchronized over
cells, and their concentrations were scattered at each time. At around t~1600, the first differentiation occurred, and another differentiation occurred
again around t~3400 (when there were 64 cells). The protein concentration pl(2,t) is plotted.
doi:10.1371/journal.pone.0027232.g001
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Indeed, this mechanism and the network structure are those

proposed as the Turing pattern.

This activator-inhibitor network structure is simple, such that a

large number of networks had this structure in its core portion.

Among the networks of 5 genes and 10 paths, we found 3794

networks that belonged to this class.

Furthermore, this Turing mechanism could be combined with

oscillatory dynamics. In a network that produced oscillation in

protein expression as a single cell, when the cell divided into 2

cells, one of the resultant cells had a fixed higher concentration of

the activator protein, whereas the other cell had a lower

concentration (see Fig. 1(b)). A total of 8875 networks exhibited

this behavior.

However, these examples, albeit commonly observed, did not

satisfy the postulate for a stem cell, which must be able to both

proliferate and differentiate. Indeed, the initial cell type appeared

only at an initial stage with only 1 (or a few) cell(s). Such a cell type

differentiated into 2 types after the division and subsequently

disappeared. In contrast, the 2 cell types that appeared only

proliferated, but failed to differentiate. Hence, at any stage, there

was no cell type that could both proliferate and differentiate.

There remained 2476 networks in which the oscillation

remained after cell division. In fact, among such networks, there

were examples that satisfy the requisite for stem cells. (See Fig. 2

for the Venn diagram on the classifications of GRNs with regards

to the differentiation and oscillation).

(2) Differentiation through sustained oscillatory

dynamics (Fig. 1(c) and (d)). To select such networks in

which cells can both proliferate and differentiate, we further

filtered such networks that revealed plural differentiations in the

same direction repeatedly throughout cell division to up to 256

cells. Here, by the restriction on this ‘unidirectional’

differentiation, we discarded the cases with type 1 R type 2 and

type 2 R type 1 back again, and included only the cases with

repetition of type 1 R type 2 (see Methods). Upon this selection,

we identified 231 networks. (This list of networks appears in Fig.

S1.) These networks provided a system in which differentiation

from the stem cell type existed even after cell divisions.

For these 231 networks, oscillatory protein expression existed at

the initial stage. As the cell number increased, the synchrony of the

oscillations of the cells was lost. The phases of oscillation were

scattered across the cells. (This is understood in the context of the

theory of the coupled dynamical system [21].) Upon the cell-cell

interactions, some expression levels were up-regulated and down-

regulated aperiodically, as shown in the lower group in Fig. 1(c2)

for t.1200, and in Fig. 1(d2). Expression of some proteins reached

a high level temporarily but was subsequently suppressed back to a

low level. Now, differences in expression levels between cells were

no longer restricted to the phase of oscillations, but the absolute

expression levels, i.e., time-averaged concentrations were differ-

entiated and this difference was amplified. Some cells deviated

from the original attractor (see the events at t,2650 in Fig. 1(c2)

and those at t ,1600 and ,3450 in Fig. 1(d2)).

This process of differentiation, plotted in the state space {p(i)}, is

displayed in Fig. 3, as well as in Movie S1. With the cell-cell

interactions due to diffusion of a protein over cells, in addition to

Figure 2. Venn diagram on the classification of GRNs. The blue circle is a group in which a Turing-type switch mechanism occurred by cell-cell
interaction, whereas the pink circle indicated the group of GRNs in which protein concentrations showed temporal oscillation. The former group
showed at least one differentiation event. The oscillation group is then classified into with and without sustained oscillations, and the latter is
classified by whether the oscillations remain desynchronized over cells. The GRNs that showed repetitive differentiation, i.e., having cells with
stemness, were given by the intersection of the group with sustained desynchronized oscillations and the group possessing Turing-type switch
mechanism (displayed by red color).
doi:10.1371/journal.pone.0027232.g002
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the positive feedback process within the GRN, the switched states

were stabilized without returning to the original oscillation again.

For such cells, the oscillation amplitude was drastically reduced.

By comparing two types of cells after they reached steady

behaviors (t.1600) in Fig. 1(c2) and (d2), the amplitude of the

oscillation of the differentiated type was much smaller (about 1/10

or less) than the other (see also [15,22,23]). Their expression

pattern was fixed and maintained. Hence, differentiation from

cells with oscillatory dynamics to cells with fixed expression states

progressed. The oscillation of the other, original cell type was

sustained by keeping a large amplitude as shown in Fig. 1(c2) and

(d2).

This differentiation was unidirectional, and only transitions

from cells with the original type to the other cell type with a fixed

expression state occurred. Cells with the larger-amplitude

oscillation either proliferated or differentiated after their division.

Hence, this case met the postulate for a stem cell. In contrast, the

other cell type with a fixed state proliferated only, implying the loss

of differentiation potential.

At the event of differentiation, oscillations were desynchronized

over cells, and the oscillation pattern was not periodic but irregular

(as known as chaotic dynamics). For most networks we examined

here, such irregular (aperiodic) oscillation did not exist as single-

cell dynamics, but instead appeared only after cell division

occurred and oscillation lost synchrony as a result of cell-cell

interactions. However, for a few networks, irregular oscillation in

protein expression dynamics existed for the initial cell type as an

attractor of a single cell (see Fig. 1(d)).

The classification of GRNs is summarized as follows (see Fig. 2):

First, there are two conditions, one for (I) the switch by Turing-

type mechanism due to cell-cell interaction (blue circle) and the

other for (II) oscillatory expression dynamics (pink circle). The

former case showed at least one differentiation event. The GRNs

that belong to only the former case (I) corresponded to the case of

Fig. 1(a). Then, we focused on GRNs that satisfy both the

conditions (intersection of I and II). This group is classified by

whether the oscillation was sustained or not. If not, such network

corresponded to the case of Fig. 1(b). Now, the group of sustained

oscillation is classified if the oscillations remained desynchronized

over cells or not, i.e., whether the phases of oscillations were

scattered over cells or synchronized. If synchronized, such GRN

lost the potentiality for differentiation after a differentiation event,

and could not show repeated differentiations. Finally, those GRNs

with sustained desynchronized oscillation with the Turing-type

switch showed repeated differentiations, from a cell type

preserving the potentiality both for proliferation and differentia-

tion.

Thus the condition for expression dynamics to have repetitive

differentiations is given as follows: (1) Oscillations were sustained

after cell divisions; (2) Desynchronization of oscillations over cells

was sustained; (3) Due to the cell-cell interaction, Turing-type

mechanism worked to suppress the oscillation amplitude for some

cells; By (1) and (2), the potentiality for differentiation was

preserved. By (3), the cells differentiated into two types, one

sustaining a large-amplitude oscillation, the other with only tiny

oscillation or without it. The original cell type preserved

desynchronized large-amplitude oscillation, and the differentiation

occurred repeatedly from it with the increase in cell number.

Of note, sustained oscillation with desynchronization was

necessary but not sufficient. Indeed, we studied GRNs in which

Figure 3. State differentiation represented by orbits in the state-space of 3 protein concentrations. (a) The time evolution of
pl (2,t),pl(3,t),pl(4,t)
� �

is plotted, for the gene regulatory network (GRN) shown in Fig. 1(c). Plotted over 0,t,100 (a1; single cell), 500,t,600 (a2; 2
cells (l~0,1) with different colors), and 2600,t,2700 (a3; 6 from 32 cells (l~0,1,2,3,6,22) with different colors). Differentiation from the original
attractor (right part) to a new state (left) progressed. (b) The time evolution of pl (0,t),pl(2,t),pl(4,t)

� �
for the GRN in Fig. 1(d). Plotted over 0,t,100

(b1, single cell), 3400,t,3500 (b2; 8 from 64 cells(l~0,1,3,4,6,20,22,41) plotted with different colors). Differentiation from the original attractor with
aperiodic oscillation (left) to a new state (right) progressed.
doi:10.1371/journal.pone.0027232.g003
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aperiodic (chaotic) oscillation in protein expression (which

amplifies differences in cells) existed. Then, phases of oscillation

were scattered over cells, but the expression levels were identical

among cells in terms of the temporal averages. Thus, differenti-

ation in composition of proteins did not necessarily follow (see Fig.

S2 for such an example).

Dynamical systems mechanism
The differentiation process described above can be understood

as a change in the flow structure in dynamical systems due to the

change in the interaction term (see Fig. S3(a)). Up to some cell

number, the initial oscillation state was an attractor, even upon

interaction with other cells of the same type. As the cell number

increased, the interaction term generated another stable state.

With the interaction term, the orbit crossed over the basin of

attraction to itself and was forced to another state, resulting in

differentiation to a novel state. Subsequently, under a sufficient

number of differentiated cells, the interaction term strengthened

the attraction to the initial oscillatory state, such that the orbit no

longer crossed the barrier of the basin of attraction to itself, which

ultimately led to proliferation (see Fig. S3(a)). When the number of

cells from the original oscillatory attractor further increased, it

generated a flow to the outside of the basin of attraction, resulting

in a switch to other states. In this manner, both proliferation and

differentiation coexisted in the interacting cells.

Now, the cell ‘‘stemness’’ was represented by the sustained

desynchronized oscillation in the expression dynamics. As long as

the original large-amplitude oscillation with instability was

sustained, the differentiation potential remained under the

presence of Turing-type switch mechanism. Hence, with the

further increase in the existing cell number, stem cell differenti-

ation continued. In some cases, such oscillation was lost after some

cell divisions, and consequently differentiation no longer occurred.

As for the differentiated state that lost such cell stemness, there

were 2 classes. In most cases (188 networks), such a state did not

involve an attractor as a single-cell state. When isolated as a single

cell, the state was no longer stable. Moreover, it was stabilized only

by cell-cell interaction. However, for the remaining 43 networks

among the 231 networks we screened, the differentiated state also

involved an attractor with single-cell dynamics. For such networks,

the single-cell expression dynamics had 2 attractors: 1 for the stem

cell with sustained oscillation that had a large basin of attraction,

and the other for the differentiated state that lost such oscillation.

For most initial conditions, the stem-cell attractor was reached,

whereas the other ‘‘differentiated’’ attractor had a particularly

small basin of attraction and was not easily reached with single-cell

dynamics. When starting from a cell with the oscillation attractor

and as the cell number increased beyond some value, cells could

not remain at the original oscillation attractor due to the cell-cell

interaction. Subsequently, some cells differentiated to the other

cell type, which remained stable.

Robustness in the cell number ratio
The change in flow structure described above naturally results

in the regulation of the differentiation frequency in forming stem

cells depending on the number and states of the surrounding cells,

in addition to the robustness in the cell type number distribution

[16,24]. To investigate this point, we carried out simulations of the

present model with a fixed total cell number at N (instead of the

simulation starting from a single cell), and set the initial cell

numbers of stem and differentiated cells to N0 and N2N0,

respectively. By varying N0, we examined whether each cellular

state was stable in the presence of cell-cell interactions at each cell

type distribution (see also Fig. S3(b)). In the examples we studied

here, there was a certain range of N0 at which both of the 2 types

coexisted stably. This range is indicated as the bar at the right side

of Fig. 4(a), for the GRN of Fig. 1(c). For example, the states N0 = 0

and N0 = N were unstable, and the stem cells with oscillatory

dynamics coexisted with the differentiated cells only within the

range 0 ,Nl # N0 # Nu,N, where the upper and lower limits, Nu

and Nl, were dependent on the network and parameters of the

protein expression dynamics. This range [Nu, Nl], as shown in

Fig. 4(a) was much smaller than [0,N]. This result implies that the

cell number regulation works in the model. When started from a

single cell, the number ratio of each cell type fell on a much

narrower range than the above range Nl # N0 # Nu, even if the

system was simulated under a large noise level at each cell division

or during expression dynamics (see Fig. 4(a)). The timing of the

differentiation from the initial cell type was also stable in each

course, even though we simulated the developmental course with a

large amount of noise. The developmental time-course of

differentiation was rather stable. This result in Fig. 4(a) corre-

sponded to the case in which the differentiated cell type was not a

single-cell attractor. If the differentiated cell type was also an

attractor of single-cell dynamics, then Nl = 0. However, for

development from a single cell in most initial conditions, the

number ratio after development fell within a small range (data not

shown).

Network structure: Combination of ‘‘oscillation modules’’
and ‘‘switch module’’

The common expression dynamics in the stem cells (i.e.,

oscillation maintaining their stemness) suggested common char-

acteristics in the structure of GRNs in the stem cells. To unveil

such common characteristics, we numerically examined the

frequency of three-node network motifs [25] that appeared in

the selected 231 networks. Ignoring the direct self-feedback for the

moment, there were a total of 132 motifs with 3 nodes that had all

varieties of positive and negative signs. Some network motifs

appeared much more frequently in the selected 231 networks than

those expected from random networks of networks with 5 genes

and 10 paths. In Fig. 5, we presented 8 such three-gene network

motifs whose frequency was 10 times more than that of the

random networks, and was larger than 5 (to discard rare cases).

Among these 8 motifs, several types of negative feedback loops

frequently appeared. The first type involved a three-gene negative

feedback loop in which gene 1 repressed gene 2, gene 2 repressed

gene 3, and gene 3 repressed gene 1, which is denoted by (2 2 2);

this type of a loop with 3 successively suppressing genes is also

called a repressilator (R, in short) [26]. This type existed in

Fig. 5(a)(b)(f). The second type was a two-gene negative feedback

loop in which gene 1 activated gene 2 and gene 2 repressed gene 1,

which is denoted by (+ 2); this type is also termed a positive-

negative loop (pn loop). This type appeared three times in Fig. 5(a),

twice in Fig. 5(b)(d), and once for the rest 5 motifs in Fig. 5. The

third type was a three-gene loop in which gene 1 activated gene 2,

gene 2 activated gene 3, and gene 3 repressed gene 1, which was

termed as a ppn (+ + 2) loop. This type existed in Fig. 5(c)(g)(h).

Furthermore, all 8 motifs included multiple negative loops.

Three motifs included a combination of R and pn loop(s), and 4

included sequential pn loops (gene 1 repressed gene 2, gene 2

repressed gene 3, gene 3 activated 2, and gene 2 activated gene 1).

Among the latter 4 motifs, 2 also included R and belonged to the

first type of motif. The other 3 motifs included both a pn loop and

a ppn (+ + 2) loop. Hence, all of these three-gene motifs had

plural negative feedback loops, suggesting that the combination of

negative feedback loops was rather common in networks that

generated stem cells.

Oscillatory Expression Dynamics Endows Stemness
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To examine the hypothesis that a combination of negative

loops is relevant to generation of stem-cell dynamics, we counted

the networks that included (i) R and pn loops, (ii) plural pn loops,

(iii) R and ppn loops, or (iv) pn and ppn loops. The frequencies of

these types were 92, 122, 37, and 112, respectively, among the

231 networks, which were much larger than the expected

numbers for the random networks, which were 16.9, 35.3, 6.3,

and 46.2, respectively (p,1028, determined by a randomization

test).

By analyzing common motifs in the GRNs that generate stem

cell dynamics, we found that they generally have 2 ‘‘modules’’ with

different roles, as described below.

(1) Negative feedback loop for oscillation module. The

fact that the GRNs of stem cells generally had plural negative

loops matches well with the dynamical systems mechanism

discussed in the last section. As mentioned, oscillation in protein

expression was generated by a negative feedback loop. The

simplest negative loop in the present model consists of the above-

Figure 4. Ratio of the number of the differentiated cells to the total cell number, N
0
=N . The horizontal axis k denotes the cell division

event, and the total number of cells N is given by 2k . The temporal course of the fraction is plotted over 10 runs, with each represented by a different
color, upon inclusion of a large amount of noise s~0:1 at each division. The bar at the right end indicates the range of the fraction that stably exists,
which was computed at N~64 by changing the initial number of 1 cell type. (a) Plot for the GRN in Fig. 1(c). (b) Plot for a network that originally
produced 2 attractors that were selected by the simulation with a large amount of noise (see the Discussion section). In this case, any cell type
number distribution was allowed.
doi:10.1371/journal.pone.0027232.g004

Figure 5. Eight frequent network motifs consisting of 3 genes. The values represent the frequencies of the motif appearances among the
filtered 231 networks. The values in parentheses are the ratios of the actual appearance values to the corresponding expected values in random
networks. Motifs in (a), (b), and (f) include a repressilator. i.e., a loop of 3 successive inhibitions. Motifs in (a), (b), and (d) include more than 2 positive-
negative loops, i.e., 2 genes that activate and inhibit each other.
doi:10.1371/journal.pone.0027232.g005
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mentioned pn loop. The GRN of this two-gene loop alone does

not generate oscillation, but adding an activating regulatory path

to the loop to activate the genes, oscillation is generated. In

addition, combining this negative loop successively also generated

oscillatory protein expression. Another typical gene network that

produced oscillation is the R. Due to its multiple negative feedback

loops, aperiodic oscillation could be generated. Recall that a

simple oscillation was insufficient to lead to the instability

necessary for differentiation. However, the existence of multiple

negative feedbacks can produce several oscillation components,

which makes reaching instability easier.

(2) Switch module. For a switch to a differentiated state to

occur, both mechanisms were necessary to amplify a tiny

difference between cellular states by positive feedback and to fix

the difference in cellular states. There are a variety of possibilities

for introducing such positive feedback, but a simple module is

provided by the Turing mechanism, in which both positive and

negative self-feedback were added to the pn loop, as shown in

Fig. 1, where the protein from the gene with negative self-feedback

was diffusive. In fact, a combination of a series of two-gene

negative feedback (+ 2) loops with a positive self-feedback, as

shown in Fig. 5, was frequently observed in networks that

generated stem cells. This combination apparently amplified and

fixed the cellular state difference.

The relevance of oscillation and the switch modules explains

why the combination of negative loops was dominant. That is,

they were necessary to provide oscillations. Furthermore, multiple

negative loops allowed for complex oscillations that led to the

instability required for differentiation. The pn loop, in conjunction

with the self-feedbacks, offered a switch module. There were only

19 networks among the 231 that did not include multiple R, pn,

and ppn motifs. Most of these exceptional networks included

negative feedbacks of more genes, such as a four-gene loop

consisting of (+ 2 2 2) or (+ + + 2). Furthermore, with the

appropriate combination of self-feedbacks, both switching and

oscillation modules were produced in these cases.

Of note, the dominant three-gene motifs often consisted of a

series of two-gene negative loops and a R. Adding some self-

feedback to these motifs produced GRNs that generated stem-cell

expression dynamics. Among all possible GRNs within the 5 genes

that we inspected, we found 4 networks (Fig. 6) that could generate

the dynamic differentiation process discussed above. Two

networks ((a), (d)) among these 4 networks consisted of a R and

Turing-type motifs. The other 2 networks ((b), (c)) consisted of a

series of Turing-type motifs only. All of these networks showed

sustained oscillations with instability for switching in protein

expression as the cell number increased, and led to progression of

the differentiation from stem cells. In particular, the expression

dynamics of stem cells shown in (b) and (d) maintained irregular

(chaotic) oscillations, and preserved the potentiality for differen-

tiation even after two differentiations. (See Fig. S4 for the

differentiation dynamics provided by the GRN shown in Fig. 6(d).)

Relevance of positive and negative feedback loops to robust and

tunable biological oscillation was noted at a single-cell level [27],

while their role to flexible biological switches was discussed by

applying bifurcation analysis [28]. In our case, these feedback

loops work as a generator for complex intra-cellular oscillation,

and are also essential to the switch under the existence of cell-to-

cell interaction.

Designing GRNs that provide hierarchical differentiation
from stem cells

Following the logic presented in the last subsection, we could

indeed construct networks that provide hierarchical/multiple

differentiation from stem cells merely by combining the network

modules for oscillatory dynamics with both negative feedback

loops and a switching module of the Turing mechanism. Thus, we

further adopted a GRN module that exhibited chaotic oscillation,

Figure 6. Four gene regulatory networks consisting of 3 genes detected from our extensive simulations of five-gene networks. Two
of the five genes were either detached (that is ‘0’ not shown in (b)), only received input from others, or only gave input(s). In the last case, the genes
only modify the threshold parameter(s) of other gene(s). The rest of the 3 genes (1, 2, and 3 for (a) and 2, 3, and 4 for (b)2(d)) that were relevant to
the dynamics are enclosed by dotted ellipses. (a)(d) The network includes a repressilator, a loop of 3 successive inhibitions, and a Turing-type
activator-inhibitor loop. (b)(c) The network includes 2 positive-negative loops, one of which forms a Turing-type activator-inhibitor relationship
together with self-feedbacks.
doi:10.1371/journal.pone.0027232.g006
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in which the small differences in protein concentrations between

cells was amplified.

There are several choices to be made for each module, and

accordingly there are various ways to construct GRNs that

generate complex differentiation from stem cells. As shown in

Fig. 7(a) and (b), we choose to use an oscillation motif with 5 genes

(genes 0–4) to produce aperiodic oscillation, and the Turing-type

motif with 3 genes (genes 5–7) to make a switch with some delay.

In fact, using a GRN that consisted of the 2 modules, we

confirmed differentiation from stem cells with the increasing cell

number.

Next, we combined a single oscillation module with several

switch modules of the Turing type. The oscillation module was

chosen to show chaotic dynamics (irregular oscillation). First, by

adding switch modules in parallel (see Fig. 7(a) and Movie S2),

differentiation with multiple branchings as either SRA or SRB

progressed with the increasing cell number. Each differentiated

cell type corresponded to an ‘‘on’’ state with the expression of the

protein at each switch module. Here, we added a path in the GRN

such that 1 module (A in Fig. 7(a1)) inhibited the expression of the

other module (B). Thus, the genes in module B were expressed

only if the expression of module A was suppressed, whereas the

initial S state showed temporal changes between the ‘‘on’’ and

‘‘off’’ states of these expressions. The temporal variation in the

expression patterns of the initial S state was large, and ranged over

states close to those of types A and B.

Next, by combining the switch modules in sequence, hierarchi-

cal differentiation of?SRA/ARA1 was generated (see Fig. 7(b)

and Movie S3). (Of note, we added a ‘‘stopper’’ in the network so

that the genes in part A1 (genes 9–11) were not expressed by

Figure 7. Design of the networks with multiple or hierarchical differentiations. (a1) Gene regulatory networks (GRNs) from a stem cell (S) to
2 types A and B. (a2) Differentiation of cells represented by orbits in the state-space of 3 protein concentrations. pl (2,t),pl (5,t),pl(9,t)

� �
is plotted for 6

cells over 450vtv600. (b1) GRN to generate hierarchical differentiation from the stem cell (S) to cell type A, and subsequently to type A1. (b2)
Differentiation of the stem cell (S) to the cell type A, represented by orbits in the state-space of 3 protein concentrations pl(2,t),pl(5,t),pl (9,t)

� �
is

plotted for 6 cells over 450vtv600. Differentiation of the original attractor (left) to a new state (right) progressed. (b3) Differentiation of A to A1
represented by the orbits pl(2,t),pl (5,t),pl (9,t)

� �
is plotted for 6 cells over 750vtv800. Throughout Fig. 6, tdiv was set to 160, instead of 500, to allow

observation of several differentiations within a shorter time span. The diffusion constant Di is set to 0.125.
doi:10.1371/journal.pone.0027232.g007
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themselves, but were instead expressed only if the genes in part A

were expressed. This ‘‘stopper’’ (genes 11 and 13) inhibited the

activation of gene 11 (with some delay) unless gene 13 was

suppressed by the expression of part A (gene 7 via gene 8).) Using

this approach, the initial cell type had the potentiality to produce

the other 2 cell types. The temporal variation in the expression

pattern decreased as the differentiation of SRARA1 progressed.

The initial cell type showed large-scale changes in the expression

pattern, covering those close to those of cell types A and A1.

However, the type A cells showed a change limited only between

the states close to those of the cell types A and A1, and the

expression of state A1 was almost fixed (see Fig. 7(b2) and (b3)).

The hierarchy in the differentiation of cell types corresponded to

the hierarchy in the range of the phase space within which the

expression of each type could vary.

Using these modules, one can generate more complex

differentiation as in the hematopoietic system, with both multiple

branching and hierarchical differentiation. An example of the

differentiation process SRA,B/ARA1/ARA2/A2RA3/A3RA4/

BRB1 is given in both Fig. S5 and Movie S4. In principle,

complex hierarchical differentiations are designed in the same

way.

Discussion

Comparison with an alternative view: Noise-induced
differentiation

In this study, we presented the dynamic differentiation process

of stem cells, in which the transition between cellular attractors is

caused by dynamical instability arising from cell-cell interactions.

According to our theory, expressions of some proteins oscillate in

stem cells. As cells divide the synchrony of oscillations across cells

are lost. With the cell-cell interaction, then, some cells no longer

keep the oscillation pattern and switch to a different state which

loses the oscillatory expression. The differentiated cell type(s) and

the original stem cell are mutually stabilized by cell-cell

interaction, as long as the number ratio of each cell type is within

a certain range, and thus the ratio is regulated (see Fig. 8 for

schematic representation of this scenario).

An alternative mechanism for the switch of cellular states is

noise in protein expression, which has been reported previously

[29]. Due to stochasticity either by molecular fluctuation or

extrinsic noise, the protein concentrations of cells are modified,

which may perturb expression levels to enter a basin of different

attractors. When such a switch occurs, it is interpreted as cell

differentiation; in fact, some experiments have shown that noise in

protein expression plays an essential role in the differentiation

process of Bacillus subtilis [30]. However, there are some drawbacks

in this scenario of noise-driven differentiation. First, in noise-

driven switching, any number distributions of the 2 cell types are

realized. We found that the number ratio of each type of cells was

highly variable in each run of the developmental courses (Fig. 4(b)).

This is in strong contrast with our interaction-based differentia-

tion, where the ratio after development was sharply determined. In

the scenario we discussed, even after introducing a larger amount

of noise, this ratio fell within a narrow range, as shown in Fig. 4(a).

(By suitably introducing cell-cell interaction into multiple-attractor

dynamics, robustness in cell-number ratio would be possible.)

Another drawback in the stochastic switching scenario is that

the differentiation process itself can vary at each developmental

course because the process is governed solely by noise. The timing

(generation) for cell differentiation was dependent on each case

(Fig. 4(b)). In contrast, in our interaction-based scenario, the

differentiation consistently started when the cell number reached

some value. This value was dependent on only the GRN and

parameters governing the expression. That is, once the network

and parameters are given, the model is quite robust against added

noise during development. Thus, the differentiation course is

noise-tolerant.

The third drawback of the stochastic switching scenario is the

necessity to tune the noise amplitude in order to achieve

irreversible differentiation from multipotent stem cells. In general,

noise can introduce transitions in both directions between the 2

cell types 1 and 2. To differentiate the transition rates from type 1

to type 2, and vice versa, the stability of the 2 attractors should be

substantially different. However, if the noise amplitude is large,

then the 2 transition rates are quite similar, and there is no

distinction between stem and differentiated cell types. By

Figure 8. Schematic representation of our differentiation scenario from a stem cell, represented by dynamical systems of the state
space of protein expressions. (a) and (b) represent before and after differentiations, respectively.
doi:10.1371/journal.pone.0027232.g008
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decreasing the noise level, the rates of the 2 transitions can become

substantially different if the stability of the 2 attractors is

substantially different. However, if the noise magnitude is too

low, the transition itself can hardly occur. Thus, it is necessary to

tune the noise level. Furthermore, finer tuning of the model is

necessary to make hierarchical and/or plural differentiations. In

contrast, the design in the last section did not require fine-tuning of

the parameter values.

According to our hypothesis, sustained irregular oscillation in

expression dynamics spontaneously generates the transitions from

stem cells via cell-cell interactions, which also leads to the

robustness of the cell type population ratios.

Potential experimental verification of our hypothesis
According to our theory, there are basic characteristics of stem

cells that either have been or can be confirmed experimentally.

Some examples of these characteristics are as follows:

(1) Larger cell-cell variation. According to our theory,

expression of some proteins exhibits a large temporal variation

with a rather slow time scale, such that the concentrations of

some proteins significantly differ in cells at each snapshot in time.

This large variation is revealed as heterogeneity in ES cells, as

demonstrated by recent advances in single-cell measurements.

Such previous studies have revealed that the expression patterns

of pluripotent or multipotent stem cells are heterologous, and that

a dynamic interchange exists between subpopulations. For

example, Toyooka et al. found that the expression level of

Rex1, which is widely used as a marker of pluripotency and is

strongly expressed in the inner cell mass, exhibited heterogeneous

expression levels in Oct3/4-expressing ES cells, and Rex1-

positive and -negative ES cell subpopulations were in a state of

dynamic equilibrium [31]. Similar heterogeneity of expression

levels and a dynamic equilibrium between subpopulations have

also been observed for Nanog [32] and Stella [33] in ES cell

populations, and for Sca-1 [14] in hematopoietic progenitor cells.

These findings indicate that the transitory dynamics observed in

stem cell populations reflect the course of development in vivo,

and thus they play an essential role in the cell fate determination

during developmental dynamics.

(2) Temporal variation in concentrations of some

proteins. The source of heterogeneity in the cellular states

and the driving force of transitory dynamics observed in stem cell

systems still remain unclear. One possible mechanism responsible

for both the heterogeneity and the transition is the noise in the

expression dynamics [29]. Fluctuations in mRNA and protein

numbers can drive transitions between cellular states, which may

result in the observed heterogeneity and regulation of the

differentiation frequency. However, the stochastic switching

(noise-driven) mechanism for cellular differentiation has several

drawbacks, as discussed above.

An alternative potential mechanism for the observed heteroge-

neity is oscillatory expression dynamics that we proposed in this

study. Indeed, some recent studies support the existence of

temporal changes over different expression patterns or oscillatory

expression dynamics in stem cells. For example, Huang and his

colleagues showed that, in hematopoietic progenitor cells, the

expression dynamics exhibited transitions over quasi-stable states,

which suggests the existence of slow dynamics in the GRN [14].

Furthermore, Kobayashi and Kageyama recently used single-cell

real-time imaging to show temporal oscillation in the Hes1

expression level of ES cells, and found that the phase of this Hes1

oscillation controlled the differentiation fate choice toward neural

and mesodermal differentiations [34]. Furthermore, the observa-

tion of oscillations in Hes1-downstream genes Dll1 and Gadd45 g

suggests that the oscillations in these expression levels propagate

through gene network regulation of differentiations from ES cells.

To test our hypothesis experimentally, it is crucial to further

investigate the time-course of the protein expression levels at the

single-cell level. By analyzing the time-series of single-cell-level

expression data, one can extract information about the trajectory

of cellular dynamics. For example, one can use standard time-

series analysis to distinguish whether the variation of expression

over time is due to stochasticity in expression dynamics only, or if

it originates from the high-dimensional dynamics inherent to cells.

(3) Network structure. Another approach to test our

hypothesis is to identify GRNs that can maintain the dynamic

differentiation process of stem cells though oscillatory expression

dynamics and cell-cell interactions, as we predicted. Our model

simulation suggested that 2 types of network modules, i.e., an

oscillation module composed of feedback loops and a switching

module composed of activator-inhibitor regulations, are generally

observed in the GRNs of stem cells, and thus these modules should

also exist in real GRNs that maintain the differentiation processes

of stem cells. Recent progress in experimental techniques such as

microarray, ChIP-chip, and ChIP-Seq analysis has provided an

abundant amount of information on the GRNs within stem cells

and has partially identified the complex regulatory networks

responsible for stem cell differentiation [35–40]. We expect that

possible oscillation/switching modules can be screened from such

putative regulatory networks. For instance, it is well known that

there is a core GRN that maintains the pluripotency of ES cells,

which consists of a regulatory loop comprised of Oct3/4, Nanog,

and Sox2 [2]. This regulatory loop of the core network includes

both positive and negative regulations [41], and thus it might

correspond to our oscillation module that generates sustained

oscillation ranging between high and low expression levels. In fact,

we made preliminary simulations of the gene expression dynamics

by using this core GRN from ES cell, and confirmed the

oscillatory expression by taking appropriate parameters.

Furthermore, it is established that the expression of the core

network components represses the expression of lineage-specific

genes [36,38], and that these genes might also repress the

expression of genes in the core GRN. Such mutual repression of

the core GRN and the lineage-specific genes might be a

component of the switching modules necessary for stabilizing the

differentiated states through cell-cell interactions.

(4) Candidates of transcription factors. Several examples

of ‘developmental transcription factors’ [42] are known that

mutually regulate one another’s expression. Transcription factors

that may be responsible for stemness are systematically analyzed

[43]. Importance of positive feedback loops to switching behavior

of cellular states was recently observed in a response of ES cell

against leukemia inhibitor factor (LIF) that controls the self-

renewal of ES cells [44]. This control of switching behavior by a

positive-feedback loop agrees well with our theory.

Another example of a GRN governing stem cell differentiation

includes Notch signaling pathway in neural differentiation. In the

cell fate switch of neural stem cell, the Notch effector Hes1 plays

an essential role, whose expression is up-regulated by the

activation of Notch signaling [45]. Hes1 is a bHLH transcriptional

regulator, which represses the proneural gene Neurogenin-2

(Ngn2), and the expression of Ngn2 induces expression of Notch

ligand as Deltalike1 (Dll1). Since the expression of Dll1 activates

the Notch signaling pathway in neighboring cells, these factors,

i.e., Notch/Dll1, Hes1, Ngn2, form a regulatory loop including

both positive and negative regulatory interactions. This may

provide an example of the oscillation module in our results. In fact,

it was experimentally demonstrated that the expression levels of

Oscillatory Expression Dynamics Endows Stemness

PLoS ONE | www.plosone.org 11 November 2011 | Volume 6 | Issue 11 | e27232



these factors show oscillation with the period of 2–3 hours in

neural progenitors, with the aid of negative auto-regulation of

Hes1 [46]. Indeed, the oscillatory expression dynamics in such

regulatory loop is consistent with our theoretical prediction.

(5) Regulation of differentiation frequency. Robustness in

the developmental process is a marvelous phenomenon, especially

considering its complexity. In addition to the stability of each cell

type, the number ratio of each cell type should also be robust to

perturbations. Indeed, developmental processes of multicellular

organisms are often ‘‘regulative,’’ which means that the number

ratio of stem to differentiated cell types is robust with respect to

perturbations. For example, in the case of mouse embryos, the

removal of blastomeres from early embryos and the addition of

pluripotent stem cells into the preimplantation embryos has been

shown to result in normal development, which suggests that the

differentiation frequencies are regulated through cell-cell

interactions [47]. Regulation for maintaining the number

distribution of cell types is also known to occur both in the

hematopoietic system via the differentiation and proliferation of

hematopoietic stem cells [48], and in the neural stem system [49].

The result here supports the previous proposition [17] that cell-

cell interaction on stochastic differentiation by chaotic dynamics

leads to the control of probability for proliferation of stem cells and

thus leads to autonomous regulation of the number ratio of each

type of cells. This type of regulation was recently observed in

neural and hematopoietic stem cell systems mediated by certain

factors, and models with negative-feedback loop(s) for cell-cell

interaction are proposed [50–52]. Our interaction-based dynamic

differentiation hypothesis for the regulation of differentiation

frequency and robust developmental processes is consistent with

these recent findings, and thus might be further confirmed

experimentally in the future.

Methods

Gene/Protein expression dynamics and cell-cell
interaction

We considered a cell whose state is represented by the

expression levels of k genes/proteins, where the expression levels

of the i-th mRNA and protein in the l-th cell at time t are

represented as ml i,tð Þ and pl(i,t), respectively. Now, all mRNA

expression is regulated by some of the proteins among

i~0,1, � � � ,k{1. These mutual regulations constitute a GRN.

Proteins activate, inhibit, or fail to influence the expression of each

gene. As a simple model, we assumed that the change of the i-th

mRNA expression level is given by

dml i,tð Þ
dt

~c(Fl i,tð Þ{ml i,tð Þ), 1ð Þ

with

Fl i,tð Þ~f
X

j
Jijpl j,tð Þ{hi

� �
, 2ð Þ

where c, which is the rate of the change in mRNA, was set to 6

[53–55]. Here, the function f xð Þ approaches 1, as x is increased

with a positive value, and approaches 0 as x is decreased with a

negative value. In other words, if
P

j Jijpl j,tð Þ is larger than the

threshold hi, then Fl i,tð Þ&1, which indicates that the gene is fully

expressed, and if it is smaller than the threshold, then Fl i,tð Þ goes

to zero, which indicates that the gene expression is suppressed.

Here, we chose, f xð Þ~1
�

1ze{bx
� �

, where b, which was set to

40, denotes the slope of the threshold. Roughly speaking, larger

values of b correspond to a larger Hill coefficient. The

matrixJijrepresents the GRN: Jij is 1, if the protein j activates

the expression of the gene i, it is 21 if it suppresses the expression,

and it is 0 if there is no connection. The term {ml i,tð Þ represents

the degradation of the mRNA. Here, we normalized the

maximum (saturated) concentration of the mRNA as ml i,tð Þ&1.

Next, the protein was synthesized from each mRNA. By again

normalizing the maximal concentration as 1, the dynamics of

protein concentration are given by

dpl i,tð Þ
dt

~ ml i,tð Þ{pl i,tð Þ
� �

zDi P i,tð Þ{pl i,tð Þ
� �

: 3ð Þ

Here, the first 2 terms represent the synthesis of the protein from

the mRNA and its degradation, respectively. The time-scale for

protein degradation is unity, which is larger than that for mRNA

(Eq. (1)), which is 1/ c( = 1/6). The term with Di shows the

diffusion of a penetrable protein, where Di is the diffusion constant

is set to 0.4, unless otherwise mentioned. For non-penetrable

proteins, it is instead set to 0. For simplicity, we considered a well-

mixed liquid culture; P i,tð Þ represents the concentration of the

protein in this medium. Assuming a fast global diffusion from all

cells, P i,tð Þ is given by the average of the protein concentration

over all cells, i.e., P i,tð Þ~ 1=Nð Þ
XN

l~1

pl i,tð Þ.

We started the simulation of this model from a single cell whose

initial expression level was determined randomly. Then, at a given

time, we assumed it divided into 2 cells. Upon division, the

concentration of each protein (and mRNA) was almost entirely

preserved for the divided cells, and was only slightly perturbed.

Here, we took a small random number di over [{s,s], where 1

cell that arose from the mother cell di was added top i,tð Þ, and for

the other cell it was subtracted. This ‘‘noise’’ level was set to s,

which was set to 0.00001, unless otherwise indicated. The cell

division was repeated tdiv after its last division, such that the cell

number increased as 1,2,4,8,16, � � � per tdiv, which was set to 500,

unless otherwise indicated. The threshold hi was set to nearly 0,

although we slightly changed its value for proteins to eliminate

artificial symmetric solution over different proteins. We repeated

the cell division up to N = 128.

For enumerative simulation, we studied all possible networks

with 5 genes (k = 5) and 10 paths (i.e., 10 elements in the matrixJij ,

where i,j~0,1, � � � ,4, and was set to 1 or 21, and others were set

to 0). We examined all possible networks. Although hi was set close

to zero, it was actually set to a value slightly different than zero to

eliminate artificial symmetry among all proteins. Specifically, we

set h0,h1,h2,h3,h4ð Þ~ {0:01,{0:03,0:02,0:01,{0:02ð Þ. In these

simulations, the parameter values of b,c,s, Di, and hi were fixed.

As for the values of b,c,s, Di, the results here are rather

insensitive; The value b need to be sufficiently large, say larger

than 25; c is larger than 1, while if it is much larger than 10, the

frequency of oscillation behavior and accordingly the differenti-

ation is reduced. The noise level s can take any values as long as it

is larger than zero and not too large (say less than .3 or so). As

shown in Fig. 4, even if it is of the order of 0.1, the results reported

here are not changed. If Di is of the order of 0.1, we observe the

differentiation. The threshold values hi are more important. The

differentiation is preserved within the change of +0:02 or so, but

by varying these parameters of the order of .1, differentiation
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could be lost for each network. Still, one might find other examples

of GRNs with differentiations, as long as hi ’s are close to zero.

Procedure to select networks allowing differentiation
When the cell number was 32, we determined whether there

were distinct cell types. Here, we computed the average protein

concentrationpl i,tð Þ over the time-span Tcheck, which was set to

100. We subsequently computed the Euclidean distance d m,lð Þ in

the protein state-space

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

pm i,tð Þ{pl i,tð Þ
� �2

s
between the m-th

cell and the l-th cell. If the distance of at least one of the pairs of m

and l was larger than a given threshold dthr(set at 0.3), we

considered that there were different cell types. For differentiated

cell types, some of proteins are either expressed to maximal or

minimal levels, i.e., p i,tð Þ*1 or ,0, so that the distance between

distinct cell types is typically larger than 0.5, and hence this choice

of dthr is sufficient. If Tcheckcould be chosen arbitrarily large, the

distinction of types by arbitrarily small dthrvalue could be accurate,

as the averaging out of oscillation would be perfect. On the other

hand, if p i,tð Þ showed a temporal change larger than the scale

Tcheck, then a long-term change in a single cellular state was

regarded as differentiation. Here, we set Tcheck sufficiently large

( = 100) to reduce such miscounting. For this case, by taking

dthr = (0.1,0.4), there were only slight changes in the result. Still,

there remained a few cases that were eliminated by directly

checking the time-series.

Procedure for selecting networks with stem cells
Since we sought a system with a stem cell, it was necessary for

one type of cells to both proliferate and differentiate repeatedly.

To further select such networks we applied the following

procedure against all the above selected networks with regards

to just differentiation. We simulated the gene/protein expression

dynamics in the presence of cell-cell interactions and with an

increase in cell number up to 256. We subsequently checked

whether plural differentiation events occurred from one type to

another, and selected such case. In other words, from the GRNs

showing plural differentiations, we discarded the case in which

differentiation from one type 1 to another type 2 occurred first,

and then from type 2 to type 1 in a later generation. Since the

average concentrations of each cell type could vary with the

increase in cell number, identification of the same cell type might

be sometimes difficult algorithmically. There were three ‘gray’

cases, which were removed here, and we finally selected 231 cases.

(Among them there were about 20 subtle cases in which the

protein concentrations change in a long-time scale, in which Tcheck

to obtain the temporal average might not be yet sufficiently long.)

Supporting Information

Figure S1 List of all networks that showed differentia-
tion repeatedly, which included 231 networks. The first 8

networks were reduced to 4 networks of 3 genes, and the next 2

panels of a total of 79 networks was reduced to 65 networks of 4

gene networks (see the main text). The next 4 panels of a total of

146 networks were inherently five-gene networks.

(PDF)

Figure S2 Example of differentiation only of the phase
of oscillations, but not of the differentiations. The

trajectories pl(1,t),pl(4,t),pl(5,t)
� �

are plotted over 8 cells. The

values of each cell at t~2500 are plotted as circles of different

colors. Even though the cellular states were identical, the protein

concentrations at each snapshot differed among cells, as the phases

of oscillation were scattered following chaotic oscillation. Howev-

er, the protein level did not show switch between ‘‘on’’ and ‘‘off’’

states.

(PDF)

Figure S3 Change in the flow in protein state space. By

taking an example in Fig. 1(c), plotted were trajectories of

pl(2,t),pl(4,t)
� �

of a ‘‘test cell’’ that is influenced only from 32 cells

of the original model with the network in Fig. 1(c1), whereas it did

not influence other cells. Trajectories from.25 initial conditions

within the dotted ellipse are displayed with different colors. (a) The

expression dynamics were computed under the presence of other

cells developed in the same way as in Fig. 1(c2) for given time span.

(a1) 0,t,4, when there was no other cell. All the trajectories were

attracted to the original attractor. (a2) 2650,t,2654, under the

presence of 32 cells developed from a single cell as in Fig. 1(c).

Among 25 initial states of the test cell in the figure, 21 were

attracted to the original attractor (flows to the left), while 4 were

attracted to a new state (flows to the right), corresponding to a

differentiated cell type. Indeed cell differentiation event occurred

around this time step. (a3) 2679,t,2683, right after the event of

cell differentiation (see Fig. 1(c2)), under the presence of 32 cells.

At this stage all the 25 initial conditions in the figure were attracted

into the original attractor. (b) The expression dynamics of a test

cell were plotted for 4 time units, under the presence of 32 cells of

the two cell types whose numbers were preset as the original cell

type at N0, and that of the differentiated type at 32{N0. (b1)

N0~ 8, (b2) N0~ 12, (b3) N0~ 16, and (b4) N0~ 32. When N0
was less than or equal to 8, all the initial conditions were attracted

to the original cell type (attractor, left in the figure), as shown in

(b1). As the number N0 was increased, some initial conditions (cell

states) were attracted to the differentiated cell type (right in the

figure). The fraction of initial conditions attracted to this

differentiated type increased as N0 was increased.

(PDF)

Figure S4 State differentiation represented by orbits in
the state-space of 3 protein concentrations. (a)

pl(2,t),pl(3,t),pl(4,t)
� �

is plotted for 7 cells l~0,1,2,3,6,22,31,

over 1500vtv1600, for the gene regulatory network of the fourth

item in the panel of Fig. S1, which is reduced to the network

shown in Fig. 5(d). Differentiation from the original attractor (left)

to a new state (right) progressed. (b) The time-series of the protein

concentration pl(2,t) is plotted. The differentiations occurred at

around t = 550, 1100, 1600, and 2600.

(PDF)

Figure S5 Designed gene regulatory network to produce
differentiation stem cell (S)RA,B/ARA1/ARA2/A2RA3/
A3RA4/BRB1.
(PDF)

Movie S1 The temporal change of pl(2,t),pl(3,t),pl(4,t)
� �

plotted for 7 cells, shown through the time up to t = 1200, for

the gene regulatory network shown in Fig. 1(c). Different colors

represent different cells. In this movie, tdiv was set to 200, instead

of 500, to allow observation of several differentiations within a

shorter time span.

(MPG)

Movie S2 The temporal change of pl(2,t),pl(5,t),pl(9,t)
� �

plotted

for 6 cells, shown through the time up to t = 960, for the gene

regulatory network in Fig. 7(a). Different colors represent different

cells. In this movie, tdiv was set to 160, instead of 500, to allow

observation of several differentiations within a shorter time span. In

the following three movies the diffusion constant was set to 0.125.

(MPG)
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Movie S3 The temporal change of pl(2,t),pl(5,t),pl(9,t)
� �

plotted for 6 cells, shown through the time up to t = 960, for the

gene regulatory network in Fig. 7(b). Different colors represent

different cells. In this movie tdivis set at 160, instead of 500, to

allow observation of several differentiations within a shorter time

span.

(MPG)

Movie S4 The temporal change of xl(t),yl(t),pl(4,t)
� �

plotted

for 14 cells, shown through the time up to t = 1264, for the gene

regulatory network in Fig. S5. Different colors represent different

cells. To distinguish the 7 cell types, we adopted the coordinates,

suml
1 tð Þ ~

X6

m~1

pl j mð Þ,tð Þ sin h j mð Þð Þz0:75pl 2,tð Þ, suml
2 tð Þ~

 

X6

m~1

pl j mð Þ, tð Þ sin h j mð Þð Þz0:75pl 4, tð Þ, suml
3~pl(4,t)Þ where

genes 0,1, 2, 3, and 4, are motifs of the chaotic oscillations,
j mð Þ,m~1,2, � � � ,6 assigns each gene that is expressed for each of

the 6 types (A, A1, A2, A3, B, and B1) specifically, and h jð Þ is

defined as
p

4
n mð Þ with n mð Þ~{1,0,1,2,4,5for m~1,2, � � � ,6,

which are adopted to clearly distinguish the 7 types in the plot (but

have no meaning). In this movie, tdiv was set to 158, instead of 500,

to allow observation of several differentiations within a shorter

time span.

(MPG)
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