
OPEN ACCESS

ll
Opinion

Barely sufficient practices
in scientific computing
Graham Lee,1,* Sebastian Bacon,2 Ian Bush,3 Laura Fortunato,4,5 David Gavaghan,1 Thibault Lestang,1 Caroline Morton,2

Martin Robinson,1 Philippe Rocca-Serra,3 Susanna-Assunta Sansone,3 and Helena Webb1

1Department of Computer Science, University of Oxford, Oxford, UK
2Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
3Oxford e-Research Centre, Department of Engineering Science, University of Oxford, Oxford, UK
4Institute of Cognitive and Evolutionary Anthropology, University of Oxford, Oxford, UK
5Santa Fe Institute, Santa Fe, NM, USA
*Correspondence: grahamlee@acm.org
https://doi.org/10.1016/j.patter.2021.100206

The importance of software to modern research is well understood, as is the way in which software devel-
oped for research can support or undermine important research principles of findability, accessibility, inter-
operability, and reusability (FAIR). We propose a minimal subset of common software engineering principles
that enable FAIRness of computational research and can be used as a baseline for software engineering in
any research discipline.
The importance to research of data and

how it is collected, processed, and

analyzed is accepted by the community.

The principles of findability, accessibility,

interoperability, and reusability (collec-

tively, the FAIR principles) were first pub-

lished in 20161 and have become widely

adopted norms in many disciplines,

with best practices recommended or

mandated to support FAIRness of data.

Some in the community are considering

how the idea of FAIRness applies to

research software.2

Many results in the scientific literature

now depend on software. Hypotheses

are constructed based on the results of

computational models. Data are gathered

and analyzed using commercial pack-

ages, open source modules, and custom

scripts. Software is critical to the accessi-

bility and reusability of scientific data, and

the verification of scientific methods. Of

scientists surveyed by Pinto et al. in

2018,3 86% report that developing scien-

tific software is important to their own

research, and 63% that it is important to

the research of others. The average

respondent reported spending 30% of

their working time on writing scientific

software.

Research software design and con-

struction is still largely a cottage industry,

with 99% of respondents in the Pinto

survey reporting that self-study was

important to their software development

skills acquisition. Far from agreeing on

best practice across all computational
This is an open access ar
research, disciplines have divergent soft-

ware practices leading to different levels

of reliability, replicability, and reusability

of research software. In the next section,

we give recent examples of problems in

the production or impact of research due

to the way in which related software was

constructed. We then propose ADVerTS

(availability of software, documenting

software, version control, testing, and

support), a minimal selection of ‘‘barely

sufficient’’ software engineering practices

chosen to address these problems and

suggested as a baseline for research soft-

ware development.

The problem
Software written without due attention to

relevant engineering practices can suffer

from many issues. Two cases presented

here from the literature on coronavirus

disease 2019 (COVID-19) demonstrate

unsupportable conclusions that must be

retracted, and distrust of (valid) results.

The Lancet published, then retracted,

analysis of the effects of hydroxychloro-

quine or chloroquine treatment for

COVID-19.4 In the retraction, Prof. Mehra

indicates that the data and software on

which the analysis was based were not

made available for independent peer re-

view or replication.

A model of pandemic spread produced

at Imperial College, London was used to

justify government policies related to

lockdown in March 2020. Initially unavai-

lable for external scrutiny and replication,
Patterns 2,
ticle under the CC BY-NC-ND license (http://cr
the software and the decisions based

upon it received intense criticism. It was

not until June 2020, well into lockdown,

that the model was conclusively validated

and its results replicated, after significant

input from academic and commercial

software communities.5 By this time, pub-

lic trust in themodel had already eroded, a

situation that could have been avoided by

documenting and testing the software

when it was first used.

ADVerTS: pragmatic practices in
research software
The availability, portability, and reusability

of scientific research software has impor-

tant effects on the reliability and repro-

ducibility of the scientific record, and the

trustworthiness of results gained using

that software. It would be fruitless to de-

mand that all researchers skill up as fully

trained software engineers, a distraction

to many whose interests lie in exploring

scientific questions, not in producing

commercial-quality code.

We propose the ADVerTS practices:

availability of software, documenting

software, version control, testing, and

support. This minimal set of five prac-

tices should be considered a baseline in

data science or any research discipline.

The name ADVerTS is chosen because

adherence to the practices ‘‘advertises’’

the fact that authors have taken an

end-to-end approach to FAIRness of

their research that includes software

artifacts.
February 12, 2021 ª 2021 The Author(s). 1
eativecommons.org/licenses/by-nc-nd/4.0/).

mailto:grahamlee@acm.org
https://doi.org/10.1016/j.patter.2021.100206
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2021.100206&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Opinion
ll

OPEN ACCESS
Each ADVerTS practice is described

along with a justification of how adopting

that practice supports the scientific

method, improving the FAIRness of

associated research. This choice of

practices was designed to be small

enough that every researcher can either

acquire the relevant skills or find some-

one locally to provide training, yet im-

pactful enough to bring about a mean-

ingful improvement to the state of

research software.

Availability of software for others

to use

Replicating and building on another re-

searcher’s results requires access to

the same tools used by the original

researcher. Software is, in principle, the

easiest tool to distribute, as doing so is

free. Some academics choose not to

share their codes because of embarrass-

ment with their programming skills, or due

to ‘‘Gollum syndrome,’’ in which they view

their software as their personal, precious

artifact.

Software used in research, particularly

custom tools or scripts made by and on

behalf of researchers for particular pro-

jects, should be made available to the

community in open repositories with

metadata using the standard Citation

File Format.6 The software’s repository

entry should be associated with a digital

object identifier (DOI). The DOI should be

used in connection with any publication

using the software.

This practice supports the findability,

accessibility, and reusability of software

artifacts by making the software readily

available to other researchers. Publishing

the software up front reduces the friction

of trying to obtain software on request

from the original authors and obviates reli-

ance on those authors’ computing equip-

ment, backup regimens, and approaches

to filing. It also enables the growing prac-

tice of digital archaeology—the need to

recover and reuse software produced a

long time ago—when the original author

may have moved on to other things. The

benefits (earlier and more detailed peer

review, greater FAIRness, opportunities

to reuse others’ code and have your

code used by others) of publishing

research software early and often

outweigh the embarrassment of sharing

work-in-progress code.

Once available, the software also needs

to be licensed for re-use by others; for
2 Patterns 2, February 12, 2021
example, under an open-source software

(OSS) license like the Massachusetts

Institute of Technology (MIT) license or

GNU General Public license (GPL).

Document setup, use, and

expectations of code

With access to the software, thewould-be

replicator must be able to execute the

software in the same way that the original

author did. Respondents to the Pinto et al.

survey3 describe documentation as one

of the biggest ‘‘pain points’’ in scientific

software. This contradicts the statement

in commercial software development

that ‘‘we have come to value working soft-

ware over comprehensive documenta-

tion.’’7 The audience for commercial

application source code is typically other

professional developers who benefit

from the training, and access to their col-

leagues, necessary to interpret undocu-

mented source code.

Additionally, we ask not for comprehen-

sive documentation of software, but for

barely sufficient documentation. It should

be possible for a motivated individual with

no prior knowledge of the project to

obtain a copy of the code, get it running,

thenmake productive use of the software,

following just the steps included in a

README or ‘‘getting started’’ file.

We acknowledge that software porta-

bility is a complex problem that many re-

searchers are neither equipped nor

necessarily motivated to handle, but that

non-portable software is a hindrance to

re-use. We suggest that authors of

research software document the setup re-

quirements of the software, including spe-

cific version numbers of programming

languages, packages, modules, or other

programs used. If it is not possible to run

the software in other environments, it

should at least be possible to replicate

the author’s configuration. This will bring

advantages to the original author, coming

back to the software they have written

sometime later and attempting to reuse it.

Version control

Scientific software typically goes through

many revisions, whether trial-and-error

improvements on a single author’s work-

station or multiple releases as part of an

ongoing program of research. It is critical

for the reproducibility and re-use of

research that replicators get to use not

merely the same script or application,

but the exact same version of the software

that was used in the original research.
A version control system works like an

intentional change tracker, allowing au-

thors to record significant changes to their

code as ‘‘commits’’ in a permanent re-

cord. It is always possible to retrieve

earlier versions of the code from the re-

pository of commits, and to browse the

log to discover when particular changes

were made.

Version control makes modifying soft-

ware a less stressful experience by

reducing the cost of change, as any mod-

ifications that lead to a dead end can

always be reverted. While we do not go

as far as to propose that any particular

version control system be adopted, we

acknowledge that Git is already popular

among both academic and commercial

programmers and suggest it as a good

example of a version control tool.

Test, mostly at the unit level

It can be difficult to know what the ex-

pected behavior of research software

should be when run on real research

problems, though some research soft-

ware, for example, that tasked with cura-

tion or presentation of data, can be clearly

specified. Any software can be tested for

conformance with the expected algorithm

even if the results expected in an experi-

ment are not known. Testing reduces the

risk that results gained in research are

erroneous, by ruling out failures due to

incorrect software behavior. Risks due to

problems with the input data and the un-

derlying algorithms can be secondarily

uncovered, thanks to the test’s status as

a precise and critical specification of the

program’s expected behavior.

We suggest small tests of isolated com-

ponents, called unit tests, which give

good feedback on what has gone wrong

when a test failure is reported, and moti-

vate decomposition of codes into small

modules and procedures that facilitate

sharing and re-use. End-to-end tests are

often implemented using ‘‘toy’’ problems

that, while well understood, do not fully

exercise edge cases or alternate code

paths in the logic of the program under

test. Nonetheless, end-to-end tests pro-

vide confidence that the whole system is

correctly set up and integrated. We sug-

gest that any tests are better than no tests

and that effort should be spent mostly,

though not exclusively, on unit tests.

Tests should be considered part of the

software’s documentation, as they suc-

cinctly encapsulate information about



Opinion
ll

OPEN ACCESS
the software’s expected behavior. Tests

should be part of the standard software

distribution, along with documentation of

how to run the tests.

Support or maintenance of the

software clarified

Re-use of research software may be ex-

pected or even sought out when the soft-

ware is created; for example, when the

author sets out to make a library of algo-

rithms or a framework for modeling partic-

ular problems. On other occasions, re-use

arises despite expectations that the soft-

ware is ‘‘done.’’ A PhD student finds a

useful script on the shared drive, or you

bundle up some files to send to a peer

and they use one of your algorithms in

their analysis. Either way, re-use is almost

inevitable and should be planned for.

Making clear at time of publication the

expectations other researchers can have

regarding the sustainability of the soft-

ware, both in terms of the expected work-

flow and the resources available, will

simplify the authors’ work and that of peo-

ple who wish to extend that work. The au-

thors can direct requests or contributions

to a particular mailing list, or issue tracker

on a website like Github, to reduce

communication overhead and have

everything in one place to aid prioritization

and visibility; additionally, they can open

up the work to their group or a volunteer

community. Potential contributors and

collaborators can be sure that their re-

quests and contributions are going to

the correct place.

Frequently, the situation will be that the

authors have no time or resources to sup-
port the software they published, because

there is no funding or they are working on

another project. This is still important in-

formation to share so that the community

knows what to expect and can make

informed judgements about the sustain-

ability of the software it depends on.
Conclusion
Calls in the scientific literature for im-

provements in software engineering prac-

tice among computational researchers

are not new.8 Here, we propose a mini-

malist subset of practices deliberately

chosen to support the robustness and ve-

racity of the scientific record. Rather than

demand that researchers also become

professional software engineers, we

merely suggest acquiring a small collec-

tion of skills that will quickly improve the

FAIRness of their research. We also sug-

gest that journal editors and funding

bodies use evidence of these practices

as signals of the reliability of software

associated with research.

We welcome further discussion on

defining or adapting these baseline prac-

tices for computational research. We

also look forward to experience reports

on teaching and adopting these practices

across the community.
REFERENCES

1. Wilkinson, M.D., Dumontier, M., Aalbersberg,
I.J., Appleton, G., Axton, M., Baak, A.,
Blomberg, N., Boiten, J.W., da Silva Santos,
L.B., Bourne, P.E., et al. (2016). The FAIR
Guiding Principles for scientific data manage-
ment and stewardship. Sci. Data 3, 160018.
2. Research Data Alliance (2019). fair for Research
Software (fair4rs) wg. https://www.rd-alliance.
org/groups/fair-research-software-fair4rs-wg.

3. Pinto, G., Wiese, I., and Felipe Dias, L. (2018).
How do scientists develop scientific software?
An external replication. ieee 25th International
Conference on Software Analysis, Evolution
and Reengineering (saner) 2018, 582–591.

4. Mehra, M.R., Desai, S.S., Ruschitzka, F., and
Patel, A.N. (2020). Retracted:
Hydroxychloroquine or chloroquine with or
without a macrolide for treatment of COVID-
19: a multinational registry analysis. Lancet
395, 10240.

5. Chawla, D.S. (2020). Influential Pandemic
Simulation Verified by Code Checkers. https://
media.nature.com/original/magazine-assets/
d41586-020-01685-y/d41586-020-01685-y.pdf.

6. Druskat, S., Bast, R., Hong, N.C., Konovalov,
A., Rowley, A., and Silva, R. (2017). A stan-
dard format for CITATION files. https://
www.software.ac.uk/blog/2017-12-12-standard-
format-citation-files.

7. Beck, K., Beedle, M., van Bennekum, A.,
Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries,
R., et al. (2001). A Manifesto for Agile Software
Development. https://agilemanifesto.org/.

8. Wilson, G., Bryan, J., Cranston, K., Kitzes, J.,
Nederbragt, L., and Teal, T.K. (2017). Good
Enough Practices in Scientific Computing.
PLOS Computational Biology 13, https://doi.
org/10.1371/journal.pcbi.1005510.

About the author
Graham Lee is a senior research software engineer
in the Oxford RSE group at Oxford’s computer sci-
ence department, where he works with re-
searchers of all disciplines to ensure that their
research goals are well supported by the software
their groups create and use. He is also a PhD stu-
dent in the same department, researching the
values and practices of research software engi-
neering. Graham came to academia after 15 years
as a professional software engineer in industry,
with experience spanning startups, blue chip
companies, and established Silicon Valley
corporations.
Patterns 2, February 12, 2021 3

http://refhub.elsevier.com/S2666-3899(21)00016-7/sref1
http://refhub.elsevier.com/S2666-3899(21)00016-7/sref1
http://refhub.elsevier.com/S2666-3899(21)00016-7/sref1
http://refhub.elsevier.com/S2666-3899(21)00016-7/sref1
http://refhub.elsevier.com/S2666-3899(21)00016-7/sref1
http://refhub.elsevier.com/S2666-3899(21)00016-7/sref1
https://www.rd-alliance.org/groups/fair-research-software-fair4rs-wg
https://www.rd-alliance.org/groups/fair-research-software-fair4rs-wg
http://refhub.elsevier.com/S2666-3899(21)00016-7/sref3
http://refhub.elsevier.com/S2666-3899(21)00016-7/sref3
http://refhub.elsevier.com/S2666-3899(21)00016-7/sref3
http://refhub.elsevier.com/S2666-3899(21)00016-7/sref3
http://refhub.elsevier.com/S2666-3899(21)00016-7/sref3
http://refhub.elsevier.com/S2666-3899(21)00016-7/sref4
http://refhub.elsevier.com/S2666-3899(21)00016-7/sref4
http://refhub.elsevier.com/S2666-3899(21)00016-7/sref4
http://refhub.elsevier.com/S2666-3899(21)00016-7/sref4
http://refhub.elsevier.com/S2666-3899(21)00016-7/sref4
http://refhub.elsevier.com/S2666-3899(21)00016-7/sref4
https://media.nature.com/original/magazine-assets/d41586-020-01685-y/d41586-020-01685-y.pdf
https://media.nature.com/original/magazine-assets/d41586-020-01685-y/d41586-020-01685-y.pdf
https://media.nature.com/original/magazine-assets/d41586-020-01685-y/d41586-020-01685-y.pdf
https://www.software.ac.uk/blog/2017-12-12-standard-format-citation-files
https://www.software.ac.uk/blog/2017-12-12-standard-format-citation-files
https://www.software.ac.uk/blog/2017-12-12-standard-format-citation-files
https://agilemanifesto.org/
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1371/journal.pcbi.1005510

	Barely sufficient practices in scientific computing
	The problem
	ADVerTS: pragmatic practices in research software
	Availability of software for others to use
	Document setup, use, and expectations of code
	Version control
	Test, mostly at the unit level
	Support or maintenance of the software clarified

	Conclusion
	References


